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Abstract: This paper describes the characteristics of the new pavement design method developed
by the American Association of State Highway and Transportation Officials (AASHTO), known as
AASHTOWare Pavement-ME®, and presents the results of its application to the flexible pavement
structures presented in the Portuguese Manual of Pavement Structures for the national road network.
The results obtained clearly show that it is a very useful tool for road engineers not only for designing
new pavement structures but also for the analysis of their performance and for efficiently planning
maintenance and rehabilitation interventions. According to the characteristics of the case study that
was considered, rutting is the most critical distress, since it presents values close to its threshold value
of 20.0 mm, a value that is defined in Portuguese Quality Control Plans.

Keywords: pavement design; deterministic pavement performance prediction models; mechanistic
empirical model; international roughness index; rutting; cracking

1. Introduction

With the objective of improving pavement design from an empirical approach to a
mechanistic-empirical approach, by including pavement mechanistic behavior, aiming to
correlate applied loads and observed distresses [1], the American Association of State High-
way and Transportation Officials (AASHTO) developed a new pavement design method
called the Mechanistic Empirical Pavement Design Guide—MEPDG [2] to replace the previ-
ous pavement design method of 1993 [3]. The MEPDG is a mechanistic-empirical pavement
design method in which pavement performance is predicted using the pavement’s struc-
tural response in terms of the following pavement performance indicators: (1) rutting;
(2) international roughness index (IRI); (3) fatigue cracking; (4) transverse cracking; and
(5) alligator cracking.

A software package has been developed and made available to the pavement de-
sign community that allows the calibration and application of this new pavement design
method in different countries and regions subject to different traffic, climate, and pavement
foundation conditions. Initially, the pavement design method requests data input related
to traffic, climate, materials, and pavement structure. The pavement performance indica-
tors mentioned above are then calculated and presented for further analysis considering
threshold values which have been established, for example, in highway public–private
partnership contracts.

This new pavement design method has three hierarchical levels for the input variables,
including climate, traffic loading, layer structure, and material properties, which define the
accuracy of the data according to three levels: level 1; level 2; and level 3. In general, the
level 1 input is the most accurate value that it is possible to obtain for a certain input. This
usually represents site specific measurements and laboratory data. Contrary to the previous
level, level 3 input is either the default value used in the AASHTOWare Pavement-ME®
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or a nominal value provided by a local agency. This requires the least amount of data,
considering default values established according to the characteristics of the region where
the road will be built. Level 2 input is estimated from correlations or regression equations.

In recent years, several research studies, usually supported by road agencies, have been
undertaken to evaluate the application of this new pavement design method. Ng et al. [4]
presented the results of a comprehensive test program to calibrate the MEPDG for the state
of Wyoming, consisting of field data collection and laboratory soil tests. They concluded
that the results of the test program facilitated the implementation of the MEPDG. There are
several documents in the literature that can be used for regional or local calibration of the
MEPDG [5,6]. Jannat et al. [7] presented the results of the application of the MEPDG proce-
dure to pavements of provincial highways of Ontario, Canada. A regression analysis was
carried out for calibrating the rutting and IRI models by comparing the predicted distress to
the observed distress. The results demonstrated that whereas the MEPDG provided a fairly
unbiased prediction of the IRI value, it often over-predicted the total rutting. Jannat and
Tighe [8] presented the results of a sensitivity analysis to the inputs of MEPDG distresses
to identify the effect of the accuracy level of inputs based on experimental design.

Saha et al. [9] compared the Alberta Transportation Pavement Design (ATPD) proce-
dure with the MEPDG procedure to explore the possibility of MEPDG implementation for
pavement design in Alberta, Canada. The ATPD pavement design method is based mainly
on the AASHTO 1993 guide, with minor modifications regarding the asphalt concrete
mix design, the structural layer coefficients, and design reliability levels. Six different
design cases were defined with three different traffic levels and two different subgrade
materials. The ATPD design thicknesses were used in the MEPDG for each case to predict
the pavement performance reliabilities at the end of the 20-year design life. It was found
that, when using the MEPDG, only the cases with a strong subgrade material and a low
level of traffic met the default limit value for total pavement rutting. On the other hand,
all sections failed due to excessive IRI values. Saha et al. [10] continued later with another
study to investigate the quality of the recently developed Canadian climatic database and
the effect of climatic factors on flexible pavement performance using the MEPDG procedure.
It was found that total pavement rutting and IRI showed sensitivity to climate changes.

Nassiri et al. [11] used the installed weigh-in-motion (WIM) systems at six highway
locations to characterize traffic loads in Alberta for the MEPDG design. Seasonal and
regional trends in traffic characteristics of the six WIM sites were investigated and compared
with the default values in the MEPDG for two years. Truck traffic classification (TTC) and
axle load distribution factor (ALDF) for the WIM sites showed deviations from the MEPDG
defaults. Seasonal variations were also evident in the distribution of different classes
of trucks throughout the year. Differences were attributed to cold climate conditions
and special truck traffic in Alberta due to local industries. It was also found that the
performance of flexible pavements was sensitive to TTC and ALDF. El-Badawy et al. [12]
studied the development of traffic characteristics to facilitate the implementation of the
MEPDG procedure in Idaho. Classification and weight data were collected at 25 WIM sites,
but only 12 sites were found to have complete and accurate data. Predicted distresses and
IRI values for a typical pavement section and traffic data obtained at the investigated WIM
sites (level 1) were compared to predicted distresses/IRI using statewide/national (level 3)
default traffic inputs. This comparison revealed that site-specific axle load spectra (ALS),
vehicle class distribution factors (VCDF), and monthly adjustment factors (MAF) had a
significant impact on longitudinal cracking. Statewide ALS yielded high differences in
alligator cracking predictions, while statewide MAF and VCDF yielded only moderate
differences compared to site-specific ALS. Very low prediction differences occurred in
rutting when statewide/national default ALS, MAF, and VCDF were used as opposed to
site-specific data. Furthermore, the level of input of the investigated traffic parameters
was found not to affect IRI. Finally, they concluded that the statewide/national number
of axles per truck could be used instead of site-specific values without sacrificing the
accuracy of the pavement performance predictions. Wu et al. [13] presented a study on
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using the MEPDG design software to evaluate the performance of typical Louisiana flexible
pavement structures and compared it to the existing pavement performance data available
in the Louisiana Pavement Management System. The results of the comparison between
the measured and predicted pavement distresses showed a strong dependency on the type
of pavement structure considered in the study. In general, the MEPDG rutting models
tended to overpredict the total rutting for Louisiana’s flexible pavements, whereas both
fatigue cracking and IRI models in the MEPDG seemed to be adequate for most of the
selected projects.

The literature comprises other studies related to the evaluation of the MEPDG applica-
tion [14–18]. However, to the best of our knowledge, none of them addresses the application
of the MEPDG procedure to a complete country’s catalogue of pavement structures. This
paper presents and discusses the results of the application of the MEPDG procedure to the
flexible pavement structures presented in the Portuguese Manual of Pavement Structures
for the national road network [19]. It was demonstrated that it can be quite useful for road
agencies that need to know the value of each pavement performance indicator during the
complete pavement life to carry out the objectives defined in concession contracts as well
as in Quality Control Plans.

2. The MEPDG Design Methodology
2.1. Introduction

The MEPDG design methodology comprises three main phases as shown in Figure 1.
The first phase, named Evaluation, consists of inserting all the data into the MEPDG
software and is followed by the Analysis (second phase). Finally, the Strategy Selection is
the last phase and corresponds to the selection of the best alternative that complies with all
requirements. The input data required for the MEPDG software are the information about
the traffic, the climate, the pavement structure, and the properties of the materials, which
will be briefly explained in the following subsections.
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Figure 1. MEPDG design methodology [3].
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2.2. Traffic

While the AASHTO 1993 pavement design methodology requires the number of 18-
kips Equivalent Single Axle Load (ESAL) as the only traffic input, the MEPDG requires
four main traffic inputs for the design of pavement structures [3,20,21]: (1) base year truck
traffic volume; (2) traffic volume adjustment factors; (3) axle load distribution factors; and
(4) general traffic inputs. The traffic volume adjustment factors are used to adjust the base
year traffic volume. These adjustment factors are the monthly adjustment factors (MAF),
vehicle class distribution (VCD), hourly truck distribution (HTD), and traffic growth factors.
The general traffic input data include the number of axles per truck, axle configuration,
tire pressure, traffic wander, and wheel base. The MEPDG considers 10 different vehicle
classes, ranging from class 4 to class 13 as presented in Figure 2.

In Portugal, traffic classes are not equal to the traffic classes presented in Figure 2.
There are 11 classes, ranging from A to K [22]: classes A and B correspond to bicycles;
class C corresponds to motorcycles; classes D and E correspond to cars; and the remaining
classes (F, G, H, I, J, and K) correspond to trucks. For to this reason, detailed traffic data
are required to convert the 6 classes of trucks considered in Portugal into the 10 classes
considered in the MEPDG. In Portugal, there is not enough information to achieve level 1;
however, using all the available information, level 2 can be achieved. Level 1 requires, for
example, axle load spectra (ALS), also called axle load distribution factors, which can only
be determined from WIM data.
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2.3. Climate

The MEPDG software is linked to the Enhanced Integrated Climatic Model (EICM) to
include the effects of environmental conditions on pavement performance [3,25–27]. The
EICM uses data from climatic files containing hourly ambient temperature and relative
humidity, precipitation, sunshine percentage, and wind speed. The EICM is used to predict
the temperature profile throughout the pavement depth together with the moisture content
and freezing conditions in the unbound layers. The predicted temperature in flexible
pavements is directly related to the stiffness of the asphalt concrete layers and, therefore, is
indispensable for predicting thermal cracking and rutting.
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There are 850 weather stations in the USA that collect all the necessary data in the
format used by the MEPDG software [17]. The Transportation Association of Canada has
also implemented the MEPDG using accurate climatic data from 220 weather stations
across Canada, which provided different values of pavement performance indicators for
each province [10].

In Portugal, the weather stations do not collect the required data in the format used by
the MEPDG software. Therefore, it was necessary to collect and organize all the climate
data provided by the Portuguese Institute of the Sea and Atmosphere.

The climatic ICM file consists of one line for each day (Table 1) containing information
related to month, day, year, hour of sunrise, hour of sunset, and daily solar radiation.
Below this line, there are 24 lines, each one corresponding to one hour of the same day.
These lines have the information indicated in the following order: hour; temperature in
Fahrenheit; precipitation in inches; wind speed in miles per hour; the percentage of the
sun or cloudiness level; and the hourly groundwater depth in feet. A climate ICM file was
prepared for the Coimbra region with two years of climate data.

Table 1. Part of the climate data file for the Coimbra region.

Month Day Year Sunrise Sunset Solar Radiation

5 6 2018 6.56667 20.5500 3548.76

Hour Temperature (◦F) Precipitation (in) Wind speed (mph) Clear sky (%) Depth of the
groundwater level (ft)

0 55.4 0.00 1.6 100 50

1 54.5 0.00 0.7 100 50

. . . . . . . . . . . . . . . . . .

23 57.7 0.02 0.2 0 50

. . . . . . . . . . . . . . . . . .

2.4. Pavement Structure and Material Properties

Finally, the last data input into MEPDG software are the pavement structure and
the properties of the materials. As for traffic data, there are also 3 levels that define the
accuracy of these data. First, it is necessary to introduce the characteristics of the pavement
structure, i.e., the number of layers; type of material for each layer; and layer thickness.
The data referring to the material properties required for each layer are different for asphalt
and granular layers. For asphalt layers, the software requires the aggregate gradation, the
characteristics of the asphalt binder, the reference temperature, the Poisson’s ratio, the
effective binder content, the air voids, the total unit weight, and the thermal properties. For
granular layers, the aggregate gradation distribution, the California Bearing Ratio (CBR),
the coefficient of lateral pressure, and the Poisson’s ratio are required.

2.5. Pavement Performance Prediction Models

The pavement performance prediction models used by the MEPDG software to predict
the value of each pavement performance indicator (i.e., longitudinal cracking, alligator
cracking, AC rutting, total rutting, and IRI) are presented in Appendix A [3]. Global
calibration factors were considered in this study. These pavement performance prediction
models were defined for application at project-level, but they have also great potential, for
example, for application at network-level in Pavement Management Systems [28–30] and
Road Safety Management Systems [31,32].
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3. Application of MEPDG to the Portuguese Pavement Structures
3.1. Introduction

The MEPDG software was applied to the pavement structures recommended in the
Portuguese Manual of Pavement Structures for the national road network [19]. Figure 3
presents the characteristics of the 16 different pavement structures (e.g., thickness, stiff-
ness modulus, Poisson’s ratio, and type of material) ordered according to their structural
number [33–35]. These pavement structures were defined using the Shell pavement de-
sign method [36] considering an accumulated damage between 80% and 100%, with an
additional verification performed with the University of Nottingham [37] and Asphalt
Institute [38] pavement design methods.
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The Portuguese manual presents the 16 different flexible pavement structures for each
combination between traffic and pavement foundation classes (Table 2). Each pavement
foundation class corresponds to a stiffness modulus value. They are as follows: (1) 30 MPa
for class F1; (2) 60 MPa for class F2; (3) 100 MPa for class F3; and (4) 150 MPa for class F4.
No flexible pavement structures were defined for pavement foundation class F1 because,
according to the Portuguese manual, this type of pavement foundation is not adequate for
a flexible pavement with an asphalt base layer.

The Portuguese manual [19] contains most of the data required by the MEPDG soft-
ware, such as, for example, the percentage of the effective binder content and the air voids
defined according to the type of layer and material. There are also minimum and maximum
limit values for the effective binder content and the porosity, depending on the type of
layer and material. The traffic data are also specified by the Portuguese manual, including
the Average Annual Daily Truck Traffic (AADTT). Nevertheless, the Portuguese Road
Network Agency (Infraestruturas de Portugal) has detailed traffic data for each segment of
the national road network [39].

Table 3 presents the threshold for each pavement performance indicator considered in
this case study. The IRI has three different thresholds, which depend on the percentage of
the total length of the project. These thresholds were based on Portuguese specifications [40],
Portuguese Quality Control Plans (QCP), and pavement design practice. Within the scope
of road concession contracts [41], the concessionaires need to submit to the Portuguese
Institute of Mobility and Transports (IMT) a Quality Control Plan (QCP) and a Maintenance
and Operation Manual (MOM). The QCP presents the thresholds for each pavement
performance indicator that a highway concessionaire needs to fulfill in each year of the
concession period, which is usually 30 years. Contractual infractions are penalized with
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fines, in which the global sum varies according to its gravity between EUR 5000 and
EUR 100,000 or daily values that can vary between EUR 500 and EUR 5000.

Table 2. Pavement structure for each combination of traffic and foundation.

Traffic Foundation Pavement

Class AADTT Traffic Growth Rate Truck Factor Heavy Trucks (20 Years) Class E (MPa) Class

T6

150 3% 2 1.47 × 106 F2 60 P3
150 3% 2 1.47 × 106 F3 100 P2
150 3% 2 1.47 × 106 F4 150 P1

T5

300 3% 3 2.94 × 106 F2 60 P7
300 3% 3 2.94 × 106 F3 100 P4
300 3% 3 2.94 × 106 F4 150 P3

T4

500 4% 4 5.44 × 106 F2 60 P11
500 4% 4 5.44 × 106 F3 100 P6
500 4% 4 5.44 × 106 F4 150 P5

T3

800 4% 4.5 8.70 × 106 F2 60 P13
800 4% 4.5 8.70 × 106 F3 100 P9
800 4% 4.5 8.70 × 106 F4 150 P8

T2

1200 5% 5 1.45 × 107 F2 60 P15
1200 5% 5 1.45 × 107 F3 100 P12
1200 5% 5 1.45 × 107 F4 150 P10

T1

2000 5% 5.5 2.42 × 107 F2 60 P16
2000 5% 5.5 2.42 × 107 F3 100 P14
2000 5% 5.5 2.42 × 107 F4 150 P12

Table 3. Pavement performance indicator thresholds.

Longitudinal
Cracking (m/km) Alligator Cracking (%) AC Rutting (mm) Total Rutting (mm) IRI (mm/km)

200 20 15 20
2000 (in 50% of the length)
3000 (in 80% of the length)

3500 (in 100% of the length)

3.2. Results

The application of the MEPDG software produces a file with all the input data and
results of the evolution of each pavement performance indicator along with the entire design
life of 20 years. Table 4 presents the predicted values for each pavement performance
indicator (i.e., longitudinal cracking, alligator cracking, AC rutting, total rutting, and
IRI) corresponding to each combination of traffic class, pavement foundation class, and
pavement structure. Figures 4–8 show the predicted values for each pavement performance
indicator in each year of the design life.

The pavement structures recommended by the Portuguese manual were defined using
the Shell pavement design method considering an accumulated damage between 80% and
100%, with an additional verification performed with the University of Nottingham and
Asphalt Institute pavement design methods. Therefore, using the MEPDG, it would be
reasonable to expect values in the same range (i.e., between 80% and 100%) for at least
one of the following pavement performance indicators: alligator cracking (bottom-up
fatigue) or total rutting (permanent deformation). For the other pavement performance
indicators, only small variations would be expected, because each pavement was designed
for a specific combination of traffic and pavement foundation.
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Table 4. Prediction values for the pavement performance indicators.

Traffic
Class

Foundation
Class

Pavement
Class

Longitudinal
Cracking (m/km)

Alligator
Cracking (%)

AC
Rutting

(mm)

Total Rutting
(mm)

IRI
(mm/km)

F2 P3 14.1 0.81 5.1 12.1 1578
T6 F3 P2 23.9 2.11 5.8 12.0 1591

F4 P1 16.0 2.91 5.9 11.5 1589

F2 P7 4.6 0.40 7.1 13.4 1605
T5 F3 P4 23.1 0.82 7.6 12.8 1594

F4 P3 29.4 1.16 7.7 12.2 1583

F2 P11 3.0 0.41 9.1 15.2 1651
T4 F3 P6 24.4 0.78 10.8 15.8 1670

F4 P5 40.7 1.05 11.3 15.5 1665

F2 P13 1.8 0.38 10.8 16.7 1687
T3 F3 P9 16.8 0.64 12.5 17.3 1705

F4 P8 36.4 0.82 13.3 17.3 1706

F2 P15 1.0 0.43 9.9 15.8 1665
T2 F3 P12 11.2 0.79 10.7 16.3 1689

F4 P10 33.9 0.98 12.4 17.0 1718

F2 P16 1.1 0.52 11.2 17.0 1697
T1 F3 P14 11.9 0.76 14.5 19.1 1750

F4 P12 35.4 0.90 15.8 19.7 1765
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Analyzing Table 4 and Figure 4, one can see that there is a small variation in the
longitudinal cracking (top-down fatigue) at the end of the design life of 20 years. More
specifically, it ranged from 1.0 to 40.7 m/km, which corresponded to combinations P15T2F2
and P5T4F4, respectively. This variation occurred essentially by changing the foundation
class within the same traffic class. The only exception was the variation of the longitudinal
cracking value for traffic class T6, which ranged only between 14.1 and 23.9 m/km. One
can also see that the longitudinal cracking values were quite far from the threshold value
of 200 m/km for the whole design life.

Regarding the alligator cracking (bottom-up fatigue), the analysis of Table 4 and
Figure 5 reveals a very small variation (0.38% to 2.91%) at the end of the design life, which
corresponded to combinations P13T3F2 and P1T6F4, respectively. Nevertheless, this very
small variation continued to occur when changing the foundation class from F2 to F3 and
to F4, within the same traffic class. Finally, it is worth mentioning that the alligator cracking
values were quite far from the threshold value of 20% for the whole design life.

As far as rutting is concerned, the variation in AC rutting (contribution of asphalt
concrete layers only) was greater than the variation in total rutting (permanent deformation),
as suggested by Table 4 and Figures 6 and 7. There was a large variation in the AC
rutting, ranging from 5.1 to 15.8 mm at the end of the design life, which corresponded to
combinations P3T6F2 and P12T1F4, respectively, exceeding the threshold of 15.0 mm in only
one situation, i.e., pavement structure P12. This is the pavement structure recommended in
the Portuguese manual for the combination of traffic class T1 and pavement foundation
F4. Total rutting varied between 11.5 and 19.7 mm, corresponding to combinations P1T6F4
and P12T1F4, respectively, not exceeding the threshold of 20.0 mm in any situation. The
maximum AC rutting and maximum total rutting were verified for the same combination
P12T1F4. It can also be observed that the variation of AC rutting and total rutting was small
within the same traffic class.

Finally, Table 4 and Figure 8 show a very small variation in IRI, ranging from 1578 to
1847 mm/km at the end of the design life, which corresponded to combinations P3T6F2 and
P10T2F4, respectively. Therefore, the IRI was the pavement performance indicator with the
most homogeneous results for all the pavement structures recommended in the Portuguese
manual for each combination of traffic and pavement foundation. Furthermore, the IRI
values were found to be much lower than the threshold value of 3500 mm/km (for 100% of
the length of the project) but were close to the threshold value of 2000 mm/km (for 50% of
the length of the project).

Those results are particularly relevant within a context where increasing attention has
been paid to the excessive contribution of the road transportation mode to the greenhouse
gases (GHGs) emissions [42]. Vehicle energy consumption and emissions are strongly
affected by pavement surface characteristics due to a phenomenon known as rolling resis-
tance. Among the pavement surface properties influencing rolling resistance, pavement
roughness plays a prominent role. Given the long service life of pavements and the poten-
tially high volume of traffic they carry, ensuring that pavement roughness, as measured by
IRI, remains low over time is of supreme importance to mitigate and reduce the impacts of
the road transport mode on climate change. To summarize, by using the MEPDG, values
in the range of 80% and 100% of the threshold values would be expected for at least one
of the following pavement performance indicators: alligator cracking (bottom-up fatigue)
or total rutting (permanent deformation). However, when analyzing the results presented
in Table 4, it can be seen that this was neither the case for these pavement performance
indicators nor for the others. The pavement performance indicator closest to this situation
was total rutting. These results demonstrate that by applying the MEPDG design method
to the Portuguese conditions, the most critical distress is total rutting, since it presented
values close to its threshold, i.e., 20.0 mm.
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4. Conclusions

The Shell pavement design method has been used widely in Portugal. The Portuguese
Manual of Pavement Structures for the national road network is a user-friendly document
used to define a road pavement structure considering data for traffic, climate, pavement
foundation, and material properties. In terms of pavement maintenance management or
pavement performance prediction using indicators such as longitudinal cracking, alligator
cracking, rutting, IRI, etc., neither the Shell pavement design method nor the Portuguese
manual can greatly assist road agencies. However, the new pavement design method
developed by AASHTO, known as AASHTOWare Pavement-ME®, can be quite useful for
road agencies that need to know the value of each pavement performance indicator during
the complete pavement life in order to plan maintenance and rehabilitation interventions.
Consequently, it will be possible to carry out the objectives defined in concession contracts
as well as in Quality Control Plans. However, the application of this new pavement design
method requires a large quantity of data, essentially about traffic, climate, and materials
properties, which must be collected and organized in files with specific formats.

The new AASHTO pavement design method was developed to become a reference
method worldwide. Apart from academic purposes, it is expected that road agencies and
road pavement designers from many countries across the world will begin to use this
new pavement design method. Several different types of analysis should be performed,
varying traffic data, material properties, and application in various regions with different
climatic data, to define, for example, the pavement performance indicators that are critical
in each region of the country. An economic analysis of pavement structures, including
construction costs, maintenance and rehabilitation costs, user costs, and the residual value
of pavements, should also be made to optimize the pavement structure for new roads or the
overlay thickness for deteriorated roads. Likewise, it is important to estimate the potential
environmental impacts related to the complete lifecycle of the pavement structures.

Future developments on this subject include regional or local calibration, considering
regression analyses between the predicted and observed pavement distresses stored in
the Portuguese Pavement Management Systems, i.e., cracking, rutting, and IRI. This is
an important step for a Portuguese road agency before starting to use officially the new
AASHTO mechanistic-empirical pavement design guide to define the pavement structures
for the national and municipal road network. Another important future development is
to use these pavement performance prediction models for application at network-level in
Pavement Management Systems and also in Road Safety Management Systems.
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Appendix A

Appendix A.1. Pavement Performance Prediction Models

Appendix A.1.1. Longitudinal Cracking and Alligator Cracking

N f−HMA = k f 1(C)(CH)β f 1(εt)
k f 2β f 2(EHMA)

k f 3β f 3 (A1)

C = 10M (A2)

M = 4.84
(

Vbe
Va + Vbe

− 0.69
)

(A3)

For longitudinal cracking (top-down cracking)

CH =
1

0.01 + 12.00
1+e(15.676−2.8186HHMA)

(A4)

For alligator cracking (bottom-up cracking)

CH =
1

0.000398 + 0.003602
1+e(11.02−3.49HHMA)

(A5)

DI = ∑ (∆DI)j,m,l,p,T = ∑
(

n
N f−HMA

)
j,m,l,p,T

(A6)

FCBottom =

(
1
60

)(
C4

1 + e(C1C∗
1+C2C∗

2 Log(DIBottom×100))

)
(A7)

C∗
1 = −2C∗

2 (A8)

C∗
2 = −2.40874 − 39.748(1 + HHMA)

−2.856 (A9)

FCTop = 10.56
(

C4

1 + e(C1−C2Log(DITop))

)
(A10)

where
N f−HMA is the allowable number of axle-load applications for a flexible pavement

and HMA overlays;
εt is the tensile strain at critical locations and calculated by the structural response

model (in/in);
EHMA is the dynamic modulus of the HMA measured in compression (psi);
k f 1, k f 2, k f 3 are global field calibration parameters (from the NCHRP 1-40D recalibration)
(k f 1 = 0.007566, k f 2 = −3.9492 and k f 3 = −1.281);
β f 1, β f 2, β f 3 are local or mixture field calibration constants; for the global calibration,

these constants were all set to 1.0;
Vbe is the effective asphalt content by volume (%);
Va is the percent of air voids in the HMA mixture;
CH is the thickness correction term, dependent on the type of cracking;
HHMA is the total HMA thickness (in);
DI is the cumulative damage index;
n is the actual number of axle-load applications within a specific period of time;
j is the axle-load interval;
m is the axle-load type (single, tandem, tridem, quad, or special axle configuration;
l is the truck type using the truck classification groups included in the MEPDG;
p is the month;
T is the median temperature for the five temperature intervals or quintiles used to

subdivide each month (◦F);
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FCBottom is the area of alligator cracking that initiates at the bottom of the HMA layers
(% of total lane area);

DIBottom is the cumulative damage index at the bottom of the HMA layers;
C1,2,4 are the transfer function regression constants (C4 = 6000; C1 = 1.00; C2 = 1.00);
FCTop is the length of the longitudinal cracks that initiate at the top of the HMA layer

(ft/mi);
DITop is the cumulative damage index near the top of the HMA surface;
C1,2,4 are the transfer function regression constants (C1 = 7.00; C2 = 3.5; C4 = 1000).

Appendix A.1.2. Rutting in HMA Pavement Layers

∆p(HMA) = εp(HMA)hHMA = β1rkzεr(HMA)10k1r nk2r β2r Tk3r β3r (A11)

kz = (C1 + C2D)0.328196D (A12)

C1 = −0.1039(HHMA)
2 + 2.4868HHMA − 17.342 (A13)

C2 = 0.0172(HHMA)
2 − 1.7331HHMA + 27.428 (A14)

where
∆p(HMA) is the accumulated permanent or plastic vertical deformation in the HMA

layer (in);
εp(HMA) is the accumulated permanent or plastic axial strain in the HMA layer (in/in);
εr(HMA) is the resilient or elastic strain calculated by the structural response model at

the mid-depth of each HMA layer (in/in);
hHMA is the thickness of the HMA layer (in);
n is the number of axle-load repetitions;
T is the mix or pavement temperature (◦F);
kz is the depth confinement factor;
k1r,2r,3r are the global field calibration parameters (from the NCHRP 1-40D recalibra-

tion) (k1r = −3.35412; k2r = 0.4791; k3r = 1.5606);
β1r, β2r, β3r are the local or mixture field calibration constants; for the global calibration

(these constants were all set to 1.0);
D is the depth below the surface (in);
HHMA is the total HMA thickness (in).

Appendix A.1.3. Rutting in Unbound Pavement Layers and Foundation or
Embankment Soil

∆p(soil) = βs1ks1εvhsoil

(
ε0

εr

)
e−(

ρ
n )

β

(A15)

Logβ = −0.61119 − 0.017638(Wc) (A16)

ρ = 109

 C0(
1 − (109)

β
)
 1

β

(A17)

C0 = Ln

(
a1Mb1

r

a9Mb9
r

)
= 0.0075 (A18)

where
∆p(soil) is the permanent or plastic deformation for the layer (in);
n is the number of axle-load applications;
ε0 is the intercept determined from the laboratory repeated load permanent deforma-

tion tests (in/in);
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εr is the resilient strain imposed in the laboratory tests to obtain the material properties
ε0, ε, and ρ (in/in);

εv is the average vertical resilient or elastic strain in the layer and calculated by the
structural response model (in/in);

hsoil is the thickness of the unbound layer (in);
ks1 are the global calibration coefficients: ks1 = 1.673 for granular materials and

ks1 = 1.35 for fine-grained materials;
εs1 is the local calibration constant for the rutting in the unbound layers—the local

calibration constant was set to 1.0 for the global calibration effort;
Wc is the water content (%);
Mr is the resilient modulus of an unbound layer (psi);
a1,9 are regression constants: a1 = 0.15; a9 = 20.0;
b1,9 are regression constants: b1 = 0.0; b9 = 0.0.

Appendix A.1.4. International Roughness Index (IRI)

IRI = IRI0 + 0.0150(SF) + 0.400(FCTotal) + 0.0080(TC) + 40.0(RD) (A19)

SF = Age[0.02003(PI + 1) + 0.007947(PR + 1) + 0.000636(FI + 1)] (A20)

where
IRI0 is the initial IRI after construction (in/mi);
SF is the site factor;
FCTotal is the area of fatigue cracking (combined alligator, longitudinal, and reflection

cracking in the wheel path), percent of total lane area; all load cracks are combined on an
area basis—the length of cracks is multiplied by 1 ft to convert length into an area basis;

TC is the length of transverse cracking, including the reflection of the transverse cracks
in existing HMA pavements (ft/mi);

RD is the average rut depth (in);
Age is the pavement age (years);
PI is the percent of the plasticity index of the soil;
FI is the average annual freezing index (◦F days);
PR is the average annual precipitation or rainfall (in).
Transverse cracking-thermal cracking

∆C = A(∆K)n (A21)

A = 10kt βt(4.389−2.52Log(EHMAσmn)) (A22)

η = 0.8
[

1 +
1
m

]
(A23)

K = σtip

[
0.45 + 1.99(C0)

0.56
]

(A24)

TC = βt1N
[

1
σd

Log
(

Cd
HHMA

)]
(A25)

where
∆C is the change in the crack depth due to a cooling cycle;
∆K is the change in the stress intensity factor due to a cooling cycle;
A, n are the fracture parameters for the HMA mixture;
kt is the coefficient determined through global calibration for each input level (level

1 = 5.0; level 2 = 1.5; and level 3 = 3.0);
EHMA is the HMA indirect tensile modulus (psi);
σm is the mixture tensile strength (psi);
m is the m-value derived from the indirect tensile creep compliance curve measured in

the laboratory;
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βt is the local or mixture calibration factor;
σtip is the far-field stress from the pavement response model at the depth of the crack

tip (psi);
C0 is the current crack length (ft);
TC is the observed amount of thermal cracking (ft/mi);
βt1 is the regression coefficient determined through global calibration (400);
N[z] is the standard normal distribution evaluated at [z];
σd is the standard deviation of the log of the depth of cracks in the pavement (0.769)

(in);
Cd is the crack depth (in);
HHMA is the thickness of the HMA Layers (in).
Reflection cracking

RC =
100

1 + ea(c)+bt(d)
(A26)

a = 3.5 + 0.75 × (He f f ) (A27)

b = −0.688684 − 3.37302 × (He f f )
−0.915469 (A28)

where
RC is the percent of cracks reflected; the percent of the area of reflection cracking is

output with the width of cracks being 1 ft;
t is the time (years);
a, b are regression fitting parameters defined through the calibration process;
c, d are user-defined cracking progression parameters;
He f f is the thickness of HMA layers in new flexible pavements (in).
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