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Abstract: In computed tomography imaging, the computationally intensive tasks are the pre-
processing of 2D detector data to generate total attenuation or line integral projections and the
reconstruction of the 3D volume from the projections. This paper proposes the optimization of the
X-ray pre-processing to compute total attenuation projections by avoiding the intermediate step to
convert detector data to intensity images. In addition, to fulfill the real-time requirements, we design
a configurable hardware architecture for data acquisition systems on FPGAs, with the goal to have a
“on-the-fly” pre-processing of 2D projections. Finally, this architecture was configured for exploring
and analyzing different arithmetic representations, such as floating-point and fixed-point data for-
mats. This design space exploration has allowed us to find the best representation and data format
that minimize execution time and hardware costs, while not affecting image quality. Furthermore, the
proposed architecture was integrated in an open-interface computed tomography device, used for
evaluating the image quality of the pre-processed 2D projections and the reconstructed 3D volume.
By comparing the proposed solution with the state-of-the-art pre-processing algorithm that make use
of intensity images, the latency was decreased 4.125×, and the resources utilization of ∼6.5×, with a
mean square error in the order of 10−15 for all the selected phantom experiments. Finally, by using
the fixed-point representation in the different data precisions, the latency and the resource utilization
were further decreased, and a mean square error in the order of 10−1 was reached.

Keywords: computed tomography; image pre-processing; high-level synthesis; X-ray pre-processing;
pipelined architecture

1. Introduction

Computed tomography (CT) is an X-ray 3D cross-sectional imaging technology and
is heavily used for medical and industrial applications. The X-ray source and the 2D
detector are the major components of a CT system. The X-ray source generates photons of
various energies, which pass through the patient body. The photons undergo the process of
attenuation, where a fraction of them are either absorbed or scattered. The unattenuated or
transmitted photons are detected by a 2D array of detector cells generating a 2D shadow or
projection image of the patient body. The X-ray source–detector pair rotates around the
patient and acquires projection images at various angles. The 2D cross-sectional images
or 3D volumes of the patient can be generated from the 2D projections using state-of-
the-art reconstruction algorithms [1]. The advent of hardware accelerators and efficient
algorithms has made real-time volumetric imaging feasible by fast image processing and
reconstruction. Clinical CT images have been used for patient diagnosis (diagnostic CT),
such as detecting tumors and aneurysms [1]. In addition, the CT scanners (interventional
CT) have also been employed for intra-operative guidance (e.g., instrument or needle
tracking) and the assessment of interventional procedures, such as tumor ablation [2].

The main objective of the diagnostic CT is the accurate reconstruction of the patient’s
anatomy with the highest image quality possible (e.g., high spatial resolution, and reduced
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noise). By contrast, the main challenge of interventional CT is to display the reconstructed
images in real time with an acceptable image quality necessary for the smooth functioning
of interventional procedures. To overcome the constraints induced by image quality, X-ray
dose reduction, and real-time capability, the development of efficient algorithms and their
implementation utilizing task and/or data parallelism in hardware accelerators such as
graphics processing units (GPU), digital signal processors (DSP) and field programmable
gate arrays (FPGA) is an active research area [3–7]. Alcaín et al. [7] published a survey
about the different usage of various hardware accelerators in real-time medical imaging.
They also discussed interventional CT and the advantage of using hardware accelerators,
compared to CPUs.

These accelerators implement specific math co-processors, able to process different
data formats. The main standard used for real numbers is the single-precision floating-point
format (IEEE 754) [8], which allows a wide range of numerical values. By contrast, due
to the hardware complexity of the math co-processor (also known as floating point unit,
FPU) to represent and process the IEEE 754 data format, new math co-processors for real
number operations are explored in the literature. These are often based on approximate
computing techniques [9,10]. For example, tensor core processing units [11,12] enhance
the performance of real number operations by using the Bfloat16 format. This format is
defined by a custom 16-bit floating point representation [13].

Due to the complexity of the algorithms and the amount of data needed to be pro-
cessed, the various hardware accelerators are often not capable of running the projection
pre-processing and the volume reconstruction in real time [7]. Hence, apart from the in-
vestigation of novel algorithms and architectures, the utilization of novel custom number
representations and data formats are also explored [12,14]. In fact, in CT image processing, real
numbers are involved that can be represented with various data representations and formats.
For instance, Maaß et al. [14] employed 32-bit (float) and 16-bit (half) floating-point data for-
mats to represent the projection pixel values. As per their results, the half data format halved
the required memory bandwidth without compromising the accuracy of reconstruction.

For the best of our knowledge, in CT image processing, the exploration of the design
space (with the different data representations and formats) is a complex task in which
there are no systematic solutions which guide the designer to select either a custom or
a standard data format. All proposed solutions implement the CT pre-processing and
reconstruction algorithm with a pre-selected data format without considering which data
format is optimal for the image quality, the real-time requirements, and the hardware
realization, at the same time. Maaß et al. [14] compared 32-bit and 16-bit floating-point
data formats without considering the impact of these in terms of hardware cost and
additional data representation, such as fixed point. For exploring new custom co-processors,
FPGAs are well-suitable platforms. In contrast to CPUs, GPUs, and DSPs that have a fixed
instruction-set architecture (ISA) and data representations, FPGAs allow designers to define
custom hardware architectures and to explore custom data representations [6]. Therefore,
they can be used for exploring the design space, where different custom and standard data
formats are defined and selected.

Contributions. In this article, we propose various hardware optimizations of the X-
ray pre-processing step in interventional CT. It involves the optimization of the numerical
computation of total attenuation values and its hardware acceleration. This pre-processing
step is also called I0-correction. First, we apply the pre-processing algorithm on the digital
detector signals without the intermediate step to convert them to intensity images. Conse-
quently, the total attenuation computation formula is simplified in terms of arithmetic and
hardware complexity. Second, we implement a custom hardware accelerator as dataflow
architecture, called the CT pre-processing core, that pre-processes the raw sensor data on
the fly, without storing data in external memory. Furthermore, this core is designed using
high-level synthesis (HLS), and it is configurable for various encoding and data widths of
fixed-point and floating-point representations. In addition to the proposed pre-processing
optimization, we integrated the implementation of the CT pre-processing core in an open-
interface CT assembled in our laboratory. The proposed core implemented on FPGA can
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be integrated directly with the data acquisition system (DAS), which collects the detector
signals and forwards the pre-processed data to the reconstruction system.

Finally, we perform a design space exploration (DSE) to find which real number
representation and data format better fits the pre-processing step for interventional CT
applications. The DSE considers the different data representations as input variables and
the qualitative and quantitative metrics, such as image quality, execution time, and the
X-ray dose as decision variables. We systematically pre-select the input data formats based
on the raw sensor and the reconstruction data formats. In addition, we pre-select specific
metrics for estimating hardware costs, such as execution time, data width, and memory
bandwidth required per pixel. Apart from that, we use image quality metrics, such as mean
square error (MSE) of the 2D image and low contrast, noise and uniformity of the 3D volume.
The image quality is analyzed after reconstructing the images of a dedicated CT image
quality phantom known as CATPHAN® 500 [15] phantom [15].

Structure. This paper is organized as follows: Section 2 describes the CT scanner, the
difference between attenuation and intensity projection images, and the computing theory
for real number representations; Section 3 explains the related works; Sections 4 and 5
present the optimization of projection pre-processing and the CT pre-processing core;
Section 6 illustrates the implementation and the CT integration; Section 7 introduces the
DSE for the different real number representations; Section 8 describes the phantom modules,
the image quality metrics, and CT settings utilized for the DSE; Sections 9 and 10 show the
results of the X-ray pre-processing for various real number representations.

2. Background

This section describes the CT scanner, how FPGAs are used in CT, and the theory of
the computation of total attenuation required during the pre-processing steps of the CT
reconstruction. In addition, we describe the different data representations for real numbers
used in our design space exploration.

2.1. Computed Tomography Scanner

The word tomography is derived from the Greek words tomos (slice or section) and
graphein (to write or draw) [16]. Therefore, CT can be defined as the depiction of the
cross-sectional images or slices of a patient’s body [17]. The multiple slices can be stacked
together to form a three-dimensional image or volume [17].

As shown in Figure 1, the CT scanner consists of an X-ray tube or source, a gantry
module, a detector system (DMS), collimators, a motorized patient’s table, and an image
reconstruction unit. For controlling and synchronizing all these components, different
FPGAs are used in the CT scanner [18]. The X-ray tube system, collimators, and detector are
fixed on the rotating disk, mounted on the gantry; the rest of the components are fixed on
the stationary side. The communication between the rotating and stationary sides is done
through slip-ring technology consisting of brushes that permit the electrical connection
between the rotating and stationary sides.

The CT scanner works by moving the patient table to the space inside the gantry
module, and when the patient’s body goes through it, the X-ray tube system and the DMS
rotates around the object’s body with a frequency of about 170 rpm [16]. In the meantime,
the X-ray tube system shoots a narrow beam of photons through the object’s body. The
attenuated beam photons of the object’s body are acquired by detector sensors on the
opposite side of the X-ray tube system [16]. The data are acquired as pixels of 2D images,
called projections. Usually, modern CT scanners collect over 1160 projections per round [18].
These data are transferred to the image reconstruction unit, where the volume of the object’s
body is reconstructed as volume.
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X-Ray Tube system

Detector(DMS)

Gantry module

Reconstruction Unit

Multi-Modality
(3D sensor camera)

Patient’s Table

Figure 1. CT scanner components. Reprinted/adapted with permission from Ref. [18]. Copyright
2019, IEEE.

The image formation in CT involves pre-processing acquired detector data, recon-
structing the volume from the processed projections, and post-processing the reconstructed
volume. CT reconstruction from the processed projections (total attenuation values or
line integrals) is an inverse problem [19]; it means that input values (3D volumes) are
estimated from the output values (2D images). Numerous solutions can be found for
this problem in the literature, including the filtered back-projection (FBP) and iterative
reconstruction [20–23]. Our article focuses on the X-ray pre-processing step to compute the
total attenuation values from the digitized detector data. In interventional CT, it has to be
executed in real time.

2.2. Pre-Processing: X-ray I0-Correction

During CT data acquisition, the patient body is irradiated with the photons emanating
from the X-ray source. Some of the photons are attenuated during the photon–matter
interaction. An X-ray detector detects the unattenuated or transmitted photons generating
projection images. X-ray detection involves the two-level conversion process, where the
X-ray photons are converted to light, and the photo-diode array converts them to electrical
signals. Analog-to-digital converters (ADCs) of the acquisition system will transform
electric signals into digital signals and store them in a compressed format. These 2D
images are called detector data projections and are denoted by d(u, v), where u and v are
the detector row and column indices. Conventionally, the detector data projections are
transformed into X-ray intensity projections as per the following equation:

I(u, v) = c · e−d(u,v) (1)

where c is a scaling factor. I(u, v) is the intensity image data. The exponential decay of
the X-ray intensity during X-ray transmission through the patient body is given by the
Beer–Lambert law [20,23]. The total attenuation values along the X-ray path are given by

P(u, v) = ln
(

I0(u, v)
I(u, v)

)
(2)

where I0 projections are stored in the CT system during the calibration of the scanner by
acquiring the intensity projections without any object. Formula (2) is also called I0-correction.
A CT 3D volume is reconstructed from the attenuation projections using state-of-the-art
reconstruction algorithms.

From the detector, the DAS collects the raw sensor data which must be multiplied
with a factor of f to obtain the detector data projections, as given by

d(u, v) = f · Raw(u, v) (3)
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Commercial CTs usually do not provide the projections as detector data projections,
but they convert them to intensity image data. In fact, pre-processing algorithms usu-
ally process projections in intensity image data and then apply the I0-correction for the
reconstruction step.

In Section 4, we propose a mathematical optimization of the I0-correction that uses
directly the raw sensor data, instead of using the converted intensity image data.

2.3. Real Number Representations

As mentioned above, the CT reconstruction algorithms use real numbers. In comput-
ing, real numbers are usually represented by the float or the double format. These formats
are two different encodings of the standard for floating-point arithmetic (IEEE 754) [8]. This
standard specifies conversions and arithmetic representations, and methods for binary and
decimal floating-point arithmetic. As shown in Figure 2, the floating-point numbers are
represented by their sign (S), exponent (E), and mantissa (M) bits. The floating-point value
can be represented as a function of S, E and M, as follows:

f (S, E, M) =

{
(-)S · 2E+1−2e−1 · (1 + M · 2−m) for 0 < E < 2e−1 (4)

(-)S · (1 + M · 2−m) else (5)

In the formula above, m represents the amount of mantissa bits (e.g., in single precision,
floating-point m is equal to 23).

Figure 2. Encodings of the floating-point standard.

According to IEEE 754 standard, there are four different formats of encoding for
the floating-point, with 16, 32, 64 and 128 bits, and they are called half-precision, single-
precision, double-precision and quad-precision respectively. E and M have different data
widths, based on the selected encoding, as shown in Figure 2.

The various encodings determine number representations with different accuracy. In
addition, they use different arithmetic processing units, which have different performance
in terms of power consumption, execution time, memory utilization, and chip area. For
example, the single-precision floating point represents numbers in the range between 2−149

and 2128, with a relative error of 2−23, caused by truncating digits.
As the target data to process are limited in a small range of values, and the accuracy

of the IEEE 754 representation is not required for the target application, new custom and
approximate representations have been proposed in literature, with the aim to optimize
hardware resources, data resources, and execution time. A proposed solution in the
literature is the fixed-point representation [24].

As shown in Figure 3, this representation is composed of three parts: sign (S), integer (I)
and fraction (F) fields. There is no fixed encoding for this representation, but the hardware
designer sets the size of the data width (W), that is equal to S + I + F. The size of I and
F depends on the values to represent, and the desired accuracy. Furthermore, math co-
processors for fixed-point operations are usually faster than the respective for the IEEE-754
standard, because the same operation implemented in fixed-point precision use fewer
logic gates and hardware resources than floating-point precision, but usually it has a
lower accuracy and can represent a smaller range of numbers. In Section 7, we explore
different settings of the parameters S, I and F for finding the optimal configuration of these
parameters with an acceptable accuracy of the CT dataset.
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Figure 3. Fixed-point representation.

3. Related Works

In the literature, there are a lot of algorithms and hardware accelerators for CT pre-
processing and reconstruction. Most of them use FPGAs [25–31], and GPUs [32–36] as a
target platform because these offer a high level of flexibility and parallelism. Here, we do
not compare the different architectures for FPGAs with the proposed CT pre-processed
core because it is not possible to compare them and it is also out of the scope of our article.
Instead, we are interested in optimizing the pre-processing step and investigating the
impact of data formats on the reconstructed image; we only consider the different data
formats used in these works. In addition, we report the related works, where the authors
analyzed and compared different data formats in CT reconstruction, and point out the
difference with our work that aim to find the best data format in interventional CT.

Dandekar et al. in [4] presented a reconfigurable architecture for the real-time pre-
processing of interventional CT. They proposed a streaming architecture that optimizes
latency. They implemented a median filtering and anisotropic diffusion filtering based on
neighborhood voxels (3D pixels). This property was used for implementing a custom brick-
caching schema that improves the memory performance. They describe their architecture in
VHDL with different fixed-data formats: 8, 12 and 16 bits. With the custom implementation
of these optimizations, they achieve a processing rate of 46 frames per second for images of
size 256× 256× 64 voxels.

Another important work comes from Korcyl et al. in [37]. They built real-time
tomographic data processing on FPGA SoC devices. They designed the whole system from
detector’s scanner to the reconstruction unit. The reconstruction system is implemented on
a single FPGA board that processes the image in real-time. The architecture is composed
of 8 parallel pipelines that acquire data from the scan. Inside, they de-couple the data,
process them and display the images to the doctor, without using any external memory
access. These FPGA accelerators for real-time CT pre-processing and reconstruction have
different architectures, which use custom and standard data formats. Even if they optimize
the architectures with a custom data format, they do not investigate the impact of the data
format on the pre-processed and reconstructed image. They select a data format which
fulfills the hardware requirements of their specific solution. In our work, we investigate
the impact of the data formats on the pre-processed and reconstructed image. In addition,
the CT pre-processing core can be configured at the synthesis time for using different data
formats for raw sensor data, pre-processing data and reconstructed data.

For the best of our knowledge, in the literature, only Clemens Maaß et al. in [14]
investigated the impact of data formats on the reconstructed image. They worked with
different encodings of the IEEE-754 standard and they showed that the half-precision
floating-point can enable a fast image reconstruction process without declining image
quality [14]. So, instead of 32-bit single precision, 16-bit half precision is used as data format,
and it reduces the traffic on the memory bus [14]. Due to arithmetic complexity, the back-
projection needs to access the external memory multiple times [14]. By choosing the half-
representation data format, they can reduce the data traffic and can increase the throughput
of the memory bus. This work focuses on the difference between half- and single-precision
floating point representation, but does not consider fixed-point representation and custom
data representation, which also are used in CT image processing.

For example, Nourazar and Goossens [12] proposed an iterative CT reconstruction
algorithm optimized for tensor cores of NVidia GPUs. To enhance the performance, they
performed the reconstruction algorithm with a mixed-precision computation; the error of
the mixed-precision computation was almost equal to single-precision (32-bit) floating-
point computation [12]. Using a mixed-precision computation means that different data
formats are used in the reconstruction algorithm for representing the same real value.
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In our work, through a DSE, we systematically search in the design space the best
data format for interventional CT. Different from Clemens Maaß et al. [14], we use a DSE
in our methodology and we do not only consider the image error as the MSE and noise,
but we also consider hardware cost metrics and image quality metrics, such as low contrast
and uniformity. In addition, we do not limit our study to the floating-point representation,
but we also consider fixed-point representation. Furthermore, with the proposed CT
pre-processing core, custom data formats can be investigated.

4. X-ray I0-Correction Optimization

In this section, we describe the proposed method and formulas for performing the
I0-correction directly on the acquired raw sensor data, without converting them to intensity
domain images.

As explained in Section 2.2, most of the commercial CT scanners provide the projec-
tions, directly converted in the intensity domain, as real or integer number values, and the
total attenuation correction is applied with Formula (2). This formula is computationally
complex to implement because the logarithm operation usually is not a primitive operation
in the math co-processors. In addition, for using this formula, the collected data must be
converted from raw sensor data to intensity data inside the CT scanner; the conversion
determines an additional latency between the DMS and the reconstruction system. In fact,
for converting data from raw sensor data to intensity data, Formulas (1) and (3) are used.
Formula (1) comprises an exponential operation, which is also not a primitive operation in
most of math co-processors.

In our proposed optimization, we consider raw sensor data as input for the I0-
correction. In this way, we have merged Formulas (1)–(3) which are usually separated and
implemented in the CT data acquisition system and the reconstruction system. By merging
them, we obtain the following formula:

P(u, v) = loge(
c · exp(−( f · Raw0(u, v)))
c · exp(−( f · Raw(u, v)))

) (6)

If we implement Formula (6) as is, the logarithm and the power operations should be
implemented. However, since we implement it inside the data acquisition system of the CT,
we apply the mathematical simplification that results in the equivalent formula, shown in (7).

P(u, v) = log10(2) · f · (Raw0(u, v)− Raw(u, v)) (7)

Therefore, as shown in Formula (7), the I0-correction can be performed directly on raw
sensor data with basic operations provided by most of the math co-processors. This mathe-
matical optimization determines the decreasing of the resource utilization and execution
time, compared to the implementation of Formula (6).

Furthermore, to perform the I0-correction and the whole pre-processing step on the fly,
we propose the implementation of the algorithm in a dataflow architecture. To describe how
Formulas (6) and (7) were implemented in the dataflow architecture, we used the data flow
graph representation [38], as shown in Figures 4 and 5. In the data flow graph the square
boxes represent the input/output data and constants, the circular boxes, the operation and the
arrows the flow of data. The dataflow graph shows the flow and the data and dependency of
the operations. The various operations in the boxes have different latency and hardware costs
in a math co-processor. The values of these metrics depend on the implemented operation
and the selected data format. In the next sections, we focus on the hardware implementation
of the dataflow architecture, its integration in the data acquisition system of the open-interface
CT and how different data formats influence performance.
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Raw(u,v)

f*log(2)

*- P(u,v)

Figure 4. Data flow graph representation for the optimized I0-correction.
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Figure 5. Data flow graph representation for the standard I0-correction.

5. CT Pre-Processing Core Architecture

In this section, we describe our CT pre-processing core, which implements the I0-
correction. For fulfilling the real-time requirements, the CT pre-processing core is designed
as a dataflow architecture, which has a constant delay and throughput. Furthermore, to
process data with high clock frequency and to reduce the critical path of the arithmetic
operations, the dataflow architecture is pipelined. The depth of the pipeline depends on
the data format and prepossessing algorithm, as explained in Section 9.

The CT pre-processing core, as shown in Figure 6, has the following three main stages:

• Sensor-data conversion stage: This stage obtains the pixel raw sensor data of the I0-
image and the current image collected by the data acquisition system (DAS). In this stage,
each pixel is converted to the selected pre-processing data format. At synthesis time, a
custom configuration for floating-point or fixed-point representation must be selected.

• Image-processing stage: In this stage, pixel data are ready to be pre-processed in the
selected data representation. This stage has multiple internal stages, and it is scalable
for additional pre-processing steps. In this article, we focus on the pre-processing step,
based on Formulas (6) and (7).

• Reconstruction conversion stage: This stage obtains the pre-processed data (atten-
uation image) and converts them in the reconstruction data format, defined at the
synthesis time. The output results are ready for the reconstruction, and they are
forwarded to the data stream unit, which is responsible either for storing or sending
them to the reconstruction system.

detector type [AXI4-Stream]

Raw0(p,x,y)

Raw(p,x,y)

Raw0(p,x,y)

P(p,x,y) P(p,x,y)

Raw(p,x,y)

Sensor-data
conversion

stage

Reconstruction
conversion

stage

Image-processing
stage

image-processing type [HLS-Stream] reconstruction type [AXI4-Stream]

Figure 6. CT pre-processing core.
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For communicating, the CT pre-processing core uses the AXI4-Stream interface. This
flexible interface can be configured with different data widths, so it can be easily used for
different data representations, and integrated in any system that uses the AXI4-Stream standard.

The CT pre-processing core is designed for processing one pixel per clock cycle. If the
DAS collects multiple pixels per clock cycle, multiple instances of this core must be added;
in this way, all the collected pixels are processed in parallel. For example, in the integration
with the DAS of our open-interface CT, we have four instances because the DAS collects
four pixels per clock cycle, as is explained in the following Section 6.

Furthermore, the CT processing core is designed and implemented to be configurable
for custom data representations that are defined at synthesis time. In this way, the architec-
ture can be easily used for DSE, as it is explained in Section 7.

6. CT Pre-Processing Core Implementation and Integration

In this section, we describe the implementation of the CT pre-processing core and its
integration in the DAS of a running open-interface CT. This DAS component is implemented
by a ZC706 evaluation board with the XC7Z045 MPSoC-FPGA model from Xilinx [39]. An
MPSoC-FPGA is a system on chip (SoC) containing an FPGA part and a processing system
(PS) part with multiple CPUs and a GPU.

6.1. IP Block Design

For implementing the CT pre-processing core on the Xilinx board, we used Vitis™ HLS,
which is the Xilinx high-level synthesis tool that allows C, C++, and OpenCL™ functions
to become hardwired onto the device logic fabric and RAM/DSP blocks. The HSL imple-
mentation results in a register transfer level (RTL) block design, also called IP block design,
which can be implemented on FPGA. Moreover, by describing our hardware components
with Vitis™ HLS, we do not have to describe the arithmetic hardware components at the
logic gate level. In fact, Vitis™ HLS utilizes optimized arithmetic hardware components,
provided by Xilinx as a library.

The CT pre-processing core is described with C++ source code. Each stage of the
dataflow architecture is encapsulated in a C++ function. The arguments of each function
describe the input/output ports of the stage. In synthesis, to obtain the pipelined dataflow
architecture, we use the directives “#pragma HLS DATAFLOW” and “#pragma HLS PIPELINE
dataflow” provided by Vitis™ HLS. These directives allow to implement C++ loops and
C++ functions as a pipelined dataflow RTL block design.

Externally, the CT pre-processing core communicates via AXI4-STREAM interfaces.
These are defined by using the data format “hls::axis” and the directive “#pragma HLS
INTERFACE axis”, which can be only used for the external interfaces of the core. As a result,
for interconnecting the three internal stages of the CT pre-processing with a stream interface,
the “hls::stream” template type and the directive “#pragma HLS STREAM variable=data
format ” are used.

Furthermore, we define three primitive data formats, which allow to parameterize the
core for different data formats in the three main stages of the CT pre-processing core:

• Detector format: This format refers to the raw-sensor data that are generated by
the DMS and collected by the data-flow module in the DAS. It defines the input data
format of the sensor-data conversion stage.

• Image-processing format: This format refers to the desired data format for the
pre-processing steps. It defines the output data format of the sensor-data conversion
stage, the data format for the image-processing stage, and the input data format of the
reconstruction conversion stage.

• Reconstruction format: This format refers to the reconstruction representation. It
defines the output data format of the reconstruction conversion stage.

The designer in Vitis™ HLS defines the primitive data formats as the C++ class at
synthesis time.
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For DSE purposes, we configure the CT processing core with different encoding of the
floating-point and fixed-point representations. For implementing these representations with
the Xilinx arithmetic processing units, we use the provided libraries hls_math, hls_half, and
ap_fixed. These allow us to use double, float, single, half and ap_fixed<W,I> formats. In fixed
format, W refers to the data width and I the integer part of the real value number. In Section 9,
the implementation results of the different configurations used in the DSE are discussed.

6.2. Open-Interface CT

Before describing the integration of the CT pre-processing core within the DAS, we
introduce our open-interface CT architecture, as well as the DAS architecture, which is the
central control unit of the system, the flow of data from the DMS to the reconstruction system.

Our open-interface CT, as shown in Figure 7, consists of the following components: a
64 row DMS and an X-ray tube system, a gantry module from Schleifring [40], a patient table,
and a reconstruction system. As shown in Figure 8, all these components are controlled by the
DAS, which is fixed in the rotating side and is implemented on the XC7Z045 MPSoC-FPGA.

Figure 7. Components of our open-interface CT system. (a) Complete experimental CT system with (1) X-
ray tube, (2) cooling system, (3) generator, (4) gantry subsystem with bore, (5) multiline DMS, (6) patient
table. (b) Detailed view of the DMS and CCU implemented on the Xilinx ZC706 Evaluation Kit.
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Figure 8. System architecture of the open-interface CT, Reprinted with permission from Ref. [41].
Copyright 2020, IEEE.

From the hardware designer prospective, the design of the open-interface CT is based
on the system architecture shown in Figure 8, where the the DAS and the reconstruction
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systems are the components responsible for controlling and reconstructing tasks, respec-
tively. The DAS has three main modules on the FPGA part of the MPSoC-FPGA and has a
software stack on the PS part for controlling them [41].

The DAS system has the following modules, which are implemented in the FPGA part
and controlled by the PS part:

• Control-synchronization module: This module is responsible for controlling and
synchronizing all the external components on the stationary and the rotating sides. It
is scalable, allowing an easy integration of other components in the open-interface CT,
such as additional DMSs, X-ray tube systems and other sensors for multi-modality CT.

• Data-flow module: This module is responsible for collecting projections from the DMS,
to manage eventually transmitting errors and to forward them to the image pre-processing
module. After the pre-processing steps, it sends all the pre-processed data to the recon-
struction system. It is implemented with a pipelined datapath that collects and forwards
data in real time, without buffering them in external memory [42].

• Image pre-processing module: This module represents the proposed CT pre-processing
core.

During the acquisition, the DMS acquires the raw sensor data and forwards them
to the DAS over the gigabit interface. The raw sensor data are collected in the data-flow
module of the DAS, which properly merges them and forwards to the image pre-processing
module, where our CT pre-processing core is implemented. Here, the raw sensor data are
converted to the selected pre-processing data format, pre-processed from raw sensor data
to attenuation data and converted to the selected reconstruction data format. After that,
the pre-processed attenuation data are forwarded to the reconstruction system, through the
data flow module, over the gigabit slip ring connection. In the reconstruction system, the
3D volume is reconstructed.

6.3. Data Acquisition System Integration

The CT pre-processing core is integrated in the image pre-processing module of the
DAS. We created the IP block design by Vitis™ HLS, and it was instantiated in the DAS
design as the IP core by using Vivado Design Suite.

Based on the DAS, the DMS and the reconstruction algorithm requirements, we set
the clock frequency, the input and output data representations of our CT processing core,
as follows:

• clock frequency = 100 MHz: It is the clock frequency for collecting data.
• input data = short format: It is a 16-bit unsigned representation, which is used for

the raw sensor data.
• output data = float format: It is a 32-bit single-precision floating-point represen-

tation, which is used for the reconstruction algorithm.

Due to these requirements, we set these two data formats in the sensor-data conversion
stage and the reconstruction conversion stage, respectively. Yet, in the image-processing
stage, we explored different data formats, with the aim to find the optimal data format for
interventional CT application.

7. Design Space Exploration

In this section, we explain our approach for the design space exploration of the different
data formats and representations, applied on the pre-processing step. In addition, we describe
the parameters and the metrics used to find the optimal data format and representation.

The DSE of all possible data representations in CT applications is time consuming. In
fact, for each input configuration, the 3D volume must be reconstructed, and the image
quality analysis must be performed. Due to that, it results in a complex problem, where it
is impossible to analyze all configurations for the different representations in the design
space. To simplify the exploration process, we define two steps that limit the size of the
problem itself. First, we make the “pre-selection of data formats and representations” for the
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input parameters, and after that the “pre-selection of metrics”. In this way, we reduce the set
of input parameters and decrease the evaluation time of each solution. As input parameter,
we also have the clock frequency, but it does not affect the image quality, so we set it at
100 MHz. The value of the set frequency is based on the data-rate of the collected data. In
this way, we decrease the design space because different clock frequencies can generate
different design performances in resource utilization and latency.

7.1. Pre-Selection of Data Formats and Representations

To pre-select the data formats and reduce the size of the design space, we use a top–
down approach. At the beginning, we decided to explore only standardized data formats
that are also implemented in the new commercial architectures, such as GPUs, and TPUs.
In this way, we focused on floating-point and fixed-point representations.

For interventional CT applications, the goal is to minimize latency while maintaining
high accuracy for having a real-time reconstruction. For this reason, in the second step,
from the pre-selected data representations, we considered only formats with data widths in
the range from 16 to 32. The values of this range are related to the data widths of raw sensor
data and reconstructed data. In fact, raw sensor data are usually represented with short
format (16-bit data width), and reconstructed data with float format (16-bit data width). In
addition, we considered the double format (64-bit data width), which we used as a reference
point in the image quality analysis. Therefore, for the floating-point representation, we
limited our study to three different encodings: half, single and double precision.

By contrast, regarding the fixed-point representation with a fixed-rounding configura-
tion, if all possible formats in the range from 16 to 32 bits are considered, 408 configuration
formats are possible. Therefore, we considered only the upper bound and lower bound
configurations, which are 16 and 32 bits. For these two data widths, there are 16 plus 32
possible configurations as fixed-point representation. Therefore, to reduce our DSE from
these 48 to the desired 2 configurations, we analyzed the raw sensor data and selected one
configuration for 32-bit fixed-point and one for 16 bit fixed point. The raw sensor data are
represented as 16-bit unsigned, so we configured the 32-bit fixed-point with I and F both
equal to 16 bits. In this way, the 32-bit fixed-point does not approximate any values in the
sensor data conversion stage.

Due to the fractional part of the fixed-point representation, the 16-bit fixed point
cannot contain the 16-bit unsigned, without approximation. Therefore, to find the best
configuration, we started from the 16-bit fixed-point configuration that has 8 bits for
integer and fractional, and we estimated the MSE. The MSE is the mean squared difference
between a reference value and an approximated value [43]. This is often used to measure
the image quality between two images [44]. To find other configurations, we analyzed the
multiplication factor of Formula (7), which can be approximated with a shift of the dot in the
number. So, we removed the multiplication and shifted the dot by decreasing/increasing
the integer and fractional parts, respectively, to reach the lowest MSE. In this way, we
reached the best configuration of 16-bit fixed-point with 4-bit and 12-bit for the integer and
fraction parts, respectively.

With this methodology, we pre-selected four data representations for the DSE, which
are half-precision and single-precision floating-point, and 16-bit and 32-bit fixed point,
where I and F are equal to 16 and 16 bits, and equal to 4 and 12 bits, respectively.

7.2. Selection of Metrics

To reduce the time involved in the DSE for generating the different results, we also
selected metrics that are significant for the hardware performance and the image quality
analysis in the case of interventional CT.

For the hardware performance evaluation, we considered the resource utilization of
the FPGA and the execution time of the different solutions. In our case, we only analyzed
the execution time of the CT pre-processing core, which is expressed as latency from the
Vitis™ HLS tool. For analyzing the resource utilization of the FPGA, we considered the
configurable blocks and memories mostly used for image processing applications. These
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are digital signal processing (DSP) blocks, flip-flop registers (FF), BRAM memory, and
look-up tables (LUTs) for the combinatorial logic [45].

For the image quality analysis, of the different solutions, we considered the following
metrics: MSE of the 2D projections, and noise, low contrast and uniformity of the reconstructed
3D volume. The MSE was applied on the 2D projections for measuring if the collected data
have an acceptable accuracy for the reconstruction. In this way, we only reconstructed
and performed the image quality analysis on acceptable configurations. The other selected
metrics for the image quality analysis are useful for interventional CT applications. The
uniformity and noise metrics are important to identify the eventual image degradation,
caused by the arithmetic approximation of the different data formats. The low contrast
metric is important for tumor detection [15], useful in tumor ablation, during surgery.

8. Image Quality Analysis

For performing the image quality analysis, we considered three elements: the CT
acquisition configuration, the significant metrics, and a representative phantom. Usually,
most of the work in the literature considers different CT scanners and/or acquisition config-
urations to research how these elements influence the image quality [46–48]. However, in
our research, we are interested in comprehending the influence of the data formats on the
image quality, independently by the CT scanner and acquisition configuration. Therefore
for our experiments, we used one scanner with a single configuration for the CT acquisition.
Additionally, we used the CATPHAN® 500 [15], which is a representative phantom. In fact,
this provides the complete characterization for maximizing the image quality.

8.1. CATPHAN® 500

The CATPHAN® 500 [15], as shown in Figure 9, has four modules enclosed in a 20 cm
housing. Each module is used for performing different image quality metrics, such as
geometry alignment, uniformity, noise and low contrast. Before describing the modules, we
introduce the Hounsfield unit (HU), also referred as the “CT number”. It is the relative
quantitative measurement of radio density [49]. Radiologists uses it in the interpretation of
CT images because different body tissues have different densities.

Figure 9. CATPHAN® 500.

We scanned the different modules with the same CT scanner configuration. Based on
the pre-selected metrics, we used the three following modules:

• CTP515 Low Contrast Module: This module consists of a series of cylindrical rods of
various diameters and three contrast levels to measure low contrast performance [15].
The roads, as shown in Figure 10, are provided on z-axis positions, for avoiding any
volume-averaging errors [50]. The different low contrast are useful for identifying
small low contrast objects, such as tumors. Subslice targets have a nominal 1.0%
contrast and z-axis lengths of 3, 5, and 7 mm. For each of these lengths, there are
targets with diameters of 3, 5, 7 and 9 mm [50]. We acquired this phantom section to
perform the low contrast image quality for the different data formats.
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Figure 10. Section of the CTP515 low contrast module.

• CTP486 Uniformity Module: This module is cast from a uniform material with a “CT
number” designed to be within 2% of water’s density under standard scanning proto-
cols [15]. This module is used for measurements of spatial uniformity, which means
CT number and noise value. As shown in Figure 11, this module has a different region
of interest (ROI) that can be targeted for measuring the uniformity of the different areas
of a phantom section. In fact, the mean CT number and standard deviation of a large
number of points, in a given ROI of the scan, is determined for central and peripheral
locations within the scan image for each format of the scanning protocol [50].

Figure 11. CTP486 uniformity module.

• CTP401 Slice Geometry and Sensitometry Module: This module is used to verify
the phantom position. The module, as shown in Figure 12, includes four sensitometry
targets (Teflon, Acrylic, LDPE and Air) to measure the CT number linearity [15]. The
module also contains five acrylic spheres to evaluate the scanner’s imaging of subslice
spherical volumes. The diameters of the acrylic spheres are 2 mm, 4 mm, 6 mm, 8 mm,
and 10 mm. We used this phantom for a human visual analysis of the CT images, in
relation to the different materials and the size of the spheres.
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Figure 12. CTP401 slice geometry and sensitometry module.

8.2. CT Acquisition Configuration

In the open-interface CT, we manually set-up the components with the following
parameters:

• X-ray tube system

– Voltage: 120 KV
– Intensity: 250 mA

• Detector system

– Number of row slices: 64
– x and y slice width: 0.625 mm
– Number of projections per round: 1160
– Size of the projection matrix in pixel: 672 × 64

• Gantry system

– Number of rounds per second: 1

• Reconstruction system

– Reconstruction algorithm: Feldkamp (FDK) algorithm [21]
– z slice width: 1 mm
– Size of the reconstructed matrix in pixel: 512 × 512

Furthermore, we pre-acquired and stored the I0-images, which are the projections
without phantom of one round. Figure 13 shows one of these projections stored as a short
data format.

Figure 13. I0-image: 2D projection without object.

Since, the I0-images are in the original raw sensor data, we only acquired it once, when
we started our experiments.

8.3. Image Quality Metrics Calculation

For each image quality parameter, we used a mathematical estimation of it. For the
pixel error of the 2D projections, we calculated the MSE, which gives the error interpretation
of the approximated image [44]. The formula of MSE is the following:



Appl. Sci. 2022, 12, 5659 16 of 24

MSE =
1
V

V

∑
j=1

(
Aj − Sj

)2 (8)

Here, Aj is the pixel value of the main image and Sj is the pixel value of the estimated
image [43]. As the main image, we selected the pre-processed image with double format.

For calculating the values of the noise, uniformity and low contrast from the reconstructed
volume, we considered a different ROI per module, as suggested by the CATPHAN® 500
Manual [15]. For selecting the ROI, we used the reconstructed images shown with red and
blue circles in Figure 14, where the pre-processing was done with the double format. For
the noise analysis, we calculated the standard deviation of the CT number for each of the
ROIs, placed on the uniformity module and shown in Figure 14.

Figure 14. Uniformity module, placements of the ROIs.

For the uniformity analysis, five ROIs with 40 pixels in diameter are placed on the
module, four peripheral ROIs and one central ROI. The average CT number, in HU, is
obtained for each of these ROIs, and the uniformity is measured as the maximum difference
between the mean value of the center ROI and one of the peripheral ROIs.

For the low contrast analysis, we calculated the contrast noise ratio (CNR) by placing a
ROI of 20 pixels in diameter in the larger targets of both the supra-slice 1.0% and supra-slice
0.5%, and in the background area right beside it. The CNR was calculated using Formula (9)
and averaged over 32 reconstructed slices.

CNR =
|ST − SB|

σB
(9)

In Formula (9), SA and SB are the signal intensity of the supra-slice target and the
background region, respectively, and σB is the standard deviation of the background.

9. Results and Discussion

This section shows and discusses the results of the proposed optimized method with
the different data formats used in the DSE. First, we compare the proposed method and the
standard method presented in Section 2.2. Second, we compare and discuss the results of the
pre-processing step and reconstruction image for the different data format configurations
selected within the DSE. Finally, we define which data format seems to be the best for the
pre-processing step in interventional CT.

We used Vitis™ HLS for the hardware performance analysis in terms of hardware
cost. In this article, we focus on the resource utilization and execution time of the CT
pre-processing core, which is configured to process one pixel per clock cycle. If the DAS
collects multiple pixels per clock cycle, multiple instances of the CT pre-processing core
must be added to the design. Due to the data parallelism, the resource utilization increases
linearly, while the overall execution time remains constant. In the reported results, we
selected the XC7Z045 MPSoC-FPGA model from Xilinx [39] as the FPGA target platform.
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9.1. Standard and Optimized Methods

As explained in Section 4, the standard method for I0-correction and the optimized
method were implemented in the CT pre-processing core. The two versions, shown in
Figures 4 and 5, were implemented with pipelining. In the optimized version, the logarithm
operation is pre-calculated because its argument is constant. The algorithm executes only
subtraction and multiplication operations. By contrast, the standard method executes
an additional power operation and logarithm operations, which are expensive in terms
of execution time and resource utilization. To compare and quantify the two methods
independently by the data format, we selected the same image-processing format (single-
precision floating point), and synthesized both with Vitis™ HLS. Furthermore, we analyzed
the MSE of the 2D pre-processed projections. The estimated MSE is 3.21× 10−15, which is
almost 0. With the reported low MSE, we also validated our solution and we can confirm
that the two methods are equivalent, as expected from the mathematical simplification. In
fact, both methods generate the same output projections. The MSE is not exactly 0 because
the two methods evolve different operations and math co-processors components that
approximate the values in different ways.

As expected, the two methods differ in terms of hardware performance. The optimized
method, as reported in Table 1, does not use any BRAM and requires about 10 times less
DSP, FF and LUT resources, the standard method to perform a complex operation, as
logarithm and power need to buffer data; for this reason, BRAM is utilized. In addition,
these complex operations determine the higher LUT, FF and DSP utilization. FPGAs have a
small limited number of DSPs, and therefore, their utilization should be minimized, when
it is possible. Moreover, the low required resource utilization for our solution allows to
implement and integrate the pre-processing core directly in the DMS, closest to the sensor.

Table 1. Hardware report for CT pre-processing core (instance for 1 pixel per clock cycle).

Precision Name BRAM 18K DSP FF LUT Latency

Standard method (float) 2 30 3497 6881 660 ns
Optimized method (float) 0 5 527 785 160 ns

Due to the real-time requirements, the most important metric is the execution time/la-
tency. In this case, we analyzed the latency of the single operations for the two methods;
the results are also shown in Table 1. The standard method has a latency of 660 ns, while
the optimized method has a latency of 160 ns. In the standard method, there are power,
division and logarithm operations that are much slower operations than subtraction and
multiplication operations. In fact, the optimized method has only one multiplication and
one subtraction, which have low latency, as shown in Table 2 and discussed in Section 9.2.
For this reason, our solution achieves a speed-up of about 4.125× compared to the standard
method with the same data format. We see that in the optimized method configured with
the 32 bit-fixed point data format, we reach a speed-up of about 16.5× compared to the
standard method. This latency enhancement is a significant improvement for the real-time
requirements of the interventional CT application.

Table 2. Timing analysis of the standard method.

1st Stage 2nd Stage 3rd Stage

Buffer Conv. Mul. Exp. Div. Div. Log. Muls Buffer

10 ns 50 ns 40 ns 140 ns 120 ns 120 ns 130 ns 40 ns 10 ns

By using the dataflow architecture, both solutions make it possible to pre-process a
new pixel each clock cycle. It was not possible to compare the optimized methods with
the related works, in terms of hardware implementation, due to the lack of information.
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Related works provide the whole execution time, without considering the pre-processing
step and its impact on reconstruction.

9.2. Comparison of the Data Formats

Before analyzing the results of the different data format configurations with the pre-
selected metrics, we performed a human visual analysis of the CTP401 module. In the
human visual analysis, we observed that the pre-processing step was well performed
and the grid between sensors was removed. Figure 15 shows the 2D projections pre- and
post-processing with the different data format configurations. Yet, we did not observe
differences between the different configurations with the human visual analysis.

(a) Raw sensor data with short format

(b) Pre-processed data with double format

(c) Pre-processed data with float format

(d) Pre-processed data with half format

(e) Pre-processed data with 32-bit fixed-point representation

(f) Pre-processed data with 16-bit fixed-point representation

Figure 15. Single projection of module CTP401, before and after the pre-processing.

Figure 16. Reconstructed image of the CTP401 module for human visual analysis.

The human visual analysis was conducted also for the reconstructed images, shown in
Figure 16. We observed that all target materials can be distinguished independently by the
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data format configuration utilized in the pre-processing step. This means that the image
quality does not seem to change in terms of human visual analysis.

Since with the human visual analysis, it is not possible to compare the accuracy and the
information lost between the different data formats, we estimated the MSE of the projections.
The MSE, as explained in Section 7, is the key point used for reducing the eligible data
formats for the DSE. It was crucial to select the two data format configurations of the 16-bit
and 32-bit fixed-point; we reduced from 48 to 2 possible data format configurations. The
MSE is a reasonable metric in this step because it can be applied to 2D projections before
the reconstruction. In addition, we noticed that it is in the same order of magnitude for the
different phantoms. However, the MSE does not consider all image quality metrics, which
are significant to understanding how data formats influence the quality of reconstructed
images. Therefore, we performed the measurement of low contrast, noise and uniformity for the
reconstructed images. For calculating these metrics, we acquired, pre-processed with different
data format configurations, and reconstructed the modules shown in Figures 17 and 18.

Figure 17. Reconstructed image of the CTP486 module, for noise and uniformity analysis.

Figure 18. Reconstructed image of the CTP515 module, for low contrast analysis.
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The results of the image quality analysis are shown in Table 3. We observed that the
MSE of all configurations is lower than 1. This value is very good in terms of image quality
since the MSE is usually between 2.36 and 2.37 also in medical image compression [51]. By
comparing the other image quality metrics of all data formats with the double format, the
values were judged to be good in most of the cases. In fact, these are in the same order
of magnitude as shown in Table 3. The only data format where the approximation of the
pre-processing has slightly influenced the reconstructed images is the 16-bit fixed point.
Due to the approximation made and the bit truncation involved for converting the raw
sensor data from 16-bit unsigned to 16-bit fixed point, the low contrast pixels are blurred.
Therefore, the contrast noise ratio (CNR) is about 0.2 lower than the double configuration.
By contrast, due to the blurred low contrast pixels of the 16-bit fixed-point configuration,
a lower noise and a better uniformity was estimated for this configuration, compared to
other data formats. In fact, in images with blurred pixels, the pixel values are similar, and
therefore, there is a lower noise and a better uniformity. From this image quality analysis, we
can conclude that all data formats result in an acceptable pre-processed and reconstructed
image quality. The 16-bit fixed point has some problems that would make sense to choose
it only if the hardware cost has much advantages, compared to other solutions.

Table 3. Image quality estimation of different data format configurations.

Resource Name Half Float Double Fixed 16 Fixed 32

MSE 2.39 × 10−7 3.21 × 10−15 0 0.22 0.0039
CNR Supra-Slice 1.0%

[∆HU] 0.555 0.566 0.566 0.335 0.536

Noise [HU] 5.8 5.7 5.7 2.7 5.3
Uniformity [∆HU] 3.54 3.57 3.57 2.44 3.5

To define the hardware costs of the different data types, we compared the resource
utilization and the latency of the various data format configurations. As shown in Table 4,
the utilization of all FPGA resources decreases from floating-point to fixed-point represen-
tations, independently of the data width. In fact, DSPs are minimized from 14 of the double
configurations to 0 and 1 of the 32-bit fixed-point and 16-bit fixed-point configurations,
respectively. In FPGA, the number of DSPs is crucial because they are in the order of
hundreds, while LUTs and FFs are in the order of hundreds of thousands. Therefore, the
low utilization of resources in fixed-point representations allows the FPGA to implement
additional pre-processing steps on the fly. The best result comes from the 32-bit fixed point;
this configuration is the only one that utilizes 0 DSPs and implements all operations with
LUTs and FFs. Therefore, even if it utilizes more LUTs than 16-bit fixed-point, we can
confirm that 32-bit fixed-point is the data format with the best performance in terms of
resource utilization concerning the FPGA available resources. The 32-bit fixed-point has
better performance than the 16-bit fixed-point due to the fact that Vitis™ HLS optimizes
the 32-bit fixed-point format in the provided libraries.

Table 4. Resource utilization of different data format configurations.

Resource Name Half Float Double Fixed 16 Fixed 32

BRAM 18k 0 0 0 0 0
DSP 4 5 14 1 0
FF 382 527 1292 167 309

LUT 223 785 1796 941 1245

Finally, we analyzed the execution time in the different cases. The results in Table 5
show the advantage of using fixed-point representation compared to floating-point repre-
sentation. In fact, 16-bit and 32-bit fixed-point configurations are 2.2× and 4× faster than
the single-precision floating-point configuration, respectively. The conversion between the
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collected data and fixed-point representation is faster than floating-point representation
because it is implemented with a combinatorial shift, which is implemented in hardware
with a bitwise assignment. Due to that, the conversion is implemented together with
the subtraction, which is also implemented with combinatorial logic. For this reason, the
reported conversion execution time is close to 0.

As mentioned above, due to the Vitis™ HLS optimization and the DSP optimization,
32-bit fixed-point configuration implements all operations with FFs and LUTs; therefore, it has
also lower latency than 16-bit fixed-point configuration. In fact, the former configuration does
not use DSPs for the multiplication, so its execution time is 10 ns (1 clock cycles). By contrast,
as shown in Table 5, due to the DSPs latency, the latter configuration spent 30 ns (3 clock
cycles) for the multiplication, which is the time required by DSP to process one operation.

Table 5. Timing analysis of different data format configurations; all values are expressed in ns.

1st Stage 2nd Stage 3rd Stage

Configuration Total Read Conv. Buffer Sub. Mul. Conv. Write
Half 190 10 50 20 50 40 10 10
Float 160 10 50 0 50 40 0 10

Double 220 10 50 0 70 60 20 10
Fixed 16-bit 70 0 0 0 10 30 20 10
Fixed 32-bit 40 0 0 0 10 10 10 10

To compare all the metrics of various configurations, we used the radar graphs shown
in Figure 19. Since the values have different units and scales, the min-max normalization
is used [52]. Double configuration has the maximum quality and hardware performance,
so it has most of the values equal to 1. By analyzing and comparing all results, we found
that the 32-bit fixed-point configuration is optimal for interventional CT pre-processing in
terms of image quality and resource utilization.
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Figure 19. Metrics analysis of the data format configurations; a good value of resource utilization,
latency, noise, and MSE should be close to 0; by contrast, a good value of low contrast and uniformity
should be close to 1.

The 32-bit fixed point is the best compromise between image quality and hardware
preference. It maximizes the hardware performance, and the image quality after the
reconstruction decreases only 7% in comparison with the double format. In contrast
to [14], we do not consider the required external memory bandwidth for the different
configurations because we are interested in finding only the best data format configuration
in the pre-processing step. In this step, our CT pre-processing core processes projections on
the fly and does not use any external memory, which usually is the main bottleneck GPU
and CPU solutions.

10. Summary

In this article, we proposed a hardware acceleration of the pre-processing step for
interventional CT. By performing this algorithm on the raw sensor data, we reduced
the number of operations and their complexity. In addition, with this optimization, we
achieved a speed-up of about 4.125× compared to the standard method. Furthermore,
we have implemented the algorithm in the proposed CT pre-processing core. This FPGA
accelerator pre-processes CT projections on the fly and can be configured for pre-processing
pixels with different data formats. In addition, we performed a design space exploration
of the different data formats between double, float, half floating point, and the different
configurations of 16-bit and 32-bit fixed point. Among them, we found out that 32-bit fixed
point is the optimal data format for pre-processing steps in interventional CT. In fact, with
32-bit fixed point, we achieve a speed-up of 16.5× compared to the standard method, and
it utilizes less FPGA resources. Additionally, with 32-bit fixed point, the image quality
of the reconstructed image decreases only about 7% compared to the double format. In
future works, we aim to extend this exploration also to the reconstruction step, where
mixed-precision data formats could be used.
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