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Abstract: The objective of this work is to analyze which features are most important in the recognition
of facial expressions. To achieve this, we built a facial expression recognition system that learns from
a controlled capture data set. The system uses different representations and combines them from
a learned model. We studied the most important features by applying different feature extraction
methods for facial expression representation, transforming each obtained representation into a sparse
representation (SR) domain, and trained combination models to classify signals, using the extended
Cohn–Kanade (CK+), BU-3DFE, and JAFFE data sets for validation. We compared 14 combination
methods for 247 possible combinations of eight different feature spaces and obtained the most
explanatory features for each facial expression. The results indicate that the LPQ (83%), HOG (82%),
and RAW (82%) features are those features most able to improve the classification of expressions and
that some features apply specifically to one expression (e.g., RAW for neutral, LPQ for angry and
happy, LBP for disgust, and HOG for surprise).

Keywords: facial expression recognition; explain learning; explainable artificial intelligence; ensemble
of classifiers; sparse representation; multiple classifier systems

1. Introduction

Computers are quickly becoming a ubiquitous part of our lives, and we spend a large
amount of time interacting with computers of one type or another; however, the devices
that we use are indifferent to our affective states, as they are emotionally blind. Successful
human–human communication relies on the ability to read affective and emotional signals.
Human–computer interaction, which does not consider the affective states of its users, loses
a large part of the information available from the interaction.

At present, expression recognition can be achieved using neural networks. A neural
network behaves like a black-box model; therefore, it is difficult to understand how it
performs its classifications. Recent works have attempted to create attention maps to
understand the results obtained by neural networks [1,2]; however, these maps do not
produce reasonable interpretations of the types of features learned by the neural network.

Other solutions, such as sparse representation, help in studying the classification
performance. In this context, a trustworthy intelligent system must be able to explain its
decisions and actions to human users through the use of techniques that produce more
understandable models, while maintaining high performance levels [3].

Thus, in this paper, we analyze the importance of each feature used for facial expres-
sion recognition. Feature-relevance techniques seem to be some of the most-used schemes
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for post hoc explanation [4,5], as they can provide an explicit description of the inner be-
havior of the model, contributing to the goal of designing an explainable intelligent system.

In our work, we focus on determining which feature sub-spaces are the most advanta-
geous, where sparse representation (SR) was used to determine the features.

The remainder of this paper is organized as follows: Section 2 introduces the related
work. Section 3 describes the methodology, local and geometric features, expression
classification, and combination framework. Section 4 describes the specific experimental
process. Section 5 analyzes and discusses the results. The research is summarized, and our
conclusions are offered in Section 6.

2. Related Work

Guidotti et al. [6] carried out an exhaustive literature review to explain learning
systems. In [7], Letham et al. generated an explanation using rules and Bayesian analysis
by making if/else decisions. LIME was proposed as a solution in [8], with the aim of
explaining the predictions of any model in an interpretable manner.

Chandrashekar et al. [9] provided an introduction to feature-selection techniques. They
concluded that “more information is not always good in machine learning applications”.
This is an important issue, as it means that adding more features does not always elicit
better results. In [10], Weitz et al. used LIME and layer-wise relevance propagation (LRP)
to explain how a neural network can distinguish between pain, happiness, and disgust.

In [11], Gund et al. used videos from CK+ and a temporal convolutional network
to determine the most important facial landmarks (i.e., 68 OpenFace landmarks) that can
be used to infer facial expressions. In [12], Ter Burg concluded that human participants
found the explanations for the geometric feature-based DNN better overall than the Grad-
CAM explanations for the CNN. In Wang et al., M2Lens [13] contributes to visualizing
and explaining multi-modal models for sentiment analysis, which is related to facial
expression recognition.

Lian et al. [14] and Kim et al. [15] determined the regions used for the classification of
individual expressions. Deramgozin et al. [16] determined how a CNN classifies different
expressions, both locally and globally. However, none of the reviewed works have deter-
mined which characteristics are the most important for better facial expression recognition.
Zhu et al., in their recent publications, have attempted to focus the majority of their pro-
cessing on a target region of interest, using a so-called visual attention mechanism [1,2].
Although the existing attention methods have contributed greatly to facial expression
recognition, according to Bonnard et al. [2], there is a problem associated with the insuffi-
cient utilization of spatial features. In our opinion, there is a need to begin to understand
the different types of features that contribute to face-recognition analysis, which could
ultimately improve the actual systems in practice.

Several papers related to feature extraction for facial expression recognition (FER)
can be found in the literature. Ying et al. [17] used local binary patterns (LBP) and Image
Raw (RAW) to train two classifiers using a sparse representation-based classifier (SRC).
For each of these schemes (LBP + SRC and RAW + SRC), the approximation error signal
was obtained for each class. This error was used as a fuzzy measure for the evaluation of
a decision rule. The residual ratio was calculated as the ratio between the second smallest
residual and the smallest residual for the LBP + SRC and RAW + SRC methods. If the
results for the two classifiers were not the same, the classification with the larger residual
ratio was chosen. In the study by Li et al. [18], the classifiers were trained using local phase
quantization (LPQ) and Gabor wavelets + Adaboost (GW). The Adaboost algorithm was
used to select the most effective 100 features from each Gabor filter. As reported in [17], the
classification result with the larger residual ratio was chosen if the classification using the
two classifiers differed [17]. Ouyang [19] used a histogram of oriented gradients (HOG) and
LBP. This approach was based on the idea that features are complementary, as HOG mainly
extracts a contour-based shape, while LBP primarily extracts the texture information of the
images. Kittler et al. [20] showed that the output of each classifier could be used to evaluate
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a decision rule, then they applied combination rules. Of these, the product rule (PR) and
the SR provided the best results. Ptucha et al., Ji et al., and Tsalakanidou et al. have also
employed dynamic features in [21–23]. In these works, the variability of facial changes was
studied using regions or points of interest in the face images.

The notion of SRs—finding sparse solutions to under-determined systems—has been
applied in several scientific fields. Olshausen et al. used sparse models that are similar
in nature to the network of neurons in V1—the first layer of the visual cortex in the
human brain—and, more generally, to the mammalian brain [24,25]. Patterns of light
are represented by a series of innate or learned basis functions, whereby sparse linear
combinations form surrogate input stimuli to the brain. Similarly, for many input signals
of interest, such as natural images, a small number of exemplars can form a surrogate
representation of a new test image.

In SR systems, new test images are efficiently represented by sparse linear coefficients
on a dictionary D of over-complete basis functions. Specifically, SR systems comprise
an input sample x ∈ Rm (where m is the number of features), along with a dictionary D
of n samples, D ∈ Rm×n. SR solves the coefficients α ∈ Rn that satisfy the l1 minimization
problem x? = D.

Wright et al., Weifeng et al., and Zhen et al. showed the advantages of exploit-
ing sparsity in pattern classification, which has been demonstrated extensively for FER
problems [26–28]. The experimental results of [26] showed that the magnitude of the
representation error in the facial feature vectors obtained by SR provided a good metric
with which to classify facial expressions.

Different expression representation techniques have been created, and many more are
expected to be created in the next few years. Representations may be features designed by
experts (feature engineering methods), as was demonstrated by Ptucha et al., Mollahosseini
et al., and Zhang et al. [21,29–31], or embedded vectors obtained from training a deep neural
network. The main objective of this work was to define a new facial expression recognition
system that uses the representations obtained from different sources and combines them
using a learned model. For this goal, we performed the following steps: (1) we first obtained
several representations of facial expressions by applying different representation methods;
(2) we then transformed each obtained representation into the same domain, the domain of
representation errors of sparse representation (SR); finally, (3) in this new space, we trained
a combination model to classify the signals. We used the extended Cohn–Kanade data set
(CK+), the BU-3DFE data set, and the JAFFE data set for validation. The major innovation
of this work is the exploration of feature extractors to select those features that are the most
explanatory for facial expression recognition, using a sparse representation-based classifier.

3. Methodology

In this section, we detail the feature extraction and expression classification methods.
The feature extraction methods used can be grouped according to local and geometric
features, as well as global features extracted from pre-trained deep models. Local features
use neighbor information, while geometric features consider points of interest in the face.
Pre-trained neural network models provide a k-dimensional feature vector extracted from
the last layer. Figure 1 represents the scheme of the proposed approach.
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Figure 1. Proposed classifier system, divided into three sections: feature extraction methods, sparse
representation classification, and combination rules.

3.1. Feature Extraction Methods

In this work, we group the feature methods into local, geometric, and global. The local
features were defined through the extraction of supervised features from facial patches.
The facial patches were defined as regions in the face that were active during different
facial expressions. It has been reported that some facial patches are common during the
production of all basic expressions, while others are confined to a single expression [32].
The results indicated that these active patches were positioned below the eyes, between
the eyebrows, and around the nose and mouth. To extract these patches from the face
image, we first located the facial components. The locations of active patches were defined
with respect to the positions of landmarks, which were estimated using Open-Face [33].
Happy and Routray [34] have observed that features formed from fewer facial patches can
replace high-dimensional features without a significant decrease in recognition accuracy.
Geometric features were defined according to the distances and regions between the
different landmarks [23]. The global methods employed unsupervised features obtained by
the pre-trained deep learning models, VGG and VGGFace, over the entire image [35].

3.1.1. Local Features

The local features were established through the extraction of supervised features from
facial patches, defined as the regions of the face that are active during different facial
expressions. We used the following methods for the extraction of local features:

• Gabor wavelet filters (GW): This technique has previously been applied successfully
for facial expression recognition [18,30]. In our work, 68 landmark points were selected.
For each point, a patch sized (2k + 1) × (2k + 1) was used to compute the feature
vector. Four scales and eight orientations were used to calculate the Gabor kernels,
where k = 7. This selection generated a vector of 2176 (68× 4× 8) elements.

• Local binary patterns (LBP): this system has been widely used as a robust illumination-
invariant feature descriptor [19,27,36,37]. This operator generates a binary number by
comparing neighboring pixel values with the center pixel value. The uniform LBP and
rotation-invariant uniform LBP [38] were also used in the experiment. These methods
generated a vector that was the same size as the image (256× 256).

• Histograms of oriented gradients (HOG): This concept has also been successfully
applied in facial expression recognition [19,39]. The basic idea of HOG features
is that the local object’s appearance and shape can often be well-characterized by
the distribution of local intensity gradients or edge directions, even without precise
knowledge of the corresponding gradient or edge positions. The orientation analysis is
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robust to changes in illumination, as the histogram possesses translational invariance.
The associated vector size was 256× 256× 2.

• Local phase quantization (LPQ): The LPQ feature [18,40] is a blur-robust image descrip-
tor. The LPQ descriptor is based on the intensity of low-frequency phase components
with respect to a centrally symmetric blur. Therefore, LPQ employs the phase informa-
tion obtained from the short-term Fourier transform, which is locally computed on
a window around each pixel of the image. The vector size was 256× 256.

• RAW: The image intensity has also been used as a feature vector (RAW) [17,41]. Here,
the vector size was 256× 256.

3.1.2. Geometric Features

Geometric measurements (GEO) were computed using 68 landmarks [23]. Figure 2
shows the order of the landmarks selected in our work. The order and number of landmarks
varied in some of the previous works in the literature. We maintained the appropriate
correspondence in all cases. Table 1 details the 17 geometric distance measures used.

Figure 2. The 68 landmarks used in our work. Each landmark is marked with its number. Original
image extracted from BU-3DFE [42,43].

We also used shape measurements for the eye, nose, and mouth regions. We defined
these regions using the landmarks in each region. For example, the left eye region is defined
by landmarks 37, 38, 39, 40, 41, and 42. Measures were defined for each region, as follows:
solidity (M18) returns a scalar specifying the proportion of the pixels in the convex hull that
are also in the region, computed as Area/ConvexArea; the axes relationship (M19) is the
ratio between the lengths of the minor and major axes of an ellipse, which has the same
normalized second central moments as the region, computed as AxisMin/AxisMax; tshe
circularity factor (M20) is computed as 4πAreas/Perms2; eccentricity (M21) is a scalar that
specifies the eccentricity of the ellipse, which has the same second moments as the region;
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and extent (M22) is a scalar that specifies the ratio of pixels in the region to pixels in the
total bounding box. The distances of the centroids of each region to the center of the nose
were also calculated. Table 2 summarizes the vector size used for each feature; the total
vector size was 329,992.

Table 1. Geometric facial measurements. dij: the Euclidean distance between landmarks i and j; α:
the angle between two lines; ξij: the line defined by i and j; lijk the length of the curve defined by i, j,
and k; o1 and o2: the centers of the right and left eye, respectively.

Measurement Name Distances Involved

M1 Inner eyebrow displacement d40,22, d43,23
M2 Outer eyebrow displacement d18,o1 , d28,o2

M3 Inner eyebrow corners dist. d22,23
M4 Eyebrow from nose root dist. d22,28, d23,28
M5 Eye opening d39,41, d44,48
M6 Eye shape d39,41/d37,40, d44,48/d29,46
M7 Nose length d29,31
M8 Nose width d32,36
M9 Lower lip boundary length l55,56,57,58,59,60,49
M10 Mouth corners dist. d49,55
M11 Mouth opening d63,67
M12 Mouth shape d63,67/d49,55
M13 Nose–mouth corners angle α(ξ32,49, ξ36,55)
M14 Mouth corners to eye dist. do1,49, do2,55
M15 Mouth corners to nose dist. d49,34, d55,34
M16 Upper lip to nose dist. d52,34
M17 Lower lip to nose dist. d67,34

Table 2. Feature summary. For each feature, we provide its type and size.

Type Feature Vector Size

Local GW 2176
Local LBP 256× 256
Local HOG 256× 256× 2
Local LPQ 256× 256
Local RAW 256× 256

Geometric GEO 68× 2

3.1.3. Pre-Trained Deep Models

Several deep learning algorithms have been proposed and applied to FER [29,44,45],
particularly from an explainable artificial intelligence (XAI) point of view [46–48]. Our
interest was in the combination of different representation spaces. Thus, we selected pre-
trained models to obtain facial expression representations. The training of deep learning
architectures for FER poses a problem when using data sets such as CK+, JAFFE, and
BU-3DFE, due to the small number of elements in these sets. Models trained with such
data sets are prone to overfitting, which can hinder objective analysis when determining
the contribution of the characteristics of the model to the system. Therefore, we selected
general classification models (i.e., object classification and facial classification models) that
were pre-trained on extensive databases, including the VGG-face [35] and VGG [49] models.
In the case of the VGG-face model, as a feature, we selected the output of the Rectifier
Linear Unit (ReLU) layer 33. For the VGG model, we selected the output of the ReLU layer
34. The size of both vectors was 4096.

3.2. Expression Classification

Consider a set of training signals D = [D1, D2, . . . , Dk] ∈ Rm×p from k different classes,
where the columns of each sub-matrix Dj =

[
dj

1, dj
2, . . . , dj

nj

]
∈ Rm×nj are signals from the

class wj. Ideally, we have sufficient training samples of class wj, such that a test signal
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x ∈ Rm that belongs to the same class can be approximated by a linear combination of the
training samples from Dj, which can be written as:

x = ∑
nj
i=1 α

j
id

j
i , (1)

which can be rewritten as x = Dδj(α) ∈ Rm, where δj(α) =
[
0, . . . 0, α

j
1, α

j
2, . . . , α

j
nj , 0 . . . , 0

]T
∈

Rp is a vector of coefficients having many values equal to zero, except for those associated
with the class wj. As a valid test sample, x can be sufficiently represented only using the
training samples from the same class; this representation is the sparsest among all others,
finding the identity of x is equal to finding the sparsest solution of Equation (2). This is
equivalent to solving the following optimization problem (l0-minimization):

α? = arg min
α∈Rp
‖α‖0 s.t. Dα = x. (2)

However, solving the l0 minimization of an undetermined system of linear equations is
NP-hard. If the sought solution α? is sparse, the solution of the l0 minimization problem, as
defined in Equation (2), is equal to the solution of the following l1 minimization problem [50]:

α? = arg min
α∈Rp
‖α‖1 s.t. Dα = x. (3)

Then, the estimate x using the coefficients corresponding to a given class wj, x ≈ x̂j = Dδj(α
?),

is possible. This is consistent with the previous findings, and also mimics the behavior of
simple cells in the visual cortex. The error of the representation, ej =

∣∣x− x̂j
∣∣, can be used

to determine the class of the signal x.

3.3. Proposed Combination Framework

When different classifiers based on SR are considered, the reconstruction error can be
used to evaluate the combination rules. This supposes that the probability of success of
each classifier Di for each class, P

(
wj
∣∣Di
)
, is the same. Combination methods of this type

are called “class-conscious” [51].
Depending on its intrinsic characteristics, each expression can best be characterized in

a particular subspace or subset. For example, expressions that involve some form of facial
movement (e.g., opening the mouth) may be better described by the shape spaces, which
are recorded as changes in gradient. On the other hand, changes in the frequency intensity
of the image may be best characterized by texture analysis methods. This property suggests
that classifiers exist that are specialists (experts) for some classes. As such, these classifiers
should have greater weight in the final decision regarding classification.

For the calculation of the weights, a new feature space based on the output of each
of the classifiers was generated. The variable di,j(x) denotes the support that classifier Di
gives to the hypothesis that x comes from class wj. The larger the support, the more likely
it is that the class label belongs to wj. In this approach, di,j(x) are features in a new space,
defined as the intermediate feature space [51]. The support for class wj is calculated as:

µj(x) =
L

∑
i=1

θi,jdi,j(x). (4)

Linear regression is the most commonly used procedure to derive the weights for this
model [21]. Algorithm 1 describes each step in the classification of a test pattern. Note
that the output of each classifier di,j, for the class wj, creates a new feature space. For each
output subspace, an estimated model θj weighs the decision of each classifier in the class
wj. For the experiments, the fuzzy integral (FI) [51], linear opinion pools (LOP) [52], SVM,
and naïve Bayes method were used to adjust the output of the classifiers (see Equation (8)).
Other techniques for combining experts exist, but they need to be trained using a large
number of samples [53].
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Algorithm 1. Sparse representation fusion classification (SRFC). D1, . . . .DL, with
Di ∈ Rni×m, are the dictionaries for each feature space; g1(x), . . . , gL(x), with
gi(x) ∈ Rni and gi(x) 6= gj(x), are the feature extraction methods

1: Calculate sparse representation:
For i = 1, . . . , L

αi
? = arg min

α∈Rp
‖α‖0s.t.gi(x) = Diα (5)

2: Calculate the vote of each representation to each class:
For i = 1, . . . , L and j = 1, . . . , C

ri,j = ‖gi(x)− Diδj
(
α?i
)
‖2

2, (6)
where δj selects the entries of α? corresponding to the class j, and rj represents the
residual test sample gi(x) with the linear combination Diδj(α

?). To obtain the vote for
each class, the softmax function is applied to the inverse of the normalization of ri,j:

di,j = σso f tmax

(
1− ri,j

‖r.,j‖1

)
, (7)

where r.,j refers to the column j as a vector and di,j represents the decision profile.
3: Trained combination rules:

µj(x) =
L
∑

i=1
θi,jdi,j(x). (8)

The weights θj are estimated for the decision profile for class wj.
4: Classification:

ĵ =arg max
j∈1,...,C

µj. (9)

5: Return
The estimated class ĵ for the signal x

4. Experiments

In order to determine the influence of different features, we performed four exper-
iments. (1) Statistical analysis was employed to determine which combination of rules
presented the best classification results, for which purpose we evaluated 247 combinations
of feature extraction methods—i.e., we considered all possible combinations of 8 features,
excluding empty sets and those using only one feature set (28 − 1 − 8 = 247)—and 14 com-
bination rules in three different data sets. (2) To investigate the generalization performance
of the proposed method vs. individual classification methods, we performed an inter-
database experiment. (3) We analyzed the influence of the methods for each class; and
(4) we compared the obtained results with those using state-of-the-art methods on the
same data set and experimental protocol. The results obtained from these experiments are
described in detail in the next section.

4.1. Data Set

To evaluate our proposed method, we used three public data sets: the extended Cohn–
Kanade (CK+) [54], JAFFE [55], and BU-3DFE [43]. In all experiments, person-independent
FER scenarios were used [56]. Therefore, the subjects in the training set were completely
different from the subjects within the test set (i.e., the subjects used for training were not
used for testing). Following the recommendations in [38], each face image used in our
experiments was cropped, based on the locations of the eye. The landmarks were obtained
using Open-Face. The cropped face images were rescaled to 256× 256 pixels. Figure 3
shows the various classification results.

• CK+ data set: This includes 593 image sequences from 123 subjects. From the 593 se-
quences, we selected 325 sequences of 118 subjects, each of which met the criteria for
one of the seven expressions [54]. The selected 325 sequences consisted of 45 angry,
18 contempt, 58 disgust, 25 fear, 69 happy, 28 sadness, and 82 surprise sequences [54].
In the neutral face scenario, we selected the first frame of the sequence of 33 randomly
selected subjects.

• BU-3DFE data set: This is known as the most challenging and difficult data set, mainly
due to the presence of a variety of ethnic/racial ancestries and expression intensities [43].
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A total of 700 expressive face images (1 intensity × 6 expressions × 100 subjects) and
100 neutral face images (each of which was of one subject) [43] were used.

• JAFFE data set: This contains 10 female subjects and 213 facial expression images [55].
The number of images corresponding to each of the seven categories of expression
(neutrality, happiness, sadness, surprise, anger, disgust, and fear) was almost always
the same. Each actor repeated the same expression several times (i.e., two, three, or
four times).

Figure 3. Classification results. The two top rows show different users, and the two bottom rows
show each user with two different expressions. We denote the expression marked by the classifier
system in red. Original images extracted from BU-3DFE [42,43].

4.2. Protocol

In this work, eight feature extraction methods—GW, LBP, HOG, LPQ, RAW, GEO,
VGG, and VGGF—were used, according to the methodology proposed. These features
have been used widely in the literature for FER [17–19,27,30,39,41,57,58]. We generated
247 possible scenarios, which were all combinations of the selected feature extraction
method. We denote the classification schemes as follows: GW+SR with W, LBP+SR with
B, HoG+SR with H, LPQ+SR with P, RAW+SR with R, GEO+SR with G, VGG+SR with V,
and VGGF+SR with F.
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Next, for example, a possible combination scenario might be denoted as W/B/H,
which corresponds to GW/LBP/HOG+SR. We tested 14 combination rules for each sce-
nario: five soft-level rules—product rule (RP), sum rule (RS), max rule (RMX), min rule
(RMI), and median rule (RMD) [20]; three hard-level rules—weighted majority vote rule
(WMV), recall rule (REC), and naïve Bayes rule (NB) [59]; and six trainable methods—fuzzy
integral (FI) [51], linear opinion pools (LOP) [52], Bayes model (MB), SVM linear kernel
model (ML), and SVM polynomial kernel model (MP). The results of these combinations
were also compared to those of the individual methods.

The parameters for each of the methods were selected according to those obtained
using state-of-the-art methods. The GW representation was obtained using five scales
and eight orientations, in order to construct a set of Gabor filter banks for 25× 25 and
k = 7 neighborhoods [60]; the image resolution was 256× 256 pixels. For the extraction
of LBP features, as used by Huang et al. [38] and Ying et al. [17], we adopted a uniform
LBP operation, with parameters of P = 8 and R = 2 in images sized 256× 256 pixels.
The histogram was extracted for each patch sized 25× 25. For HOG, the bin number was
set to 9, the cell size was 16× 16 pixels, and a block size of 2× 2 was adopted for each
selected landmark point [19]. For the extraction of the LPQ [28], we set M = 5 and a = 1/5.
The histograms were extracted from each selected landmark point for those patches sized
25× 25. In the case of VGGF, as a feature, we selected the output of the ReLU layer 33;
while, in the case of VGG, we selected the output of the ReLU layer 34.

4.3. Metrics

For this analysis, different metrics were used. Accuracy was calculated as the average
number of successes, divided by the total number of observations (in this case, each face
was considered an observation). The precision, recall, F1-score, and confusion matrix were
also used for an analysis of the effectiveness of the system. Demšar [61] recommended the
Friedman test, followed by the pairwise Nemenyi test, to compare multiple pieces of data.
The Friedman test is a non-parametric alternative to the ANOVA test. The null hypothesis
of the test H0 is that all classifier models are equivalent. In our work, the Friedman test
was used to identify the best classification scheme between different combination rules
and all feature extraction methods. Similar to previously published works [31,62–64],
leave-one-subject-out (LOSO) cross-validation was adopted in the evaluation.

4.4. Experimental Environment

One of the most important aspects to consider when evaluating the use of multiple
classifier systems is that of time. A critical component of the system is the feature extraction
method (Fsi) and its representation by SRC. As the number of methods increases, the
amount of time also increases. It was expected that method Fs1 + SRC has time t1, method
Fs2 + SRC has time t2, method Fsn+ SRC has time tn, and the system time is t = ∑ ti.
However, the system components are independent and depend only on the input image
(i.e., there are no interdependencies); therefore, if the number of methods in the pool is not
large, each one can be assigned to a processing unit. In this case, the mean time could be
shown as t = max(ti) + c, where c is a constant. At present, such solutions are viable and
easily accessible.

The hardware used to carry out the computation was a desktop computer with the
following specifications: CPU: Intel i9-9900KF (16) @ 5.000 GHz; GPU: NVIDIA GeForce
RTX 2060; memory: 7003 MiB/32,035 MiB; OS: Ubuntu 20.04.4; LTS: x86_64. With this
configuration, the total computing time was 12.3 h (including feature extraction, sparse
representation, training, and metrics).

5. Results and Discussion

In this section, we present the results and discuss the influence of the combination
rule, the differences in the use of individual and multiple classification methods, and the
contribution of each feature.
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5.1. Statistical Analysis of the Combination Rule

Tables 3–5 show the accuracy values for the 14 combination rules (columns) and the
best combinations of classifiers in different subspaces (rows) for the CK+ data set, BU-3DFE
data set, and JAFFE data set, respectively. Regarding the CK+ data set (Table 3), an accuracy
of more than 0.985 was achieved; in the BU-3DFE data set (Table 4), we achieved an
accuracy of more than 0.821; and for JAFFE (Table 5), the accuracy was 0.776 (in all three
cases, more than 20 combinations were selected). The best accuracy for each combination is
underlined. The last row of tables shows the average accuracy across the 247 combinations.
With the large span of classification accuracy values, it is unlikely that these values will be
commensurable; however, although the average values across the feature combination do
not serve as a valid performance metric, they give a rough indication of the achievements
of the combinations. The tables show that the trainable combination rules of MP and
ML presented the best results in most cases. The JAFFE data set had the fewest images
(213 images), thus limiting the training phase of the trainable combiners. In this case, the
best option seemed to be the use of non-trainable combiners.

Table 3. Accuracy selection was greater than 0.985 for the 14-rule combination methods and 247 com-
binations of eight subspaces in the CK+ data set. CSC: a combination of soft classifiers; CHC:
a combination of hard classifiers; TC: trainable classifiers. Best classifier result is underlined. Best
feature/classifier is in bold type.

Features CSC CHC TC

RP RS RMX RMI RMD RM WMV REC NB LOP FI MB MP ML

R/B/P/V 0.986 0.986 0.950 0.913 0.986 0.975 0.972 0.969 0.958 0.978 0.950 0.978 0.975 0.975
R/P/V/F 0.961 0.961 0.936 0.908 0.961 0.944 0.947 0.958 0.939 0.955 0.936 0.980 0.989 0.983

R/W/B/P/V 0.975 0.975 0.947 0.930 0.975 0.972 0.964 0.950 0.950 0.975 0.947 0.986 0.978 0.978
R/W/B/V/F 0.969 0.969 0.947 0.933 0.969 0.964 0.964 0.961 0.955 0.961 0.947 0.986 0.983 0.980
R/W/H/P/F 0.969 0.969 0.947 0.941 0.969 0.958 0.955 0.961 0.947 0.964 0.947 0.989 0.983 0.983
R/W/P/G/F 0.947 0.947 0.902 0.894 0.947 0.953 0.953 0.961 0.941 0.925 0.902 0.972 0.986 0.986
R/B/H/V/F 0.969 0.969 0.953 0.933 0.969 0.966 0.966 0.953 0.950 0.966 0.953 0.975 0.980 0.986
R/H/P/V/F 0.964 0.964 0.944 0.916 0.964 0.950 0.955 0.953 0.927 0.953 0.944 0.983 0.986 0.986
R/P/G/V/F 0.939 0.939 0.883 0.880 0.939 0.933 0.941 0.961 0.908 0.930 0.883 0.975 0.989 0.980
W/B/H/P/V 0.975 0.975 0.955 0.927 0.975 0.964 0.964 0.953 0.950 0.964 0.955 0.986 0.983 0.983
W/B/H/V/F 0.969 0.969 0.955 0.930 0.969 0.961 0.958 0.947 0.936 0.958 0.955 0.978 0.986 0.983

R/W/B/H/P/V 0.978 0.978 0.947 0.933 0.978 0.975 0.972 0.955 0.955 0.972 0.947 0.989 0.986 0.983
R/W/B/H/P/F 0.975 0.975 0.953 0.944 0.975 0.978 0.969 0.953 0.964 0.975 0.953 0.986 0.983 0.983
R/W/B/H/V/F 0.975 0.975 0.947 0.939 0.975 0.964 0.961 0.950 0.950 0.961 0.947 0.989 0.980 0.986
R/W/B/P/G/V 0.958 0.958 0.908 0.888 0.958 0.972 0.966 0.950 0.941 0.941 0.908 0.986 0.983 0.983
R/W/B/P/V/F 0.975 0.975 0.947 0.927 0.975 0.975 0.969 0.961 0.961 0.961 0.947 0.989 0.980 0.980
R/W/H/P/G/V 0.958 0.958 0.897 0.885 0.958 0.955 0.953 0.950 0.919 0.933 0.897 0.980 0.980 0.986
R/W/H/P/G/F 0.955 0.955 0.905 0.894 0.955 0.958 0.955 0.953 0.941 0.933 0.905 0.978 0.986 0.986
R/W/H/P/V/F 0.966 0.966 0.936 0.927 0.966 0.966 0.955 0.953 0.939 0.955 0.936 0.986 0.992 0.989
R/B/H/P/V/F 0.972 0.972 0.953 0.925 0.972 0.975 0.969 0.955 0.950 0.966 0.953 0.989 0.986 0.986
R/B/H/G/V/F 0.961 0.961 0.899 0.888 0.961 0.964 0.964 0.953 0.947 0.933 0.899 0.975 0.986 0.986
R/H/P/G/V/F 0.944 0.947 0.894 0.883 0.947 0.958 0.955 0.947 0.902 0.927 0.894 0.978 0.989 0.986
W/B/H/P/V/F 0.972 0.972 0.955 0.925 0.972 0.972 0.966 0.955 0.939 0.953 0.955 0.983 0.980 0.986

R/W/B/H/P/G/F 0.966 0.964 0.911 0.894 0.964 0.966 0.961 0.953 0.964 0.925 0.911 0.986 0.983 0.983
R/W/B/H/P/V/F 0.972 0.972 0.947 0.933 0.972 0.966 0.969 0.955 0.955 0.958 0.947 0.989 0.980 0.983
R/W/B/P/G/V/F 0.958 0.958 0.908 0.888 0.958 0.966 0.958 0.955 0.958 0.933 0.908 0.986 0.983 0.983
R/W/H/P/G/V/F 0.950 0.950 0.897 0.885 0.950 0.953 0.947 0.953 0.927 0.930 0.897 0.980 0.989 0.989
W/B/H/P/G/V/F 0.955 0.955 0.891 0.880 0.955 0.961 0.961 0.953 0.939 0.930 0.891 0.983 0.986 0.986

Average 0.946 0.946 0.910 0.902 0.946 0.941 0.946 0.948 0.929 0.940 0.910 0.966 0.971 0.971

To determine the best choice for CK+ and BU-3DFE, we calculated the ranks of the
combiners. For example, for the combined features R/W/H/P/V/F in the CK+ dataset,
the order by rank was as follows: MP (the best), ML, MB, RP, RS, RMD, MV, WMV, LOP,
REC, NB, RMX, FI, and RMI (the worst). In case of a tie, the ranks were shared. The
average ranks across the combination of features in CK+ (BU-3DFE) were as follows: RP
6.709 (5.830), RS 6.749 (5.873), RMX 11.699 (12.694), RMI 12.956 (12.484), RMD 6.749 (5.873),
MV 7.820 (9.982), WMV 7.524 (7.401), REC 7.512 (6.328), NB 10.757 (9.423), LOP 8.124 (7.294),
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FI 11.682 (12.611), MB 2.767 (3.792), MP 1.984 (2.678), and ML 1.970 (2.739). These results
indicate that MP, ML, and MB were the best combiners in both cases.

Table 4. Accuracy selection greater than 0.821 for 14-rule combination methods and 247 combinations
of eight subspaces in the BU-3DFE data set. CSC: a combination of soft classifiers; CHC: a combination
of hard classifiers; TC: trainable classifiers. Best classifier result is underlined. Best feature/classifier
is in bold type.

Features CSC CHC TC

RP RS RMX RMI RMD RM WMV REC NB LOP FI MB MP ML

R/W/P/G 0.774 0.778 0.724 0.697 0.778 0.772 0.783 0.781 0.771 0.771 0.724 0.807 0.824 0.826
R/W/B/P/G 0.807 0.807 0.741 0.709 0.807 0.781 0.798 0.802 0.779 0.788 0.741 0.807 0.828 0.826
R/W/B/P/V 0.802 0.800 0.752 0.767 0.800 0.790 0.797 0.795 0.778 0.797 0.752 0.822 0.816 0.817
R/W/H/P/G 0.788 0.791 0.729 0.714 0.791 0.805 0.805 0.809 0.779 0.784 0.729 0.809 0.826 0.824
R/H/P/G/V 0.784 0.784 0.724 0.714 0.784 0.779 0.791 0.790 0.778 0.776 0.724 0.803 0.824 0.819
W/H/P/G/V 0.778 0.778 0.719 0.698 0.778 0.779 0.788 0.800 0.784 0.781 0.719 0.795 0.822 0.819
W/H/P/V/F 0.795 0.798 0.734 0.748 0.798 0.798 0.793 0.797 0.781 0.783 0.734 0.822 0.814 0.810

R/W/B/H/P/G 0.809 0.807 0.743 0.712 0.807 0.802 0.800 0.819 0.783 0.798 0.743 0.819 0.828 0.822
R/W/B/H/P/F 0.817 0.816 0.745 0.752 0.816 0.810 0.807 0.817 0.795 0.809 0.745 0.821 0.822 0.824
R/W/B/P/G/V 0.798 0.800 0.741 0.721 0.800 0.788 0.795 0.795 0.783 0.783 0.741 0.814 0.826 0.826
R/W/H/P/G/V 0.800 0.800 0.728 0.721 0.800 0.798 0.809 0.814 0.791 0.790 0.728 0.816 0.826 0.824
R/W/H/P/G/F 0.803 0.803 0.728 0.722 0.803 0.798 0.807 0.828 0.784 0.793 0.728 0.816 0.812 0.807
R/B/H/P/V/F 0.807 0.807 0.764 0.767 0.807 0.803 0.810 0.814 0.802 0.800 0.764 0.822 0.810 0.810
R/H/P/G/V/F 0.810 0.809 0.722 0.724 0.809 0.786 0.803 0.812 0.779 0.776 0.722 0.817 0.822 0.824
W/B/H/P/G/V 0.800 0.798 0.741 0.707 0.798 0.795 0.795 0.807 0.790 0.784 0.741 0.809 0.822 0.821
W/B/H/P/G/F 0.803 0.803 0.726 0.710 0.803 0.805 0.807 0.819 0.790 0.790 0.726 0.812 0.822 0.822
W/B/H/P/V/F 0.805 0.803 0.750 0.759 0.803 0.805 0.809 0.809 0.790 0.786 0.750 0.828 0.814 0.814

R/W/B/H/P/G/V 0.802 0.800 0.743 0.722 0.800 0.791 0.802 0.816 0.790 0.786 0.790 0.821 0.822 0.819
R/W/B/H/P/G/F 0.821 0.821 0.741 0.722 0.821 0.816 0.819 0.812 0.795 0.798 0.791 0.828 0.826 0.822
R/W/B/H/P/V/F 0.802 0.803 0.750 0.760 0.803 0.812 0.816 0.817 0.798 0.795 0.791 0.824 0.816 0.816

Average 0.779 0.779 0.727 0.727 0.779 0.762 0.774 0.777 0.766 0.7740 0.729 0.789 0.794 0.794

Table 5. Accuracy selection greater than 0.776 for 14-rule combination methods and 247 combinations
of eight subspaces in the JAFFE data set. CSC: a combination of soft classifiers; CHC: a combination
of hard classifiers; TC: trainable classifiers. Best classifier result is underlined. Best feature/classifier
is in bold type.

Features CSC CHC TC

RP RS RMX RMI RMD RM WMV REC NB LOP FI MB MP ML

R/B/H 0.746 0.746 0.726 0.706 0.746 0.701 0.711 0.706 0.692 0.761 0.726 0.751 0.726 0.741
B/H/P 0.746 0.746 0.706 0.667 0.746 0.726 0.706 0.692 0.701 0.766 0.706 0.716 0.736 0.736

R/W/H/G 0.751 0.746 0.647 0.622 0.746 0.721 0.731 0.736 0.597 0.731 0.647 0.761 0.736 0.736
R/H/P/G 0.771 0.766 0.672 0.612 0.766 0.701 0.721 0.711 0.597 0.716 0.672 0.731 0.736 0.736
R/H/P/F 0.716 0.716 0.697 0.687 0.716 0.726 0.711 0.697 0.627 0.736 0.697 0.746 0.766 0.761
W/B/H/P 0.721 0.721 0.682 0.682 0.721 0.687 0.706 0.751 0.647 0.751 0.682 0.721 0.761 0.756
W/H/P/F 0.746 0.746 0.647 0.677 0.746 0.726 0.706 0.726 0.642 0.736 0.647 0.721 0.761 0.776

R/W/H/P/G 0.751 0.751 0.647 0.622 0.751 0.716 0.731 0.736 0.612 0.741 0.647 0.761 0.746 0.746
R/W/H/G/F 0.766 0.761 0.642 0.617 0.761 0.716 0.726 0.726 0.562 0.721 0.642 0.741 0.692 0.687
R/B/H/G/F 0.761 0.756 0.677 0.617 0.756 0.731 0.716 0.701 0.582 0.711 0.677 0.716 0.721 0.726
R/H/P/G/F 0.766 0.766 0.667 0.617 0.766 0.721 0.721 0.706 0.587 0.701 0.667 0.736 0.751 0.751
W/H/P/V/F 0.741 0.746 0.652 0.637 0.746 0.716 0.731 0.716 0.587 0.726 0.652 0.716 0.766 0.756

R/W/B/H/P/F 0.741 0.741 0.692 0.682 0.741 0.726 0.721 0.726 0.637 0.731 0.692 0.731 0.746 0.761
R/W/B/H/G/V 0.731 0.731 0.652 0.612 0.731 0.716 0.721 0.721 0.522 0.697 0.652 0.771 0.726 0.731
R/W/B/H/G/F 0.761 0.761 0.657 0.622 0.761 0.726 0.731 0.721 0.587 0.716 0.657 0.746 0.716 0.726
R/W/B/H/V/F 0.761 0.756 0.692 0.637 0.756 0.716 0.731 0.731 0.572 0.721 0.692 0.741 0.697 0.692
R/W/H/P/G/F 0.766 0.766 0.642 0.622 0.766 0.726 0.741 0.736 0.582 0.716 0.642 0.741 0.736 0.736
R/B/H/P/G/F 0.766 0.771 0.677 0.622 0.771 0.741 0.726 0.706 0.607 0.706 0.677 0.731 0.746 0.736
R/B/H/P/V/F 0.761 0.761 0.687 0.647 0.761 0.746 0.751 0.731 0.602 0.746 0.687 0.736 0.721 0.711

R/W/B/H/P/G/F 0.771 0.771 0.657 0.627 0.771 0.731 0.731 0.726 0.597 0.721 0.756 0.746 0.756 0.756
R/W/B/H/P/V/F 0.761 0.761 0.692 0.647 0.761 0.726 0.726 0.731 0.592 0.721 0.726 0.731 0.721 0.721
R/B/H/P/G/V/F 0.761 0.761 0.657 0.597 0.761 0.746 0.751 0.736 0.562 0.711 0.741 0.726 0.736 0.731

Average 0.700 0.700 0.640 0.604 0.700 0.685 0.700 0.697 0.586 0.691 0.643 0.693 0.685 0.686
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The Friedman non-parametric test was executed on the ranks, followed by a multiple
comparisons test. The Friedman test score was 2326.60 (2249.70), giving a p-value of
approximately 0 (0), indicating significant differences among the ranks for the CK+ (BU-
3DFE) data set. The Nemenyi post hoc test and Bonferroni–Dunn post hoc test were applied,
in order to determine those methods that had significant differences.

The result of the Nemenyi post hoc test (two-tailed test) showed that there were
significant differences between the MB, MP, and ML methods and all of the other methods,
with a significance level of α < 0.05. For MB, MP, and ML, we applied the Bonferroni–
Dunn post hoc test (one-tailed test) to strengthen the power of the test hypotheses. At
a significance level of 0.05, the Bonferroni–Dunn post hoc test did not show significant
differences between the MB, MP, and ML methods. Therefore, we can conclude that, in
general, these methods had similar behavior in this case. For the case of the BU-3DFE
data set, similar results were obtained. The proposed methods (MB, MP, and ML) were
significantly superior to the others for combination rules in FER problems; however, when
very little training data sets are available, the use of non-trainable combination rules
is suggested.

Tables 6–8 show the accuracy, precision, recall, and F1-score measurements of the
best schemes for each individual and combination rule in the CK+ data set, BU-3DFE
data set, and JAFFE data set, respectively. In the case of the CK+ data set (Table 6), the
R/W/H/P/G/F+MP scheme presented an accuracy of 0.992 and also obtained the best
results in terms of precision, recall, and F1-score, with values of 0.991, 0.985, and 0.999,
respectively. In the case of the BU-3DFE data set (Table 7), the R/W/B/P/G+MP scheme
presented an 0.828 accuracy, with the best values of precision, recall, and F1-score also
being obtained by this scheme (0.893, 0.833, and 0.965, respectively). In both cases, the MP
combination rule achieved the best results. In the case of the JAFFE data set (Table 8), the
W/H/P/F+ML scheme obtained an accuracy of 0.828; however, the R/H/P/G+RP scheme
showed the best results for precision, recall, and F1 (0.871, 0.809, and 0.959, respectively).
This was because, as mentioned earlier, the trainable combination rules are inadequate
when there are insufficient data in the training data set.

In summary, our results exceeded the results of the state-of-the-art for these types
of features. In all cases, the combination rules improved upon the accuracy of the single
methods. Figure 4 shows that the classification error of the individual methods was greater
than that of the combination schemes.

Figure 4. Classification error of the best schemes for each combination rule and individual schemes:
(a) CK+ data set; (b) BU-3DFE data set; (c) JAFFE data set.
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Table 6. The best schemes for each combination rule (e·1000−1) for the CK+ data set. Acc: accuracy; Prec: precision; Rec: recall. Best classifier result is underlined.
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Acc. 0.986 0.986 0.964 0.975 0.986 0.980 0.975 0.969 0.966 0.978 0.964 0.989 0.992 0.989 0.953 0.947 0.930 0.947 0.897 0.718 0.754 0.852
F1 0.992 0.992 0.968 0.982 0.992 0.987 0.981 0.975 0.973 0.982 0.968 0.989 0.991 0.989 0.961 0.966 0.951 0.964 0.940 0.774 0.798 0.898

Prec 0.985 0.985 0.945 0.968 0.985 0.977 0.967 0.957 0.953 0.968 0.945 0.980 0.985 0.980 0.936 0.942 0.918 0.938 0.900 0.674 0.699 0.835
Rec 0.998 0.998 0.994 0.996 0.998 0.997 0.996 0.995 0.995 0.997 0.994 0.998 0.999 0.998 0.993 0.992 0.990 0.992 0.985 0.936 0.948 0.976

Table 7. The best schemes for each combination rule (e·1000−1) for the BU-3DFE data set. Acc: accuracy; Prec: precision; Rec: recall. Best classifier result is underlined.
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Acc. 0.821 0.821 0.766 0.778 0.821 0.816 0.819 0.828 0.807 0.809 0.791 0.828 0.828 0.826 0.731 0.709 0.757 0.690 0.738 0.529 0.674 0.681
F1 0.891 0.890 0.849 0.858 0.890 0.890 0.890 0.894 0.878 0.883 0.874 0.892 0.893 0.892 0.833 0.810 0.842 0.799 0.840 0.654 0.782 0.791

Prec 0.829 0.828 0.770 0.780 0.828 0.830 0.830 0.835 0.812 0.819 0.807 0.830 0.833 0.830 0.753 0.720 0.760 0.706 0.759 0.537 0.687 0.697
Rec 0.965 0.965 0.950 0.954 0.965 0.964 0.964 0.965 0.960 0.962 0.958 0.965 0.965 0.966 0.941 0.933 0.947 0.929 0.947 0.857 0.919 0.924
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Table 8. The best schemes for each combination rule (e·1000−1) for the JAFFE data set. Acc: accuracy; Prec: precision; Rec: recall. Best classifier result is underlined.
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Acc. 0.771 0.771 0.726 0.726 0.771 0.756 0.756 0.756 0.701 0.766 0.756 0.771 0.766 0.776 0.672 0.672 0.667 0.632 0.662 0.393 0.443 0.577
F1 0.871 0.870 0.838 0.830 0.870 0.867 0.850 0.848 0.803 0.859 0.860 0.856 0.844 0.859 0.787 0.785 0.787 0.733 0.793 0.541 0.578 0.701

Prec 0.809 0.807 0.764 0.750 0.807 0.804 0.776 0.768 0.707 0.788 0.794 0.779 0.762 0.784 0.689 0.694 0.695 0.629 0.699 0.416 0.462 0.583
Rec 0.959 0.958 0.944 0.942 0.958 0.957 0.950 0.951 0.934 0.955 0.953 0.954 0.950 0.956 0.927 0.924 0.926 0.898 0.932 0.804 0.809 0.889
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5.2. Multiple vs. Individual Classification Methods

For the experiments, the BU-3DFE and JAFFE data sets were used to construct the
training and test sets, respectively. The training and test sets contained six expression
classes—anger, disgust, fear, happiness, sadness, and surprise—which were common in
both data sets. The experimental results presented in Table 9 show that the fusion method
R/W/B/P/G+MP achieved an accuracy of 0.54 and an F1-score of 0.721, higher than
those of the other methods used for comparison. Ramis et al. [65] presented a method
to combine multiple datasets and conducted an exhaustive evaluation of a proposed
system based on a CNN that analyzed and compared performance using single- and
cross-dataset approaches with other architectures. They reported that they trained with
BU-4FDE and tested with JAFFE, obtaining an accuracy of 0.4317. In our current proposal,
we study the most important features by applying different feature extraction methods for
facial expression representation, transforming each obtained representation into a sparse
representation (SR) domain, and training combination models to classify signals, using the
extended Cohn–Kanade (CK+), BU-3DFE, and JAFFE data sets for validation. In general,
combining the feature methods increased the system performance. This supports the theory
that trainable fusion methods can find experts for each subspace of features and efficiently
combine them. In all cases, the combination rules were better at identification than the
individual methods. However, the values of the metrics were lower than in the case in
which face images from a single data set were used for both the training set and test set.
This performance degradation can mainly be attributed to the fact that the face images
were collected under two different controlled conditions. For a better generalization ability
across image acquisition conditions, it is necessary to collect large training data sets under
various image acquisition conditions [66].

Table 9. Generalization performance on the two different data sets. The BU-3DFE and JAFFE data
sets were used for training and testing, respectively. Best feature results are in bold type.

Method Accuracy F1-Measure

R/B/H/W/P/G/V/F 0.523 0.726
R/H/P/F 0.517 0.703

R/W/B/H/P/G/F 0.527 0.722
R/W/B/P/G 0.547 0.721

R 0.433 0.635
B 0.368 0.494
H 0.488 0.626
W 0.353 0.594
P 0.463 0.592
G 0.378 0.582
V 0.189 0.332
F 0.468 0.720

In summary, our findings confirm the increased accuracy of the proposed combination
system, with respect to the individual systems. The best schemes (R/W/H/P/G/F+MP and
R/W/B/P/G+MP) combined the best and the worst individual schemes. This increases the
diversity of the system, offering the opportunity to select the best representation subspaces
for each class.

5.3. Analysis of the Influence of the Feature Methods

The visualization of learning models (i.e., the generated subspaces) using classifiers
such as SVM and the naïve Bayes method is important. To analyze the contribution of each
feature to each class, a logistic regression model was trained on the decision profile. From
the weights obtained for each class, a weight map was created. The weight maps obtained
for each data set are shown in Figure 5. On the horizontal axis, we can see the weight of the
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feature space for each of the classes. On the vertical axis, we can see the importance of each
subspace for features over a class.

Figure 5. Weight map learning for the combination of all features. NE: neutral; AN: anger; DI: disgust;
FE: fear; HA: happy; SA: sadness; SU: surprise. (a) CK+ data set; (b) BU-3DFE data set; and (c) JAFFE
data set.

As can be seen, the LPQ, HOG, and RAW methods presented high specialization
values for some of the classes. For example, for the CK+ data set, LPQ had great decision
power over the angry and happy classes, the feature space RAW was most successful in
the neutral class, and HOG specialized in the surprise and sad classes. In general, we can
observe that the spaces of characteristics do not always specialize in the same classes. This
is because there are significant differences between the images in the different data sets.

We calculated the frequencies of the feature methods from Tables 3–5. These fre-
quencies are shown in Figure 6 and Table 10. It can be observed that the LPQ, HOG, and
RAW methods were present in more than 80 percent of the selected combinations. This
demonstrates that they had significant weight in the classification of some expressions.

Figure 6. Frequency of features in selected combinations (Tables 3–5) for the CK+, BU-3DFE, and
JAFFE data sets. RAW: (R), GW: (W), LBP: (B), HOG: (H), LPQ: (P), GEO: (G), VGG: (V), VGGF: (F).

In summary, the LPQ, HOG, and RAW methods were present in most of the selected
combinations, and some features were most efficient for particular expressions (e.g., RAW
for neutral, LPQ for angry and happy, LBP for disgust, and HOG for surprise).
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Table 10. Frequency of features in selected combinations for the CK+, BU-3DFE, and JAFFE data sets.
RAW: (R), GW: (W), LBP: (B), HOG: (H), LPQ: (P), GEO: (G), VGG: (V), VGGF: (F).

Feature CK BU-3DFE JAFFE Total

R 0.86 0.76 0.82 0.82
W 0.72 0.86 0.59 0.73
B 0.66 0.62 0.59 0.40
H 0.69 0.81 1.00 0.82
P 0.83 1.00 0.68 0.83
G 0.42 0.71 0.54 0.55
V 0.83 0.62 0.28 0.59
F 0.79 0.48 0.68 0.75

6. Conclusions

In this work, we studied the different contributions of various combination methods
to a facial recognition system. To achieve this, we utilized the concept of sparse representa-
tions. The results demonstrated that the combination of classifiers can lead to improved
performance when compared to individual classifiers. In particular, the MB, MP, and
ML combination methods were significantly superior to other combination rules in facial
expression recognition problems.

In all cases, the combination of different features improved the results, compared
to when using only one feature. Individually, the best features were HoG (in 82% of
combinations) and LPQ (in 83% of combinations); however, when combining different
features, the best selection was RAW/GW/LBP/LPQ/GEO. Curiously, the best schemes
(R/W/H/P/G/F+MP and R/W/B/P/G+MP; accuracy of 0.992 and 0.828, respectively)
combined the best and the worst individual schemes. This increases the diversity of the
system, providing the opportunity to select the best representation subspace for each class.

Different features were found to specialize in different expressions; for example, the
feature space RAW specializes in the neutral class, LPQ specializes in the angry and happy
classes, LBP specializes in the disgust class, and HOG specializes in the surprise and sad
classes, while the fear class did not have a predominant feature space.

We observed that the LPQ, HOG, and RAW methods were present in more than 80%
of the selected combinations. This demonstrates that they play a significant role in the
classification of some expressions.

We presented the most explanatory features for facial expression recognition. Feature
relevance techniques appear to be some of the most-used schemes for post hoc explana-
tions [4,5], as they are capable of providing an explicit description of the inner behavior of
the model. There was no combination of features in a model that appeared to be clearly
the best, leading to the conclusion that the recognition of a facial expression is the result of
a combination of many features.

To the best of our knowledge, there has been no other study focused on the explain-
ability of features. In this work, a system based on SRC was presented to provide an
explanation, thus determining the most important features for each expression. This infor-
mation can be useful in designing neural networks or performing fine-tuning in existing
ones. CNN-based methods can be stripped from the top classification layer and that vector
is, in fact, a feature representation, but we cannot have any knowledge of how these features
are calculated and every time the CNN is trained, those features can change. Our method is
based on well-known feature extraction methods; therefore, we can establish what features
are more revealing. We can take advantage of this knowledge to improve the performance
of all the models, including the CNN-based methods.

In our future work, we will explore the most focused-upon face regions for each
feature vector, in order to determine the most interesting regions used for features and for
each expression.
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