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Abstract: In this paper, we propose a modified hybrid Salp Swarm Algorithm (SSA) and Aquila
Optimizer (AO) named IHSSAO for UAV path planning in complex terrain. The primary logic of the
proposed IHSSAO is to enhance the performance of AO by introducing the leader mechanism of SSA,
tent chaotic map, and pinhole imaging opposition-based learning strategy. Firstly, the tent chaotic
map is utilized to substitute the randomly generated initial population in the original algorithm to
increase the diversity of the initial individuals. Secondly, we integrate the leader mechanism of SSA
into the position update formulation of the basic AO, which enables the search individuals to fully
utilize the optimal solution information and enhances the global search capability of AO. Thirdly,
we introduce the pinhole imaging opposition-based learning in the proposed IHSSAO to enhance
the capability to escape from the local optimization. To verify the effectiveness of the proposed
IHSSAO algorithm, we tested it against SSA, AO, and five other advanced meta-heuristic algorithms
on 23 classical benchmark functions and 17 IEEE CEC2017 test functions. The experimental results
indicate that the proposed IHSSAO is superior to the other seven algorithms in most cases. Eventually,
we applied the IHSSAO, SSA, and AO to solve the UAV path planning problem. The experimental
results verify that the IHSSAO is superior to the basic SSA and AO for solving the UAV path planning
problem in complex terrain.

Keywords: Salp Swarm Algorithm; Aquila Optimizer; tent chaotic map; pinhole imaging opposition-based
learning; unmanned aerial vehicle (UAV); path planning

1. Introduction

Currently, unmanned aerial vehicles (UAVs) are trending towards intelligence, high
efficiency, high accuracy, stability, and flexibility, which can already be widely applied in
important fields such as search, rescue, mapping, and surveillance [1]. However, UAVs
are susceptible to complex terrains such as mountains and buildings when performing
missions. Therefore, path planning technology has been one of the main essential aspects
in autonomous navigation and has developed into a major research hotspot in the field for
UAVs in recent years [2]. Path planning means that the robot (such as UAV, mobile robot,
and underwater autonomous vehicle) plans a complete path from the starting location
to the target location safely based on the available information and satisfies the various
indicators (such as terrain constraint, threat constraint, energy consumption, and path
length). Its goal is to find an optimal path with the least costs [3].

Generally, path planning can be primarily divided into three categories, namely:
global path planning [4], local path planning [5], and hybrid planning [6], depending on the
degree of environmental awareness. Global path planning is an offline method, considering
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the entire workspace before the path planning process, while local path planning is an
online method, considering a small area around the robot [7]. In addition, the algorithm
is key to solving the path planning problem, and the performance of the path planning
algorithm directly affects the results. Currently, the frequently utilized path planning
algorithms can be classified into two categories: traditional algorithms and intelligent
algorithms [8]. Moreover, the traditional algorithm consists of four main groups: graph
search (e.g., A* algorithm and Dijkstra’s algorithm), sampling based (e.g., rapidly exploring
random tree), interpolating curve (e.g., line and circle), and reaction based (e.g., artificial
potential field) [9]. Because traditional algorithms suffer from poor optimization and
high time complexity, intelligent algorithms are increasingly becoming the mainstream
algorithms when dealing with path planning problems under complex environmental
information. Intelligent algorithms commonly used to solve path planning problems can
contain two main categories, one is machine learning containing neural networks [10],
reinforcement learning [11], and so on. The other category is meta-heuristic algorithms
such as Ant Lion Optimizer (ALO) [12], Whale Optimization Algorithm (WOA) [13], Harris
Hawk Optimizer (HHO) [14], Grey Wolf Optimizer (GWO) [15], Salp Swarm Algorithm
(SSA) [16], etc.

Due to the drawbacks of traditional algorithms such as high time complexity and
general optimization results, an increasing number of scholars began to focus on the re-
search of meta-heuristic algorithms and apply these algorithms to guide the path planning
of UAVs [1]. Meta-heuristic algorithms originate from simulating biological interaction
behaviors or physical phenomena, which are a sequence of approximate optimization
algorithms [17–19]. Compared with traditional algorithms, they are superior in handling
complex optimization problems. However, the most basic meta-heuristic algorithm still
has the disadvantages of easily falling into local optimum, slow convergence speed, and
poor convergence accuracy when solving some complex optimization problems [20]. Con-
sequently, the fundamental meta-heuristic algorithm has been improved by numerous
scholars and applied to path planning problems.

In order to solve the UAV path planning problem in the 3D flight environment with
obstacles, Huo et al. [21] proposed a Hybrid Differential Symbiotic Organisms Search (HD-
SOS) Algorithm and introduced the concept of traction function and perturbation strategy
in the algorithm to improve the efficiency and robustness of the proposed algorithm, respec-
tively. Ji et al. [22] proposed a new Double-Dynamic Biogeography-Based Learning Particle
Swarm Optimization (DDBLPSO) Algorithm to overcome the shortcomings of basic PSO,
which is inefficient and easy to fall into local optimum and finally applied the proposed
algorithm to six kinds of terrain functions of UAV path planning including the city, village
without houses, village with houses, mountainous area without houses, mountainous area
with houses, and mountainous area with a huge building. Finally, the result of the proposed
algorithm is compared with four other related algorithms to verify the superiority of the
proposed algorithm. To acquire an optimal and viable path in a complex environment for
UAVs, Pan et al. [1] proposed a Golden Eagle Optimizer with double learning strategies
(GEO-DLS). The double learning strategies consist of personal example learning and mirror
reflection learning, which enhance the search ability and convergence accuracy of the GEO
algorithm, respectively. Liu et al. [2] proposed an improved sparrow search algorithm
named CASSA to solve the path optimization problem in complex 3D environments. The
chaotic strategy and the Cauchy–Gaussian mutation strategy are introduced into the origi-
nal SSA to enhance the population diversity and the stagnation resistance of the algorithm,
respectively. Based on experimental results in the same environment, the modified CASSA
has superiority over the basic SSA and other meta-heuristic algorithms in solving the UAV
path planning problem.

In this study, we proposed an improved hybrid Salp Swarm Algorithm (SSA) [16] and
Aquila Optimizer (AO) [23] named IHSSAO for UAV path planning in complex terrain.
Both SSA and AO are new meta-heuristic algorithms proposed in recent years. Especially,
the AO has been proposed for such a short time that few scholars have improved this
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algorithm. Currently, because of its strong exploration capability and robustness, the
AO has been modified by a few scholars to apply it to problems such as oil production
forecasting [24], population forecast [25], task scheduling [26], and so on. For the moment,
it has not been applied to the path planning of autonomous intelligent unmanned systems.
Nevertheless, AO also has disadvantages, such as weak exploitation capability and easily
falling into local optimum, which need to be further optimized. The SSA has a strong
exploitation capability. The SSA has been applied to some optimization problems due to
its strong exploitation capability [27]. Therefore, we aspire to propose a hybrid algorithm,
which combines the advantages of SSA and AO. To further improve the proposed algorithm,
we introduce the tent chaotic map and pinhole imaging opposition-based learning (PIOBL)
strategies into the proposed algorithm.

The main contributions of this paper are summarized as follows:

• We integrate the leader mechanism of SSA into the position update formulation of
the AO, which enables the search individuals to fully utilize the information of the
optimal solution and enhances the global search capability of the proposed algorithm.

• Tent chaotic map helps the IHSSAO to increase the original population diversity.
• PIOBL helps the proposed algorithm to increase the original population diversity and

the capability to escape from local optima.
• To verify the performance of the proposed IHSSAO, we tested it against the SSA,

AO, and five other advanced meta-heuristic algorithms by 23 classical benchmark
functions and 17 IEEE CEC2017 test functions.

• Eventually, we applied the IHSSAO, SSA, and AO to the UAV path planning problem.
The experimental results verify that the proposed IHSSAO is superior to the basic SSA
and AO in solving the path planning problem for UAVs in complex terrain.

The rest of this paper is organized as follows. Section 2 presents the background knowl-
edge of basic SSA and AO, as well as tent chaotic map and pinhole imaging opposition-
based learning strategies. Section 3 provides a detailed description of the proposed IHSSAO.
In Section 4, a series of simulation experiments are conducted to evaluate the performance
of IHSSAO, and the obtained results are discussed. Based on this, the proposed method in
Section 5 is applied to solve the UAV path planning in complex terrain. Finally, Section 6
shows the conclusions and future research directions of this paper.

2. Preliminary Knowledge
2.1. Salp Swarm Algorithm

The SSA is a new bio-inspired optimization algorithm proposed by Mirjalili et al. [16]
which simulates the group behavior of bottle sea squirts while navigating and foraging in
the ocean. In Figure 1, the slap propels itself by inhaling and expelling seawater, preying
on phytoplankton in the water. During the feeding process, individuals in the slap swarm
are connected to each other and form long chains in a circular pattern. In SSA, the slap
chain is composed of two types of slap swarm: leaders and followers. The leader is at the
front of the slap chain to lead the whole swarm, while the other individuals play the role of
followers. During the foraging process, the whole population moves gradually towards
the food position in this way.

In SSA, the position vector X of each salp individual is defined for searching in the
N dimensional space, where N is the number of decision variables. The position vector X
will consist of N salp individuals in the D dimensions, so the population vector consists of
N × D dimensional matrix, i.e.,

X =

 x1,1 . . . x1,D
...

. . .
...

xN,1 . . . xN,D

 (1)
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The location of the food source is the target location for the whole swarm of salp,
hence the leader’s position update formula is as follows:

Xi,j = lbj + rand×
(
ubj − lbj

)
(2)

X1,j(t + 1) =

{
Fj(t) + c1

((
ubj − lbj

)
c2 + lbj

)
, c3 ≥ 0.5

Fj(t)− c1
((

ubj − lbj
)
c2 + lbj

)
, c3 < 0.5

(3)

where X1,j(t + 1) represents the position of the leader in the jth dimension; Fj(t) shows the
location of the food source in the jth; ubj and lbj denote the upper and lower bounds of the
jth dimensional space, respectively; c1, c2, and c3 are the random numbers. The parameters
c2 and c3, which are random numbers uniformly generated in the interval of [0, 1], deter-
mine whether the next position in the jth dimension should be in the positive or negative
direction and the length of the move. In SSA, the parameter c1 is the most important
parameter, which can make the exploration ability of the algorithm in a better state.

c1 = 2e−(4t/T)2
(4)

where t is the current iteration number and T is the maximum iteration number.
When the position of the first salp is updated, the other individuals in the salp swarm

follow to move. The mathematical model of this behavior is as follows:

Xi,j(t + 1) =
1
2
(
Xi,j(t) + Xi−1,j(t)

)
(5)

where xi,j(t + 1) shows the position of ith follower salp in jth dimension.

Figure 1. Individual salp and swarm of salps.

2.2. Aquila Optimizer

Aquila Optimizer proposed by Abualigah et al. in 2021 is a novel meta-heuristic
optimization algorithm. The Aquila has four types of hunting behavior for various species
of prey. Aquila can flexibly switch its hunting strategies for different prey species before
it attacks the prey using its rapid speed and its sturdy feet and claws. The mathematical
model is briefly described as follows [23].
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2.2.1. Expanded Exploration (X1)

In this phase, Aquila identifies prey areas and selects the best areas to hunt by soaring
high in a vertical dive. Aquila Optimizer explores extensively from high altitude soaring to
ascertain the range of search space in which prey is located. The mathematical expression
of this behavior is as follows:

X1(t + 1) = Xbest(t)× (1− t
T
) + (XM(t)− Xbest(t)× rand) (6)

XM(t) =
1
N

N

∑
i=1

Xi(t) (7)

where X1(t + 1) is the position of the t + 1 iteration generated by the expanded exploration.
Xbest(t) shows the best-obtained solution thus far, which can reflect the approximate
position of prey. XM(t) represents the average solution at the tth iteration. rand is a random
value between 0 and 1. t and T denote the current number of iterations and the maximum
iterations, respectively. N is the number of the population.

2.2.2. Narrowed Exploration (X2)

When the area of prey is spotted at a high altitude, the Aquila hovers above the target
prey, prepares to land, and then attacks. In preparation for the attack, Aquila carefully
explores a specific area for prey. This behavior is expressed mathematically as follows.

X2(t + 1) = Xbest(t)× Levy(D) + XR(t) + (y− x)× rand (8)

where D is the dimension size, Levy(D) is the Levy flight distribution function calculated
by Equation (9), XR(t) denotes a random solution within [1, N] during the ith iteration.

Levy(D) = s× u× σ

|v|1/β
(9)

σ =


Γ(1 + β)× sin(

πβ

2
)

Γ(
1 + β

2
)× β× 2

(
β− 1

2
)

 (10)

where s and β are, respectively, constant values equal to 0.01 and 1.5, u and v are random
values within the interval of [0, 1], and y and x are calculated for rendering the spirals in
the search as follows.

y = r× cos(θ) (11)

x = r× sin(θ) (12)

r = r1 + U × D1 (13)

θ = −ω× D1 + θ1, θ1 =
3× π

2
(14)

where r1 represents the number of search cycles, which has a value from 1 to 20, D1 is
composed of integer numbers from 1 to the dimension size (D), U is a fixed value of
0.00565, and ω is a fixed value of 0.005.

2.2.3. Expanded Exploitation (X3)

In the third method, the prey area is accurately assigned and the Aquila is prepared for
landing and attacking. Aquila descends vertically and makes the initial attack to observe
the prey’s reaction. This method is known as a low-altitude slow descent attack. Here, the
Aquila approaches the prey using a target area and performs the attack. This behavior is
mathematically represented as follows.
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X3(t + 1) = (Xbest(t)− XM(t))× α− rand + ((ub− lb)× rand + lb)× δ (15)

where Xbest(t) denotes to the best position obtained so far and XM(t) means the average
value of the current positions. The exploitation adjustment parameters α and δ are fixed in
this paper at 0.1, rand is a random value between 0 and 1, and ub and lb are the upper and
lower boundaries of the given problem.

2.2.4. Narrowed Exploitation (X4)

When Aquila approaches the prey, it attacks the prey on land according to its random
movements. Definitively, Aquila attacks the prey in the last position. This behavior can be
expressed mathematically as follows.

X4(t + 1) = QF× Xbest(t)− (G1 × X(t)× rand)− G2 × Levy(D) + rand× G1 (16)

QF(t) = t
2×r8−1

(1−T)2 (17)

G1 = 2× rand− 1 (18)

G2 = 2× (1− t
T
) (19)

where X(t) is the current position. QF(t) represents the quality function value, which is
used to balance the search strategy. G1 denotes the movement parameter of Aquila whilst
tracking the prey, which is a random number between [−1, 1]. G2 denotes the flight slope
when chasing the prey, which decreases linearly from 2 to 0. rand is a random number
between 0 and 1.

2.3. Tent Chaotic Map

Tent chaotic map has the characteristic of randomness, ergodicity, and orderliness.
Attributed to its distinctive features many scholars have introduced tent chaotic map into
the Whale Optimization Algorithm [28], Antlion Optimizer Algorithm [29], COOT Bird
Algorithm [30], and other heuristic optimization algorithms in recent years, which can
greatly increase the diversity of the population and accelerate the convergence speed of
the algorithm in the early stage. In this paper, we select the tent chaotic map to replace the
original method of random population initialization to enhance the population diversity of
the proposed IHSSAO with the following equation.

zk+1 =

2zk, 0 ≤ zk < 0.5

2(1− zk), 0.5 ≤ zk ≤ 1
(20)

The formula transformed from Equation (20) by Bernoulli shift is

zk+1 = (2zk)mod1 (21)

The specific steps of using the tent chaotic map to generate sequence values are
listed below.

Step 1: Randomly generate z0 between the intervals (0, 1) (avoiding z0 in small periods
(0.2, 0.4, 0.6, 0.8), y(1) = z0, i = j = 1.

Step 2: Iterate through Equation (21) to obtain a sequence of zi, i = i + 1.
Step 3: If the maximum number of iterations is reached, then turn to Step 4. Otherwise, if

zi = {0, 0.25, 0.5, 0.75} or xi = xi − k, k = {0, 1, 2, 3, 4}, change the initial value of
the iteration by the equation x(i) = y(j + 1) = y(j) + c, where c is a random number,
j = j + 1. Otherwise return Step 2.

Step 4: The operation is halted and the x sequence is retained.

Figure 2a,b represent the distribution histogram of the tent chaotic map and logistic
chaotic map in the interval [0, 1] with the initial value of 0.32 and the iteration times of
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500, respectively. The experimental results indicate that the sequence generated by tent
chaos map has significantly better uniformity than the logistic chaos sequence. Therefore,
we utilize the tent chaotic map to initialize the positions of search agents, which can not
only enhance the search capability of the algorithm, but also reduce the influence of initial
values on the optimization performance.

Figure 2. Distribution histogram of logistic chaotic map and tent chaotic map. (a) Logistic chaotic
map. (b)Tent chaotic map.

2.4. Pinhole Imaging Opposition-Based Learning

To help the algorithm get rid of the local optima, some scholars have tried to com-
bine opposition-based learning (OBL) [31,32] with intelligent optimization algorithms to
expand the search range by calculating the reverse solution of the current feasible solution,
and thus find out the candidate solutions at more optimal positions. Based on this idea,
Zhang et al. [33] successfully used the pinhole imaging opposition-based learning to im-
prove the convergence accuracy and speed of the modified Whale Optimization Algorithm.
In this paper, we attempt to introduce this strategy to increase the possibility of the IHSSAO
jumping out of the local optima. The basic schematic of PIOBL is shown in Figure 3.

Figure 3. Principle of pinhole imaging opposition-based learning.

In the figure, the upper and lower boundaries of the coordinate axes are a, b. There is a
small aperture screen placed at the base point O. Xbest (the current global optimal solution)
represents the projection of the light source P whose height is h on the x-axis, when the light
source through the small aperture will get an inverted image p∗ of height h∗ at the imaging
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screen, at which time the projection of p′ on the x-axis is X∗best (the newly generated inverse
solution). According to the geometric relationship of the line segments in the figure, it can
be derived that:

(a + b)/2− Xbest
X∗best − (a + b)/2

=
h
h∗

(22)

Let h/h∗ = K be substituted into the above equation, and the variation yields the
expression for X∗best:

X∗best =
(a + b)

2
+

(a + b)
2K

− Xbest
K

(23)

When the algorithm is solving a high-dimensional complex function, the small-
aperture inverse learning solution can be computed by the following equation:

X∗best,j = (aj + bj)/2 + (aj + bj)/2K− Xbest,j/K (24)

where Xbest,j is the optimal solution in the jth dimension, X∗best,j denotes the inverse solution
of Xbest,j, respectively, and aj and bj are the minimum and maximum values in the jth
dimension on the search space.

When K = 1, Equation (25) can be simplified as follows:

X∗best = a + b− Xbest (25)

It can be seen that when K = 1 the PIOBL is the common OBL strategy. The candidate
solutions obtained by the common OBL strategy are generally fixed, but a wider range of
inversion positions can be obtained by changing the distance between the imaging screen
and the pinhole plate to adjust the scale factor K in the PIOBL strategy.

3. The Proposed Algorithm

In this section, we describe the flow of the proposed IHSSAO algorithm in detail. Our
proposed algorithm is mainly based on AO and is enhanced with the leadership mechanism
of SSA, tent chaotic map, and PIOBL strategy. In the initial stage, we use the tent chaotic
map to generate the initial population, thus promoting the population diversity. After that,
the following process is iteratively executed. Firstly, before the AO algorithm is executed,
we update the population position by the leader mechanism of SSA, i.e., Equation (2). The
introduction of the SSA leader mechanism in the proposed algorithm effectively enhances
the exploitation capability of the original AO. Secondly, the position update formulas of
the different four stages of AO are executed using Equation (6), Equation (8), Equation (15),
or Equation (16), depending on the specific situation. Finally, the optimal position Xbest
and the fitness value are filtered out using Equation (24) from the PIOBL strategy. The
PIOBL strategy enhances the ability to escape from the local optimum. After completing
the last iteration, the optimal value Xbest is output. The flow chart and pseudo-code of the
proposed IHSSAO are shown in Figure 4 and Algorithm 1, respectively.
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Algorithm 1 Pseudo-code of the proposed IHSSAO algorithm

1. Input the population N, and the generation number T
2. Initialize the positions of each individual by tent chaotic map Xi(i = 1, 2, · · · , N) //tent chaotic map
3. While t ≤ T
4. Check if the position goes beyond the search space boundary and then adjust it
5. Evaluate the fitness values of all search agents
6. Update the global optimum Xbest
7. Calculate Xi using Equation (3) //SSA
8. For i = 1 to N

9. If t ≤ 2
3

T then //AO

10. If r ≤ 0.5 then
11. Update the position using Equation (6)
12. Else
13. Update the position using Equation (8)
14. End if
15. Else
16. If r ≤ 0.5 then
17. Update the position using Equation (15)
18. Else
19. Update the position using Equation (16)
20. End if
21. End if
22. End For
23. Generate the opposite position of Xbest using Equation (24) and save the one with better fitness //PIOBL
24. t = t + 1
25. End While
26. Return Xbest

Figure 4. Flow chart of the proposed IHSSAO.
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4. Experimental Results and Discussion of IHSSAO Performance Verification

In this section, the performance of the IHSSAO in solving numerical optimization
problems is examined by selecting 23 classical benchmark functions and 17 CEC2017
benchmark functions for comparison experiments with other meta-heuristic algorithms.
All simulation experiments are conducted in MATLAB R2017a in Microsoft Windows 10
with a computer hardware platform configuration of Intel® CoreTM i7-9750H @ 2.60 GH
and RAM 8 G.

4.1. Experiment I: Classical Benchmark Function

In this study, there are three various categories including unimodal (UM), multimodal
(MM), and fix-dimension multimodal (FM) in the 23 benchmark functions. Among them,
the UM functions (F1–F7) including only one global minimum are often selected to test the
local exploitation and convergence rate ability of the algorithm. F8–F13 are MM functions
containing multiple locally optimal solutions in the search space, and their number grows
exponentially as the number of dimensions increases. It is well suited to evaluate the
ability of the algorithm to explore and avoid getting trapped in local optima. The FM
functions (F14–F23) used to evaluate the stability of the algorithm are a combination of
the UM function and MM function, but with lower dimensionality. Tables 1–3 show
the expressions, dimensions, search ranges, and theoretical optima of these benchmark
functions, respectively. In addition, Figure 5 shows the 3D view of the search space for
23 benchmark functions.

Table 1. Unimodal benchmark function.

Function Name Dim Range Fmin

F1(x) =
D
∑

i=1
x2

i
Sphere 30 [−100, 100] 0

F2(x) =
D
∑

i=1
|xi|+

D
∏
i=1
|xi| Schwefel 2.22 30 [−10, 10] 0

F3(x) =
D
∑

i=1
(

D
∑

j=1
xj)

2
Schwefel 1.2 30 [−100, 100] 0

F4(x) = maxi{|xi|, 1 ≤ i ≤ D } Schwefel 2.21 30 [−100, 100] 0

F5(x) =
D−1
∑

i=1
[100(xi+1 − x2

i )
2
+ (xi − 1)2] Rosenbrock 30 [−30, 30] 0

F6(x) =
D
∑

i=1
(|xi + 0.5|)2 Step 30 [−100, 100] 0

F7(x) =
D
∑

i=1
ix4

i + random[0, 1) Quartic 30 [−1.28, 1.28] 0
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Table 2. Multimodal benchmark function.

Function Name Dim Range Fmin

F8(x) =
D
∑

i=1
−xi sin

(√
|xi|
) Schwefel

2.26 30 [−500, 500] −418.9829 × Dim

F9(x) =
D
∑

i=1
[x2

i − 10 cos(2πxi) + 10] Rastrigin 30 [−5.12, 5.12] 0

F10(x) = −20 exp(−0.2

√
1
n

D
∑

i=1
x2

i )−

exp(
1
n

D
∑

i=1
cos(2πxi)) + 20 + e

Ackley 30 [−32, 32] 0

F11(x) =
1

4000

D
∑

i=1
x2

i −
D
∏
i=1

cos(
xi√

i
) + 1

Griewank 30 [−600, 600] 0

F12(x) =
π

D
{10 sin(πy1) +

D−1
∑

i=1
(yi − 1)2[1 + 10 sin2(πyi+1)]+

(yn − 1)2}+
D
∑

i=1
u(xi, 10, 100, 4)

yi = 1 +
xi + 1

4
, u(xi, a, k, m) =


k(xi − a)mxi > a
0− a < xi < a

k(−xi − a)mxi < −a

Penalized 30 [−50, 50] 0

F13(x) = 0.1{sin2(3πxi) +
D
∑

i=1
(xi − 1)2[1 + sin2(3πxi + 1)]+

(xD − 1)2[1 + sin2(2πxD)]}+
D
∑

i=1
u(xi, 5, 100, 4)

Penalized2 30 [−50, 50] 0

Table 3. Fix-dimension multimodal benchmark function.

Function Name Dim Range Fmin

F14(x) = (
1

500
+

25
∑

j=1
(j +

n
∑

i=1
(xi − aij)

6)−1)−1 Foxholes 2 [−65, 65] 0.998

F15(x) =
11
∑

i=1
[ai −

x1
(
b2

i + bix2
)

b2
i + bix3 + x4

]2 Kowalik 4 [−5, 5] 0.00030

F16(x) = 4x2
1 − 2.1x4

1 +
1
3

x6
1 + x1x2 − 4x2

2 + 4x4
2

Six-hump
Camel Back 2 [−5, 5] −1.0316

F17(x) = (x2 −
5.1
4π2 x2

1 +
5
π

x1 − 6)
2
+ 10(1− 1

8π
) cos x1 + 10 Branin 2 [−5, 5] 0.398

F18(x) =
[
1 + (x1 + x2 + 1)2(19− 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2
)]

×
[
30 + (2x1 − 3x2)

2 ×
(
18− 32x2 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2
)] Goldstein

Price 2 [−2, 2] 3

F19(x) = −
4
∑

i=1
ci exp(−

3
∑

j=1
aij(xj − pij)

2) Hartman 3 3 [−1, 2] −3.8628

F20(x) = −
4
∑

i=1
ci exp(−

6
∑

j=1
aij(xj − pij)

2) Hartman 6 6 [0, 1] −3.32

F21(x) = −
5
∑

i=1
[(X− ai)(X− ai)

T + ci]
−1 Langermann 5 4 [0, 10] −10.1532

F22(x) = −
7
∑

i=1
[(X− ai)(X− ai)

T + ci]
−1 Langermann 7 4 [0, 10] −10.4028

F23(x) = −
10
∑

i=1
[(X− ai)(X− ai)

T + ci]
−1 Langermann

10 4 [0, 10] −10.5363
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Figure 5. Three-dimensional view of the search space for 23 benchmark functions. (a) Unimodal
benchmark function, benchmark functions. (b) Multimodal benchmark function, benchmark func-
tions. (c) Fix-dimension multimodal benchmark function, benchmark functions.



Appl. Sci. 2022, 12, 5634 13 of 28

4.1.1. Parameter Setting

To validate the performance of the modified algorithm, the IHSSAO algorithm was
compared with the original SSA, AO, and five advanced meta-heuristics, i.e., WOA, HHO,
Multi-Verse Optimizer (MVO), Sooty Tern Optimization Algorithm (STOA), and Tunicate
Swarm Algorithm (TSA). For all these algorithms, the population size and the maximum
number of iterations are set as 30 and 500, respectively. We ran each algorithm indepen-
dently for 30 times according to the parameter settings as shown in Table 4.

Table 4. Parameter settings for the optimization algorithms.

Algorithm Parameters

WOA [13] b = 1; a1 = [2, 0]; a2 = [−1,−2]
HHO [14] β = 1.5; E0 ∈ [−1, 1]
SSA [16] c1 = [1, 0]; c2, c3 ∈ [0, 1]

MVO [34] WEP ∈ [0.2, 1]; TDR ∈ [0, 1]; r1, r2, r3 ∈ [0, 1]
STOA [35] C f = 2; Cb ∈ [0, 0.5]; u, v = 1
TSA [36] Pmax = 4, Pmin = 1
AO [23] U = 0.00565; r3 = 10; α = 0.1; δ = 0.1; ω = 0.005; G1 ∈ [−1, 1]; G2 = [2, 0]

4.1.2. Assessment Standards of Performance

In this section, we introduce two metrics for evaluating the algorithm performance,
namely, the average fitness value (Avg) and standard deviation (Std). The Avg visually
characterizes the convergence effectiveness and search capability of the algorithm. Addi-
tionally, the Std indicates the degree of deviation of the experimental results from the mean.
The expressions of Avg and Std are as follows, respectively.

Avg =
1
n

n

∑
k=1

Sk (26)

Std =

√
1

n− 1

n

∑
k=1

(Sk −Avg)2 (27)

where n denotes the number of times the algorithm has been run and Sk is the result
obtained after each execution.

4.1.3. Comparison with IHSSAO and Other Algorithms

The Avg and Std obtained by the IHSSAO after running in 23 benchmark functions are
shown in Table 5. Based on the results, we can learn that the IHHSAO outperforms the other
algorithms in most cases. The unimodal benchmark function F1–F7 with only one global
optimum can be used to measure the exploitation capability of the algorithm. IHSSAO can
obtain the theoretical optimal solutions on F1, F2, F3, and F4, while the other algorithms
cannot find the optimal solutions. Although IHSSAO cannot find the theoretical optimal
solutions on F5 and F7, its convergence accuracy and robustness are better than the other
algorithms. For F6, IHSSAO performs slightly worse than SSA, ranking second among the
seven different algorithms. This indicates that IHSSAO has good exploitation capability.

Functions F8–F13 are multimodal benchmark functions that contain a large number of
locally optimal solutions, so that these functions can be utilized to analyze the capability of
the algorithm to escape from local optima. From the results shown in Table 5, the Avg and
Std of IHSSAO outperform other algorithms in all the above multimodal cases. Among
them, the identical global optimal minima were also obtained by the HHO and AO on
F9 and F11. In addition, for F11, WOA, HHO, and AO have a similar performance to the
IHSSAO. Through the above tests, it can be tentatively verified that the IHSSAO has an
excellent ability to avoid falling into local optima.
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Table 5. Comparison results of various algorithms on 23 benchmark functions.

Fn Metric WOA HHO SSA MVO STOA TSA AO IHSSAO

F1
Avg 3.07 × 10−72 3.72 × 10−94 1.53 × 10−7 1.17 × 100 8.28 × 10−7 2.46 × 10−21 1.56 × 10−104 0.00 × 100

Std 1.37 × 10−71 1.84 × 10−93 1.29 × 10−7 3.35 × 10−1 1.41 × 10−6 5.54 × 10−21 8.52 × 10−104 0.00 × 100

F2
Avg 2.06 × 10−51 3.17 × 10−50 2.32 × 100 9.27 × 10−1 7.97 × 10−6 1.06 × 10−13 8.53 × 10−57 0.00 × 100

Std 8.00 × 10−51 9.82 × 10−50 1.95 × 100 4.70 × 10−1 6.96 × 10−6 1.29 × 10−13 3.76 × 10−56 0.00 × 100

F3
Avg 4.24 × 104 1.07 × 10−76 1.72 × 103 1.92 × 102 8.82 × 10−2 8.91 × 10−5 1.58 × 10−101 0.00 × 100

Std 1.51 × 104 5.82 × 10−76 9.89 × 102 6.60 × 101 1.57 × 10−1 2.42 × 10−4 8.63 × 10−101 0.00 × 100

F4
Avg 4.89 × 101 3.43 × 10−47 1.15 × 101 1.81 × 100 6.38 × 10−2 2.70 × 10−1 9.68 × 10−54 0.00 × 100

Std 2.95 × 101 1.87 × 10−46 2.81 × 100 6.14 × 10−1 8.84 × 10−2 2.29 × 10−1 3.16 × 10−53 0.00 × 100

F5
Avg 2.80 × 101 1.02 × 10−2 2.76 × 102 6.11 × 102 2.84 × 101 2.81 × 101 5.80 × 10−3 2.49 × 10−5

Std 5.37 × 10−1 1.14 × 10−2 4.50 × 102 8.88 × 102 4.74 × 10−1 7.85 × 10−1 1.05 × 10−2 1.11 × 10−4

F6
Avg 4.42 × 10−1 7.32 × 10−5 4.68 × 10−7 1.22 × 100 2.65 × 100 3.74 × 100 7.58 × 10−4 2.45 × 10−5

Std 2.25 × 10−1 8.16 × 10−5 1.41 × 10−6 4.04 × 10−1 6.06 × 10−1 7.28 × 10−1 1.69 × 10−3 3.68 × 10−5

F7
Avg 2.53 × 10−3 1.59 × 10−4 1.89 × 10−1 3.02 × 10−2 5.66 × 10−3 1.20 × 10−2 1.08 × 10−4 4.30 × 10−5

Std 3.51 × 10−3 1.20 × 10−4 7.17 × 10−2 1.29 × 10−2 3.24 × 10−3 4.71 × 10−3 1.14 × 10−4 3.86 × 10−5

F8
Avg −10,228.40 −12,542.39 −43,759.37 −7419.26 −5252.57 −5819.64 −9949.91 −12,569.42
Std 1.86 × 103 1.11 × 102 7.84 × 103 6.31 × 102 6.62 × 102 6.81 × 102 3.65 × 103 1.30 × 10−1

F9
Avg 3.79 × 10−15 0.00 × 100 5.29 × 101 1.12 × 102 9.92 × 100 1.81 × 102 0.00 × 100 0.00 × 100

Std 1.44 × 10−14 0.00 × 100 1.81 × 101 2.56 × 101 1.38 × 101 4.76 × 101 0.00 × 100 0.00 × 100

F10
Avg 4.20 × 10−15 8.88 × 10−16 2.63 × 100 1.96 × 100 2.00 × 101 1.66 × 100 8.88 × 10−16 8.88 × 10−16

Std 2.46 × 10−15 0.00 × 100 9.37 × 10−1 6.16 × 10−1 1.41 × 10−3 1.73 × 100 0.00 × 100 0.00 × 100

F11
Avg 0.00 × 100 0.00 × 100 2.21 × 10−2 8.73 × 10−1 3.64 × 10−2 7.19 × 10−3 0.00 × 100 0.00 × 100

Std 0.00 × 100 0.00 × 100 1.61 × 10−2 7.88 × 10−2 5.36 × 10−2 8.13 × 10−3 0.00 × 100 0.00 × 100

F12
Avg 2.14 × 10−2 6.25 × 10−6 7.20 × 100 2.24 × 100 2.34 × 10−1 8.07 × 100 2.95 × 10−6 3.76 × 10−7

Std 1.34 × 10−2 9.13 × 10−6 3.23 × 100 1.34 × 100 7.20 × 10−2 5.44 × 100 5.55 × 10−6 9.21 × 10−7

F13
Avg 5.03 × 10−1 9.14 × 10−5 1.61 × 101 2.17 × 10−1 1.91 × 100 3.13 × 100 1.50 × 10−5 2.17 × 10−6

Std 2.76 × 10−1 1.61 × 10−4 1.52 × 101 1.40 × 10−1 2.03 × 10−1 5.68 × 10−1 2.45 × 10−5 1.00 × 10−5

F14
Avg 2.96 × 100 1.10 × 100 1.30 × 100 9.98 × 10−1 1.46 × 100 7.93 × 100 2.89 × 100 1.09 × 100

Std 3.23 × 100 3.03 × 10−1 5.92 × 10−1 3.66 × 10−11 8.54 × 10−1 4.75 × 100 3.60 × 100 3.99 × 10−1

F15
Avg 6.23 × 10−4 3.79 × 10−4 1.21 × 10−3 1.11 × 10−2 1.65 × 10−3 7.66 × 10−3 4.89 × 10−4 2.78 × 10−4

Std 2.69 × 10−4 1.69 × 10−4 8.83 × 10−4 1.82 × 10−2 3.55 × 10−3 1.29 × 10−2 7.91 × 10−5 3.89 × 10−5

F16
Avg −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0295 −1.0311 −1.0316
Std 3.16 × 10−9 1.55 × 10−9 2.89 × 10−14 4.02 × 10−7 2.57 × 10−6 8.02 × 10−3 5.78 × 10−4 5.32 × 10−15

F17
Avg 0.39789 0.39790 0.39789 0.39789 0.39808 0.39789 0.39841 0.39795
Std 7.07 × 10−6 2.86 × 10−5 1.55 × 10−14 5.72 × 10−7 2.31 × 10−4 7.35 × 10−5 1.14 × 10−3 7.61 × 10−15

F18
Avg 3.0001 3.0000 3.0000 3.0000 3.0001 19.2000 3.0417 3.0000
Std 1.21 × 10−4 3.62 × 10−7 1.79 × 10−13 2.46 × 10−6 8.29 × 10−5 3.04 × 101 4.91 × 10−4 2.12 × 10−10

F19
Avg −3.8536 −3.8583 −3.8628 −3.8628 −3.8551 −3.8624 −3.8547 −3.8628
Std 1.94 × 10−2 7.12 × 10−3 9.15 × 10−6 4.94 × 10−6 1.49 × 10−3 1.36 × 10−3 6.47 × 10−3 4.65 × 10−5

F20
Avg −3.1361 −3.1408 −3.2078 −3.2737 −2.8436 −3.2517 −3.1270 −3.1515
Std 2.28 × 10−1 9.11 × 10−2 1.44 × 10−1 6.02 × 10−2 5.71 × 10−1 6.74 × 10−2 1.34 × 10−1 1.06 × 10−1

F21
Avg −8.1795 −5.3744 −7.3534 −6.6234 −2.8881 −6.1994 −10.1360 −10.1500
Std 2.63 × 100 1.23 × 100 2.70 × 100 3.07 × 100 3.58 × 100 3.20 × 100 3.63 × 10−2 9.98 × 10−3

F22
Avg −7.4821 −5.0033 −7.3910 −8.6779 −6.4799 −7.1649 −10.3930 −10.4012
Std 2.99 × 100 4.30 × 10−1 2.68 × 100 2.97 × 100 4.10 × 100 3.54 × 100 1.86 × 10−2 3.49 × 10−3

F23
Avg −7.5302 −5.2127 −7.5969 −9.2142 −8.0707 −7.6860 −10.5180 −10.5343
Std 3.19 × 100 1.11 × 100 3.32 × 100 2.75 × 100 3.78 × 100 3.65 × 100 3.49 × 10−2 5.42 × 10−3

The best result obtained is highlighted in bold.

Functions F14–F23 belong to the fix-dimension multimodal benchmark functions, which
consist of a few locally optimal solutions and are implemented to evaluate the algorithm
performance in converting between exploration and exploitation phases. In terms of
average fitness values, the IHHSAO runs better than the remaining seven algorithms on
functions F15, F17, F21, F22, and F23, while achieving the same best results as some of the
algorithms on F16, F18, and F19. In addition, for F14, the proposed IHSSAO algorithm
performs worse than MVO, but it can be ranked in second place. For F20, the performance
of IHSSAO is weaker than the MVO, TSA, and SSA ranking only fourth but with little
difference in results. The above results show, to some extent, that the proposed algorithm
has significantly improved performance compared with the original SSA and AO, and
performs better in most cases in comparison with the other five advanced algorithms. On
the other hand, IHSSAO attains the best standard deviation in all cases except for F14, F18,
F19, and F20, which demonstrates that the IHSAAO can maintain a much better balance
between exploration and exploitation. For F18, the standard deviation of IHSSAO is second
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only to that of the SSA. Moreover, the proposed IHSSAO ranked third when solving F14
and F19, and ranked fourth on F20 in Std performance. In summary, the IHSSAO proposed
in this paper has a strong global search capability compared with the SSA and the AO, as
well as significant advantages compared with the other five intelligent algorithms.

Figure 6 shows the boxplot of seven different algorithms, namely, WOA, HHO, SSA,
MVO, TSA, AO, and IHSSAO on 23 benchmark functions, and it can be noticed that the
IHSSAO has a relatively narrower box plot compared to other algorithms in most cases,
which indicates good consistency in terms of median, maximum, and minimum values.

According to the convergence curves of the above several different algorithms on
23 benchmark functions represented in Figure 7, we can observe that the IHSSAO converges
more rapidly than the other algorithms in most cases. IHSSAO displays tremendous
superiority over the other advanced algorithms in the optimization process, with three
main differences appearing in convergence behavior. The first behavior is that convergence
of IHSSAO has an obvious advantage. For F1–F4, the IHSSAO converges more rapidly
than other algorithms and can obtain optimal values which cannot be obtained by other
algorithms. The second behavior is the extremely quick convergence, as observed in F8,
F9–F11, and F14–F23. For these functions, IHSSAO can find the optimal value extremely fast
during the iteration and the exact approximation of the global optimal value is almost the
best. The last behavior mainly shows the local best avoidance ability of IHSSAO. For F5, F6,
F7, and F13, the algorithm jumps out of the local optimum after several stops, because it
benefits from the influence of the PIOBL strategy.

In addition, we introduce a nonparametric statistical test in this section, namely the
Wilcoxon rank-sum test. This test is utilized to calculate the difference in statistical perfor-
mance between algorithms for demonstrating the significance of the proposed IHSSAO.
In this study, we set the significance level at 0.05. The obtained p-values and statistical
results of IHSSAO using the Wilcoxon rank-sum test are listed in Table 6. In this table,
the “ + ” sign denotes that the IHSSAO has a better performance than the comparison
algorithms, the “− ” sign denotes that the IHSSAO has a worse performance than the
comparison algorithms, and “ = ” represents the IHSSAO is similar to the algorithms in
the comparison. The last three rows of this table indicate the times of IHSSAO obtained
“ + ”, “ = ”, and “ − ” compared with each algorithm in the Wilcoxon rank-sum test.
Among the 23 benchmark functions, IHSSAO, respectively, outperformed STOA and TSA
23 times; outperformed WOA, SSA, and MVO 22 times; and outperformed HHO and AO
19 times. Based on the above statistics, it is evident that the IHSSAO proposed in this paper
is significantly enhanced compared to the original SSA and AO and is the best optimizer
among the seven advanced algorithms.

4.1.4. Scalability Test

Currently, most intelligent algorithms are susceptible to “dimensional catastrophe”
and are extremely prone to failure when the dimensionality of the optimization problem is
increased. Scalability is often used to describe the execution efficiency of the same algorithm
in different spaces. To investigate the scalability of the IHSSAO algorithm proposed in this
paper, we used the IHSSAO algorithm to optimize functions F1–F13 in higher dimensions.
The dimensionality of the optimization problem was extended to 50, 100, and 500, and the
Avg obtained by using the original SSA, AO, and proposed IHSSAO to do operations on
functions F1–F13 are simultaneously shown in Table 7. The results show that for the same
algorithm to calculate the identical function, convergence accuracy of this algorithm become
poorer, as the number of dimensions increase. The reason for this phenomenon is that as
the dimensionality increases, the algorithm needs to optimize more elements. For functions
F1–F8 and F12–F13, the experimental results of IHSSAO are significantly better than the
original SSA and AO, and the optimization performance gap between them becomes more
and more obvious as the number of dimensions increases. In addition, for functions F9–F11,
the IHSSAO and AO algorithms obtain the same results and both are stronger than SSA.
The above results fully demonstrate that the performance of the proposed IHSSAO is
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not significantly degraded compared with the basic SSA and AO in dealing with high-
dimensional problems, and has good exploitation and exploration capabilities.

Figure 6. Cont.
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Figure 6. Boxplot of IHSSAO and other different algorithms on 23 benchmark functions.
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Figure 7. Cont.
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Figure 7. Convergence curve of IHSSAO and other different algorithms on 23 benchmark functions.
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Table 6. Statistical results of IHSSAO using the Wilcoxon rank-sum test.

Fn IHSSAO
vs. WOA

IHSSAO
vs. HHO

IHSSAO
vs. SSA

IHSSAO
vs. MVO

IHSSAO
vs. STOA

IHSSAO
vs. TSA

IHSSAO
vs. AO

F1 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12

F2 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12

F3 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12

F4 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12

F5 3.02 × 10−11 2.87 × 10−10 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 1.17 × 10−9

F6 3.02 × 10−11 1.86 × 10−6 3.26 × 10−1 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 9.51 × 10−6

F7 8.10 × 10−10 1.34 × 10−5 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 2.32 × 10−2

F8 2.72 × 10−11 6.92 × 10−5 2.72 × 10−11 2.72 × 10−11 2.72 × 10−11 2.72 × 10−11 2.72 × 10−11

F9 1.61 × 10−5 NaN 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 NaN
F10 1.09 × 10−8 NaN 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 NaN
F11 NaN NaN 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.27 × 10−5 NaN
F12 3.02 × 10−11 3.09 × 10−6 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 1.87 × 10−5

F13 3.02 × 10−11 4.44 × 10−7 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 4.94 × 10−5

F14 2.38 × 10−3 6.97 × 10−3 4.67 × 10−8 2.83 × 10−8 9.79 × 10−5 2.15 × 10−10 8.56 × 10−4

F15 1.03 × 10−3 3.96 × 10−8 1.10 × 10−8 5.46 × 10−9 1.03 × 10−6 1.37 × 10−6 3.11 × 10−3

F16 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 7.47 × 10−10 7.47 × 10−10

F17 1.21 × 10−12 7.47 × 10−10 1.16 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12

F18 4.57 × 10−9 3.34 × 10−11 3.02 × 10−11 4.20 × 10−10 3.65 × 10−8 7.73 × 10−6 1.91 × 10−1

F19 1.89 × 10−2 3.50 × 10−1 1.72 × 10−12 1.72 × 10−12 1.72 × 10−12 4.56 × 10−11 1.67 × 10−8

F20 5.59 × 10−5 3.71 × 10−3 3.03 × 10−2 3.16 × 10−5 5.97 × 10−5 1.44 × 10−3 4.29 × 10−3

F21 8.15 × 10−11 2.72 × 10−11 6.62 × 10−10 3.39 × 10−8 2.72 × 10−11 2.72 × 10−11 1.57 × 10−8

F22 2.37 × 10−10 3.02 × 10−11 3.79 × 10−10 1.81 × 10−8 3.69 × 10−11 3.02 × 10−11 1.78 × 10−4

F23 2.92 × 10−9 3.02 × 10−11 6.63 × 10−10 1.62 × 10−1 3.02 × 10−11 3.02 × 10−11 6.74 × 10−6

+ 22 19 22 22 23 23 19
= 1 3 0 0 0 0 3
− 0 1 1 1 0 0 1

Table 7. Fitness values of SSA, AO, and IHSSAO in 50, 100, and 200 dimensions on 13 test functions.

Fn
50 100 500

SSA AO IHSSAO SSA AO IHSSAO SSA AO IHSSAO

F1 7.81 × 10−1 3.02 × 10−103 0.00 × 100 1.44 × 103 5.05 × 10−100 0.00 × 100 9.75 × 104 1.52 × 10−100 0.00 × 100

F2 8.85 × 100 2.18 × 10−52 0.00 × 100 4.79 × 101 1.61 × 10−61 0.00 × 100 5.38 × 102 3.90 × 10−53 0.00 × 100

F3 1.00 × 104 3.56 × 10−103 0.00 × 100 5.46 × 104 6.3974 × 10−103 0.00 × 100 1.42 × 106 4.36 × 10−94 0.00 × 100

F4 1.93 × 101 5.45 × 10−60 0.00 × 100 2.84 × 101 2.37 × 10−58 0.00 × 100 4.06 × 101 4.93 × 10−53 0.00 × 100

F5 1.94 × 103 6.82 × 10−3 1.96 × 10−5 1.87 × 105 1.02 × 10−2 1.28 × 10−3 3.66 × 107 9.30 × 10−2 2.71 × 10−3

F6 9.78 × 10−1 8.21 × 10−4 4.21 × 10−5 1.47 × 103 2.41 × 10−4 5.14 × 10−5 9.44 × 104 5.29 × 10−4 9.14 × 10−5

F7 6.31 × 10−1 8.95 × 10−3 8.57 × 10−5 2.71 × 100 1.00 × 10−4 6.02 × 10−5 2.97 × 102 1.32 × 10−4 6.47 × 10−5

F8 −66,521.07 −9938.43 −20,948.97 −136,320.92 −10,996.51 −41,897.78 −375,776.05 −8215.47 −209,486.77
F9 8.88 × 101 0.00 × 100 0.00 × 100 2.48 × 102 0.00 × 100 0.00 × 100 3.17 × 103 0.00 × 100 0.00 × 100

F10 4.63 × 100 8.88 × 10−16 8.88 × 10−16 1.02 × 101 8.88 × 10−16 8.88 × 10−16 1.43 × 101 8.88 × 10−16 8.88 × 10−16

F11 4.94 × 10−1 0.00 × 100 0.00 × 100 1.46 × 101 0.00 × 100 0.00 × 100 8.52 × 102 0.00 × 100 0.00 × 100

F12 1.43 × 101 4.86 × 10−6 1.65 × 10−7 3.50 × 101 2.18 × 10−6 3.64 × 10−7 1.61 × 106 7.83 × 10−6 5.47 × 10−7

F13 7.59 × 101 3.76 × 10−5 1.77 × 10−5 7.61 × 103 4.84 × 10−5 7.71 × 10−6 3.47 × 107 3.46 × 10−4 8.40 × 10−6

The best result obtained is highlighted in bold.

4.2. Experiment II: IEEE CEC2017 Test Functions

In the previous section, the performance of the proposed IHSSAO algorithm in han-
dling simple problems was adequately verified by conducting the standard benchmark
function. To further demonstrate the performance of the proposed algorithm in dealing with
complex problems, in this section we have chosen the 17 IEEE CECE 2017 test functions,
which contain simple multimodal functions, hybrid functions, and composite functions, as
listed in Table 8. To demonstrate the superiority of the IHSSAO, the experimental results
of the proposed IHSSAO are evaluated in comparison with the basic SSA, AO, and the
five famous algorithms used in the previous section, namely WOA, HHO, MVO, STOA,
and TSA. Using the same methodology as the experiments in the previous section, each



Appl. Sci. 2022, 12, 5634 21 of 28

algorithm is run 30 times with 500 iterations each. The eventual results of the average and
standard deviation are listed in Table 9.

Table 8. Descriptions of 17 selected IEEE CEC2017 test functions.

Function Name Dim Range Fmin

Simple multimodal functions
F24 Shifted and Rotated Rosenbrock’s Function 10 [−100, 100] 400
F25 Shifted and Rotated Rastrigin’s Function 10 [−100, 100] 500
F26 Shifted and Rotated Expanded Scaffer’s F6 Function 10 [−100, 100] 600
F27 Shifted and Rotated Non-Continuous Rastrigin’s Function 10 [−100, 100] 800
Hybrid functions
F28 Hybrid Function 1 (N = 3) 10 [−100, 100] 1100
F29 Hybrid Function 3 (N = 3) 10 [−100, 100] 1300
F30 Hybrid Function 4 (N = 4) 10 [−100, 100] 1400
F31 Hybrid Function 5 (N = 4) 10 [−100, 100] 1500
F32 Hybrid Function 6 (N = 5) 10 [−100, 100] 1700
F33 Hybrid Function 6 (N = 6) 10 [−100, 100] 2000
Composite Functions
F34 Composition Function 2 (N = 3) 10 [−100, 100] 2200
F35 Composition Function 3 (N = 4) 10 [−100, 100] 2300
F36 Composition Function 4 (N = 4) 10 [−100, 100] 2400
F37 Composition Function 5 (N = 5) 10 [−100, 100] 2500
F38 Composition Function 6 (N = 5) 10 [−100, 100] 2600
F39 Composition Function 7 (N = 6) 10 [−100, 100] 2700
F40 Composition Function 9 (N = 3) 10 [−100, 100] 2900

Table 9. Comparative results of HSSAO and other algorithms on 17 CEC2017 functions.

Fn Metric WOA HHO SSA MVO STOA TSA AO IHSSAO

F24
Mean 4.50 × 102 4.37 × 102 4.19 × 102 4.22 × 102 4.44 × 102 5.37 × 102 4.29 × 102 4.18 × 102

Std 5.10 × 101 3.92 × 101 2.55 × 101 1.73 × 101 2.86 × 101 1.49 × 102 3.49 × 101 2.44 × 101

F25
Mean 5.54 × 102 5.60 × 102 5.37 × 102 5.22 × 102 5.31 × 102 5.60 × 102 5.35 × 102 5.29 × 102

Std 2.04 × 101 1.52 × 101 1.42 × 101 1.41 × 101 1.08 × 101 2.15 × 101 1.34 × 101 1.12 × 101

F26
Mean 6.43 × 102 6.42 × 102 6.21 × 102 6.12 × 102 6.15 × 102 6.37 × 102 6.20 × 102 6.19 × 102

Std 1.16 × 101 8.50 × 100 1.42 × 101 4.67 × 100 6.75 × 100 1.51 × 101 7.58 × 100 6.38 × 100

F27
Mean 8.40 × 102 8.33 × 102 8.32 × 102 8.26 × 102 8.31 × 102 8.53 × 102 8.30 × 102 8.25 × 102

Std 1.34 × 101 1.14 × 101 1.46 × 101 9.95 × 100 9.50 × 100 1.97 × 101 9.01 × 100 6.95 × 100

F28
Mean 1.24 × 103 1.21 × 103 1.29 × 103 1.16 × 103 1.27 × 103 3.95 × 103 1.25 × 103 1.19 × 103

Std 9.53 × 101 6.19 × 101 1.66 × 102 3.52 × 101 9.64 × 101 2.75 × 103 1.91 × 102 8.29 × 101

F29
Mean 1.62 × 104 2.08 × 104 3.63 × 104 1.67 × 104 2.37 × 104 1.71 × 106 2.00 × 104 1.49 × 104

Std 1.24 × 104 1.50 × 104 4.62 × 104 1.48 × 104 1.56 × 104 5.19 × 106 1.43 × 104 1.07 × 104

F30
Mean 2.89 × 103 1.84 × 103 5.10 × 103 3.41 × 103 5.19 × 103 4.23 × 103 2.81 × 103 2.30 × 103

Std 1.51 × 103 5.71 × 102 8.37 × 103 2.90 × 103 4.29 × 103 1.99 × 103 2.18 × 103 1.18 × 103

F31
Mean 1.03 × 104 7.22 × 103 1.32 × 104 2.52 × 103 6.17 × 103 1.14 × 104 7.66 × 103 5.87 × 103

Std 8.92 × 103 3.30 × 103 1.57 × 104 1.89 × 103 4.23 × 103 9.14 × 103 4.54 × 103 2.68 × 103

F32
Mean 1.81 × 103 1.80 × 103 1.82 × 103 1.79 × 103 1.78 × 103 1.85 × 103 1.78 × 103 1.75 × 103

Std 6.61 × 101 9.01 × 101 7.58 × 101 5.61 × 101 3.93 × 101 1.01 × 102 3.05 × 101 2.47 × 101

F33
Mean 2.22 × 103 2.17 × 103 2.15 × 103 2.13 × 103 2.15 × 103 2.20 × 103 2.14 × 103 2.12 × 103

Std 7.67 × 101 6.23 × 101 7.84 × 101 6.98 × 101 7.15 × 101 6.13 × 101 5.96 × 101 4.28 × 101

F34
Mean 2.40 × 103 2.39 × 103 2.44 × 103 2.35 × 103 2.90 × 103 2.64 × 103 2.31 × 103 2.28 × 103

Std 2.91 × 102 3.26 × 102 3.61 × 102 1.96 × 102 6.75 × 102 3.79 × 102 1.46 × 101 1.03 × 101

F35
Mean 2.67 × 103 2.68 × 103 2.65 × 103 2.66 × 103 2.64 × 103 2.71 × 103 2.65 × 103 2.63 × 103

Std 3.08 × 101 2.49 × 101 1.36 × 101 3.40 × 101 1.55 × 101 4.05 × 101 2.17 × 101 1.10 × 101

F36
Mean 2.77 × 103 2.78 × 103 2.79 × 103 2.75 × 103 2.76 × 103 2.82 × 103 2.75 × 103 2.74 × 103

Std 5.46 × 101 1.37 × 102 6.99 × 101 6.44 × 101 1.03 × 101 4.71 × 101 7.79 × 101 9.31 × 101

F37
Mean 2.96 × 103 2.94 × 103 2.94 × 103 2.93 × 103 2.95 × 103 3.08 × 103 2.93 × 103 2.93 × 103

Std 2.26 × 101 1.97 × 101 3.33 × 101 3.39 × 101 1.78 × 101 1.46 × 102 2.37 × 101 2.85 × 101

F38
Mean 3.59 × 103 3.70 × 103 3.06 × 103 3.17 × 103 3.40 × 103 3.81 × 103 3.07 × 103 3.02 × 103

Std 5.53 × 102 6.43 × 102 3.87 × 102 4.41 × 102 4.74 × 102 5.67 × 102 2.31 × 102 2.24 × 102

F39
Mean 3.15 × 103 3.20 × 103 3.14 × 103 3.12 × 103 3.10 × 103 3.19 × 103 3.11 × 103 3.10 × 103

Std 4.24 × 101 5.91 × 101 6.34 × 101 3.09 × 101 2.59 × 100 4.75 × 101 5.94 × 100 1.26 × 101

F40
Mean 3.42 × 103 3.38 × 103 3.29 × 103 3.26 × 103 3.25 × 103 3.34 × 103 3.28 × 103 3.24 × 103

Std 1.23 × 102 9.08 × 101 8.14 × 101 7.89 × 101 8.40 × 101 1.18 × 102 6.74 × 101 4.18 × 101

The best result obtained is highlighted in bold.

According to the experimental results in Table 9, we count the average ranking of
the eight algorithms as shown in Table 10. Moreover, Figure 8 presents the ranking radar
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diagram of the eight algorithms. Combining Tables 9 and 10 and Figure 8, we can observe
that the IHSSAO can be ranked first on the average in most cases. For the functions F25,
F28, F30–F31, and F39, the proposed algorithms rank second. Furthermore, for function F26,
IHSSAO ranks third after MVO and STOA, but there is no significant difference between
the first two algorithms.

Figure 8. Radar ranking diagram of the nine algorithms on 17 CEC2017 functions.

Table 10. Rankings of IHSSAO and other algorithms on 17 CEC2017 functions.

Fn WOA HHO SSA MVO STOA TSA AO IHSSAO

F24 7 5 2 3 6 8 4 1
F25 6 7 5 1 3 8 4 2
F26 8 7 5 1 2 6 4 3
F27 7 6 5 2 4 8 3 1
F28 4 3 7 1 6 8 5 2
F29 2 6 8 3 7 4 5 1
F30 4 1 7 5 8 6 3 2
F31 6 4 8 1 3 7 5 2
F32 6 5 7 4 3 8 2 1
F33 8 6 5 2 4 7 3 1
F34 5 4 6 3 8 7 2 1
F35 6 7 3 5 2 7 4 1
F36 5 6 7 2 4 8 3 1
F37 7 4 5 2 6 8 3 1
F38 6 7 2 4 5 8 3 1
F39 6 8 5 4 1 7 3 2
F40 8 7 5 3 2 6 4 1

5. IHSSAO for Solving UAV Path Planning in Complex Terrain
5.1. UAV Mission Environment Modeling

When modeling the mission environment for the UAV, we should take essential factors
such as the terrain situation and threat situation of the mission into consideration. In this
paper, the basic terrain constraints and threat constraints (radar threat, artillery threat, etc.)



Appl. Sci. 2022, 12, 5634 23 of 28

are mathematically modeled. The specific mission environment modeling approach is
as follows.

5.1.1. Terrain Constraints

In various missions, the workspace for UAVs is different. According to the altitude, the
terrain is divided into three types of terrain: plain areas, mountainous areas, and hilly areas.
One of the most influential factors is the mountain peaks, and the influence of altitude
change needs to be considered. Therefore, the model established in this paper is for UAV
path planning in complex terrain including mountain peaks. The mathematical expression
of the mountain peak model is:

Z(x, y) = h · e
[−
(x− x0)

2

m1
−
(x− y0)

2

m1
]

(28)

where (x, y) is the coordinate of the peak terrain in the horizontal plane; (x0, y0) is the
center point coordinate of the peak terrain in the horizontal plane; h represents the height
parameter; and m1 and m2 reflect the steepness of the peak.

5.1.2. Threat Constraints

The main threats faced by UAVs in their missions include radar threats, electromag-
netic threats, and missile threats. In order to simplify the UAV mission environment model,
the cylindrical area with radius Ri is used to represent the threat area, whose radius size
determines the coverage of the threat area.

Based on the above conditions, we model the simulation scene of the UAV path
planning workspace as depicted in Figure 9.

Figure 9. UAV path planning workspace in complex terrain.
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5.2. UAV Path Planning Modeling

In order to plan a high-quality flight trajectory that satisfies the constraints, it is
necessary to establish a suitable fitness function and consider various constraints. The major
indicators that affect the performance of UAVs include trajectory length, flight altitude,
minimum step length, turning angle cost, maximum climb angle, etc. According to the
above UAV flight trajectory constraint, the expression of the cost function is as follows [2]:

Jcost = ω1 Jpath + ω2 Jheight + ω3 Jturn, (ω1 + ω2 + ω3 = 1; ωi ≥ 0) (29)

where Jcost is the total cost function and the parameters ωi, i = 1, 2, 3 represent the weights
of each cost function and satisfy ω1 + ω2 + ω3 = 1 and ωi ≥ 0. Jpath, Jheight, and Jturn
represent the path length cost, flight altitude cost, and corner cost of UAV, respectively.

The length of the trajectory is also very significant for most flight missions in the UAV
path planning process. As we all know, shorter paths save more fuel and more time, and
have a lower chance of finding unknown threats. Assuming that there are n waypoints in a
complete path, the path cost expression is as follows:

Jpath =


∞, pass the obstacles

n−1
∑

i=1
li, otherwise

li = ‖(xi+1, yi+1, zi+1)− (xi, yi, zi)‖2

(30)

where li denotes the distance between the ith waypoint and the i + 1th waypoint. Further-
more, (xi, yi, zi) and (xi+1, yi+1, zi+1) are the coordinates of the ith waypoint and i + 1th
waypoint, respectively.

In general, if the UAV is flying at a low altitude in complex mountain terrain, it will
easily collide with the grounds and mountains. However, if the UAV flight height is too
high, it will also increase fuel costs and the risk of being detected by radar. Therefore, it
is very essential for the UAV to keep a stable flight altitude. In order to have a safe UAV
flight, we give the following flight height cost Jheight model.

Jheight =

√
1
n

n−1
∑

i=0
(z(i)2 − z)2

z =
1
n

n−1
∑

i=0
z(i)

(31)

Furthermore, the maneuverability of UAVs is also limited by their turning angle cost
function. During the UAV’s mission, its turning angle should be less than or equal to the
pre-set maximum turning angle φ, because the size of the turning angle affects the stability
of its flight. The cost function model of turning angle is described as follows.

Jturn =


∞, i f φ < θi

n
∑

i=1
(cos φ− cos θi), otherwise

cos θ =
aT

i ai+1

|ai||ai+1|

(32)

where θi represents the ith turning angle and ai denotes a vector of the ith part of the whole path.
By efficiently processing the total cost function, we can obtain the trajectory consisting

of line segments. It is undeniable that the obtained paths are often only theoretically
feasible, but for practical flyability, it is necessary to smooth the paths Smoothing. In this
paper, we apply cubic spline interpolation to smooth the flight trajectory of UAVs.
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5.3. Simulation Results and Analysis of UAV Path Planning in Complex Terrain
5.3.1. Parameter Settings

The simulation is conducted in MATLAB R2022a in Microsoft Windows 10 with a
computer hardware platform configuration of Intel® CoreTM i7-9750H @ 2.60 GH and
RAM 16 G. The workspace of UAV is [0, 100] km long, [0, 100] km wide, and [0, 10] km
high. The UAV starting point coordinate is (0, 0, 0.5), and the target point coordinate is
(200, 200, 1). The simulation scene of the UAV path planning workspace is depicted in
Figure 9. The plane coordinates and radius of the three threat area centers are shown in
Table 11. Moreover, the maximum turning angles φ = 60

◦
, ω1, ω2, and ω3 are 0.4, 0.4, and

0.2, respectively.

Table 11. Parameter settings of the threat area.

Threat Sequence Center Coordinates (km) Radius (km)

1 (60, 160) 20
2 (80, 100) 20
3 (100, 40) 20

In this experiment, we use the basic SSA and AO to compare with the proposed
IHSSAO. For all these algorithms, the population number and the maximum number of
iterations are set to 30 and 50, respectively.

5.3.2. Simulation Results and Analysis

Figure 10 demonstrates the trajectory of the UAV in complex terrain. The comparison
of the basic SSA, AO, and the proposed IHSSAO in the UAV planning path map shows that
although the basic SSA can avoid the threat area as well as the AO and IHSSAO algorithms,
its planned path is not only too high in the flight altitude, but also too long in the flight
path, and consumes more energy. On the other hand, although the UAV path planned by
the AO met all aspects of the UAV constraints in the early stage, the flight altitude variation
was large and the pitch angle was too large at the location near the back row of peaks.
Compared with the basic SSA and AO, the IHSSAO proposed in this paper can plan an
optimal trajectory that avoids mountainous terrain and threat areas, and can fly as close to
the ground as possible while satisfying the physical constraints of the UAV.

Furthermore, Figure 11 shows the convergence cures of the SSA, AO, and IHSSAO.
According to the simulation results, we can observe that IHSSAO not only has a rapid
convergence rate but also has the best convergence effect. Although it falls into a local
optimum in the early stage, the proposed algorithm can escape from the local optimum
due to the fact that we introduced the pinhole imaging opposition-based learning strategy
into it. In conclusion, the proposed IHSSAO has superiority over the basic SSA and AO in
solving the UAV path planning problem in complex terrain.
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Figure 10. The best path of SSA, AO, and IHSSAO. (a) Path comparison in three-dimensional space.
(b) Path comparison of paths in the X-Y plane. (c) Side view of path comparison in the X-Z plane.

Figure 11. The convergence cures of the SSA, AO, and IHSSAO.
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6. Conclusions

In this study, we propose a novel improved hybrid Salp Swarm Algorithm and Aquila
Optimizer called IHSSAO for UAV path planning in complex terrain. Firstly, the tent chaotic
map is introduced into the proposed algorithm with the aim of randomly generating the
initial population and increasing the diversity of the initial individuals. Secondly, aiming
to enable the search individuals to fully utilize the information of the optimal solution and
enhance the global search capability of the proposed algorithm, we integrate the leader
mechanism of SSA into the position update formulation of the basic AO. Thirdly, we
introduced the pinhole imaging opposition-based learning into the proposed algorithm
to increase the diversity of search positions and enhance the ability to get rid of the local
optimum. In order to evaluate the performance of the proposed algorithm, IHSSAO is
compared with the basic SSA, AO, and five other advanced meta-heuristic algorithms based
on 23 classical benchmark functions and 17 IEEE CEC2017 test functions. Experimental
results indicate that the proposed IHSSAO algorithm is superior to the basic SSA, AO, and
five other advanced meta-heuristic algorithms in the global optimization. Eventually, we
apply the proposed IHSSAO to solve the UAV path planning problem in complex terrain.
The experimental result demonstrates that the path planned by the proposed IHSSAO is
more consistent with the mission requirements and various constraints than the basic SSA
and AO in the same environment.

In the future, to validate the performance of IHSSAO, we will introduce more con-
straints, such as flight speed constraints and dynamic obstacles. In addition, we can attempt
to further enhance the proposed algorithm and apply it to fault diagnosis for aero engines
and formation control of multi-UAVs.
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