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Featured Application: Compliant foil gas seals, as a non-contact sealing mechanism with high
self-adaptability, are used in the main bearing cavity of aero engines.

Abstract: In various fields, micro-textures have been successfully applied to the surface of friction
pairs to effectively improve flow field and friction performance. This paper aims to investigate
how different textures affect the sealing performance of compliant foil gas film seals. In theoretical
simulations, a facile method for characterizing the shape of micro-textures is proposed, and the
equilibrium relationship between the gas film pressure, gas film thickness, and foil deformation is
established. The transient Reynolds equation considering the eccentric convergence problem and
abrupt Rayleigh step changes is solved to analyze the static and dynamic characteristics. The results
show that (i) compared with the directionality of the texture, the gas volume accommodated by the
texture has a greater impact on the sealing performance, and a convergent texture can effectively
control the leakage rate; (ii) when the texture depth exceeds 9 µm, the sealing system may be unstable;
(iii) the compliant foil seal is well suited to higher-speed service conditions, and the inverted triangular
texture shows the best comprehensive sealing performance.

Keywords: compliant foil gas seal; micro-texture; image recognition; sealing performance

1. Introduction

As an aircraft is susceptible to random uncertainty excitation during operation [1],
which may induce seal instability or failure, designing a seal structure with good high-
speed stability and strong autonomous adjustment capability is of great importance for
the development of aerospace engines. The compliant foil seal (CFS) is a new type of non-
contact seal [2]. Compared with the traditional gas film sealing structure, which has a rigid
floating ring, the compliant foil can undergo adaptive deformation under load; moreover,
there is Coulomb friction between the contact elements [3,4]. Owing to these advantages,
the sealing structure can rapidly adapt to the operating position, spontaneously adjust
the balanced relationship between the friction pair, load, and gas film, ensure gas film
stability, and prevent friction and collision. Therefore, a sealing structure with a compliant
sealing surface or flexible support has considerable potential for application in the sealing
components of rocket turbine pumps and aero-engine systems [5,6].

In the 1990s, Salehi and Heshmat proposed a CFS structure based on the study of foil
bearings, and they tested it at 55,000 rpm and 560 ◦C [7–9]. Regarding the theoretical study,
they established the governing equation of the film pressure by considering the turbulence
effect and analyzed the sealing performance of CFS under high-speed operation conditions
using the method of successive over-relaxation [10]. Kim [11] combined the perturbation
method for a floating ring seal with the finite element method for a flexible foil to analyze
its characteristics and found that the eccentricity decreases while the direct stiffness and
damping coefficient increases as the bump foil thickness increases. Lee et al. [12] designed
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a floating ring seal structure using a bump foil to support the ring, which demonstrated
its stability at high speed through eddy current stability experiments. Ding [13] used
the PH linear method to study the steady-state flow field characteristics of a cylindrical
spiral-groove gas film seal and found that the sealing pressure difference has a significant
effect on the steady-state characteristics. Wang [5] analyzed the sealing characteristics and
dynamic properties of CFS and tested the effect of different surface roughness values on the
start-stop cycle performance of high-speed elastic foil sealing [14]. The results showed that
improving the interface surface properties can effectively attenuate the hysteresis effect of
the seal.

Interface modeling of the friction pair has a significant impact on the flow field,
dynamic pressure effect, and friction performance [15,16]. Stull’s [17] introduction of a
series of cavities in the diverging curved walls of a two-dimensional ribbed diffuser or
Mariotti’s [18] application of transverse grooves on both sides of the stern side can produce
locally stable flow re-circulation. The textured surface of the diamond-like carbon film
is machined on the dry gas seal ring, and its trapping effect contributes significantly to
the improvement of friction performance [19,20]. Moreover, the parameters of pits are the
keys to affecting friction performance [19,21]. The shape design of the texture successfully
utilizes the knowledge of biomimicry; for instance, streamlined grooves in dolphin skin
were used by Lang [22] and a semi salix leaf textured face was processed by Bai [23]. With
the widespread application of texture, optimization or hybrid processing techniques such as
mask deposition and laser cladding are gradually developed [24]. Thus far, research on the
surface modeling of friction pairs of the cylinder gas seal has mainly focused on the design
of dynamic pressure grooves [25–27]. Most of these studies have used CFD software, where
procedures such as geometric modeling and mesh division are relatively cumbersome.

In summary, research on the characteristics of compliant foil gas seals has mainly
focused on structural design. Although some researchers have conducted theoretical
analyses and experimental tests, results on the accurate design of the micro-textures on the
surfaces of compliant foil gas seals are relatively scarce. In the present study, numerical
modeling was used to calculate the flow field distribution of the compliant foil gas seal, and
to evaluate the influence of micro-texture shapes, depth, and rotational speed on the sealing
performance. With these works done, the optimal matching method can be determined.

2. Materials and Methods
2.1. Geometric Model

The structure of the compliant foil gas seal is shown in Figure 1. It mainly consists
of a sealing cavity, flexible sealing surface, and rotating shaft. The flexible sealing surface
includes a bump foil and a top foil with flexible support. The top foil is bent on the high-
pressure side to form an extension, which serves to fix the foil and block the leakage channel.
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Figure 1. (a) Schematic of the compliant foil gas seal. (b) Mechanisms for the lubricating gas
film formation.

In Figure 1, θ1 is the angle between the free end of the bump foil and the fixed end, p
is the gas film pressure, h is the thickness of the gas film, tb and tp are the thicknesses of the
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bump foil and the flat foil, respectively, hc is the texture depth, e is the eccentricity distance,
R is the outer diameter of the rotation axis, and O1 and O2 are the centers of the sealing
cavity and the rotation axis, respectively.

The rotor is installed eccentrically in the sealing cavity. When the compliant foil gas
seal is in the normal working condition, the bump foil and top foil are slightly deformed
under the viscous shear of the sealing medium, as shown in Figure 2a. A micro-scale
wedge-shaped gap of 10–30 µm is formed between the friction pairs, which separates the
friction and sealing pairs and produces a good hydrodynamic pressure effect, thereby
forming a rigid pressurized air film to achieve lubrication and sealing. The structural
parameters of the bump foil are shown in Figure 2b.
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Figure 2. (a) Deformation of the foil. (b) Structural parameters of the bump foil.

In Figure 2b, u, rb, s, l, and α are the deformation, radius, pitch, half chord length, and
wrapping angle of the foil, respectively, and L is the seal width.

2.2. Micro-Texture Model

The upper surface of the flat foil is in contact with the sealing medium, and micro-
textures are formed on the surface via laser marking, as shown in Figure 3, where L is the
seal width, a and b are the structural parameters of the texture, Nt is the number of cycles.
When acquiring surface data, the texture first needs to be drawn on a 1:1 scale. Then, the
image is converted into a series of matrices by the recognition method; the size of the matrix
is consistent with the size of the flow field matrix.
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3. Theoretical Model
3.1. Reynolds Equation and Gas Film Thickness Control Equation

The compliant foil gas seal problem can be categorized as a micro-scale flow field
problem. Therefore, the flow field can be considered as a laminar flow in this study.
Moreover, the following assumptions are made: there is no slip at the fluid-solid interface,
the sealing medium is an ideal gas, and the physical parameters remain unchanged. The
pressure solution model can be obtained as follows:

∂

∂θ

(
PH3,

∂P
∂θ

)
+

(
R
L

)2 ∂

∂Z

(
PH3,

∂P
∂Z

)
= Λ

∂(PH)

∂θ
+ 2γΛ

∂(PH)

∂T
(1)

Considering the Coulomb friction between the bump foil and the sealing cavity and
ignoring the concavity or convexity of the flat foil in the radial direction, Iordanoff’s [28]
stiffness model with one end fixed and one end free is used to characterize the deformation
of the bump foil. Thus, the static film thickness formula can be obtained as follows:

H =

{
1+ε cos θ + Hc +

(P−1)
Kb

(θ, Z) ∈ Textured region

1+ε cos θ + (P−1)
Kb

(θ, Z) ∈ Non-textured region
(2)

The dimensionless parameters are defined as follows:

Z =
z
L

, H =
h
h0

, P =
p
pa

, T = τt, Λ =
6ωµr2

pah2
0

, γ =
τ

ω
, Hc =

hc

h0
, Kb =

kbh0

pa
(3)

where z is the axial coordinate, t is the motion time, kb is the bump foil stiffness, h0
is the average gas film thickness, pa is the ambient pressure, τ is the angular velocity
of the vortex, µ is the viscosity of the lubricant gas, γ is the perturbation ratio, Λ is
the compressibility coefficient, ε is the eccentricity, and P, Z, H, T, Hc, and Kb are the
corresponding dimensionless parameters.

After the displacement perturbation and velocity perturbation at the equilibrium
position, the dimensionless perturbation is obtained as follows:

∆X =
∆x
h0

= |∆X|eiT , ∆Y =
∆y
h0

= |∆Y|eiT (4)

The Taylor series expansions for the gas film pressure, gas film thickness, and foil
deformation with the perturbation parameters are expressed as follows:

Pt = P + Px∆X + Px
′∆

.
X + Py∆Y + Py

′∆
.

Y
Ht = H + Hx∆X + Hx

′∆
.

X + Hy∆Y + Hy
′∆

.
Y

Ut = U + Ux∆X + Ux
′∆

.
X + Uy∆Y + Uy

′∆
.

Y

(5)

After considering the time term, the gas film thickness deviates from the static gas
film thickness H, and the gas film thickness under perturbation is obtained as follows:

Ht = H + (∆X sin θ − ∆Y cos θ) + ∆Ut (6)

Combining Equations (5) and (6), the following can be deduced:{
Hx = Ux + sin θ, Hx

′ = Ux
′

Hy = Uy − cos θ, Hy
′ = Uy

′ (7)

According to the relationship between the gas film pressure and the deformation of
the bump foil, the following can be obtained:
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P = KbU + Cbγ
∂U
∂T

+ 1 (8)

Substituting Equations (5) and (7) into Equation (8) gives the following equation,
where Cb is the dimensionless damping of the foil:{

Px = KbHx − CbHx
′ − Kb sin θ

Px
′ = KbHx

′ + Cbhx − Cb sin θ
,
{

Py = KbHy − CbHy
′ + Kb cos θ

Py
′ = Kb Hy

′ + CbHy + Cb cos θ
(9)

3.2. Boundary Conditions

The mandatory boundaries at the inlet and outlet locations are expressed as follows,
where pi is the inlet pressure:{

Z = 0, P = pi
pa

, Px = Px
′ = Py = Py

′

Z = L, P = 1, Px = Px
′ = Py = Py

′ (10)

The circular boundary in the middle section is expressed as follows:
P(θ, Z) = P(θ + 2π, Z)
Px(θ, Z) = Px(θ + 2π, Z), Px

′(θ, Z) = Px
′(θ + 2π, Z)

Py(θ, Z) = Py(θ + 2π, Z), Py
′(θ, Z) = Py

′(θ + 2π, Z)
(11)

3.3. Static Sealing Performance Parameters

The key static characteristics parameters for evaluating the compliant foil gas seal are the
gas film force F, mass leakage rate Q, attitude angle ϕ, and friction force Ff. In the following
equations, the subscripts h and v represent the horizontal and vertical directions, respectively:

Fh,v =
∫ L

0

∫ 2π

0
(p− pa)r

{
cos θ
sin θ

}
dθdz, F =

√
Fh

2 + Fv2 (12)

Q =
∫ 2π

0
− ρh3

12µ

∂p
∂z

rdθ (13)

ϕ = act tan
Fv

Fh
(14)

Ff h,v =
∫ L

0

∫ 2π

0
(− ∂p

r∂θ

h
2

p + µ
ωr
h
)r
{

cos θ
sin θ

}
dθdz, Ff =

√
Ff h

2 + Ff v2 (15)

3.4. Dynamic Sealing Performance Parameters

The dynamic characteristic parameters for evaluating the stability of the compliant foil
gas seal are the direct stiffness coefficients kxx and kyy, direct damping coefficients cxx and
cyy, cross stiffness kxy and kyx, cross damping coefficients cxy and cyx, which are expressed
as follows: [

kxx kxy
kyx kyy

]
= −RLpa

h0

∫ 1

0

∫ 2π

0

[
Px cos θ Py cos θ
Px sin θ Py cos θ

]
dθdZ (16)[

cxx cxy
cyx cyy

]
= −RLpa

h0τ

∫ 1

0

∫ 2π

0

[
Px
′ cos θ Py

′ cos θ
Px
′ sin θ Py

′ cos θ

]
dθdZ (17)

3.5. Calculation Flow

The flow chart for calculating the characteristic parameters of the compliant foil gas
seal is shown in Figure 4.
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3.6. Parameters Selection

The geometric structure and mechanical performance parameters of the compliant foil
gas seal used in the calculation in this study are summarized in Table 1, and the operating
parameters are listed in Table 2, where ρ is the viscosity of the lubricant gas and µf is the
friction factor.

Table 1. Geometric structure and mechanical performance parameters.

Parameters Values Parameters Values Parameters Values

R (mm) 25 a (mm) 2 rb (mm) 3.365
L (mm) 26.67 b (mm) 3 α (◦) 63.93

Nt 16 tb (mm) 0.2016 vb 0.3
h0 (µm) 10 l (mm) 1.778 Eb (Pa) 2.14 × 1011

hc (µm) 2 s (mm) 4.572

Table 2. Operating parameters.

Parameters Values Parameters Values Parameters Values

pi (MPa) 0.16 µf 0.1 ρ (kg·m−3) 1.1425
po (MPa) 0.101325 nr (r·min−1) 30,000 µ (Pa·s) 1.8 × 10−5
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3.7. Program Correctness Verification

The structural parameters of the non-slotted rigid floating ring used in the litera-
ture [29] are selected to verify the correctness of the flow field calculation program. The
comparison results obtained when the eccentricity is 0.5 and the inlet pressure is 0.20 MPa
are shown in Figure 5. The results of the two calculations are similar, which verifies the
correctness of the calculation procedure in this study.

Appl. Sci. 2022, 12, x FOR PEER REVIEW  7 of 15 
 

The geometric structure and mechanical performance parameters of the compliant 
foil gas seal used in the calculation in this study are summarized in Table 1, and the oper-
ating parameters are listed in Table 2, where ρ is the viscosity of the lubricant gas and μf 
is the friction factor. 

Table 1. Geometric structure and mechanical performance parameters. 

Parameters Values Parameters Values Parameters Values 
R (mm) 25 a (mm) 2 rb (mm) 3.365 
L (mm) 26.67 b (mm) 3 α (°) 63.93 

Nt 16 tb (mm) 0.2016 vb 0.3 
h0 (μm) 10 l (mm) 1.778 Eb (Pa) 2.14 × 1011 
hc (μm) 2 s (mm) 4.572   

Table 2. Operating parameters. 

Parameters Values Parameters Values Parameters Values 
pi (MPa) 0.16 μf 0.1 ρ (kg·m−3) 1.1425 
po (MPa) 0.101325 nr (r·min−1) 30,000 μ (Pa·s) 1.8 × 10−5 

3.7. Program Correctness Verification 
The structural parameters of the non-slotted rigid floating ring used in the literature 

[29] are selected to verify the correctness of the flow field calculation program. The com-
parison results obtained when the eccentricity is 0.5 and the inlet pressure is 0.20 MPa are 
shown in Figure 5. The results of the two calculations are similar, which verifies the cor-
rectness of the calculation procedure in this study. 

 
Figure 5. Computational program verification [29]. 

4. Results 
4.1. Distribution of the Gas Film Thickness and Gas Film Pressure 

Using the parameters listed in Tables 1 and 2 for calculation, the thickness and pres-
sure distribution of the gas film are obtained as shown in Figures 6 and 7, respectively. As 
can be seen, the minimum thickness of the gas film is attained at the pressure outlet posi-
tion of θ = 180°. The pressure of the gas film is subject to a combination of the dynamic 
pressure effect and the wedge effect, and the pressure gradually decreases along the axial 
direction from the inlet until it reaches the ambient atmospheric pressure at the outlet of 
the sealing end face. Negative pressure appears near the higher region of the gas film 
pressure. Both the squeezing effect of the positive pressure and the adsorption effect of 
the negative pressure cause deformation of the bump foil. 

Additionally, it can be seen from the pressure data in Figure 7 that the maximum 
pressure peak is 0.29 MPa for the circular texture, and the peaks of the maximum pressure 

Figure 5. Computational program verification [29].

4. Results
4.1. Distribution of the Gas Film Thickness and Gas Film Pressure

Using the parameters listed in Tables 1 and 2 for calculation, the thickness and pressure
distribution of the gas film are obtained as shown in Figures 6 and 7, respectively. As can
be seen, the minimum thickness of the gas film is attained at the pressure outlet position of
θ = 180◦. The pressure of the gas film is subject to a combination of the dynamic pressure
effect and the wedge effect, and the pressure gradually decreases along the axial direction
from the inlet until it reaches the ambient atmospheric pressure at the outlet of the sealing
end face. Negative pressure appears near the higher region of the gas film pressure. Both
the squeezing effect of the positive pressure and the adsorption effect of the negative
pressure cause deformation of the bump foil.

Additionally, it can be seen from the pressure data in Figure 7 that the maximum
pressure peak is 0.29 MPa for the circular texture, and the peaks of the maximum pressure
for different textures are ordered from largest to smallest as: circle > square > diamond
> ellipse > inverted triangle > triangle. The minimum pressure valley is 0.09 MPa for
elliptical texture, and the valleys for different textures are ordered from smallest to largest
as: ellipse < diamond < square < circle < inverted triangle < triangle. Figure 7c,f show
that the triangular texture is a “narrow-to-wide” divergent texture while the inverted
triangular texture is a “wide-to-narrow” convergent texture. After the gas flows into the
inverted triangular micro-pit, it expands and slows down initially; then, owing to the
sharp reduction of the flow channel, the direction of the velocity suddenly changes quite
abruptly, and a large secondary dynamic pressure effect is formed when the gas flows
out of the micro-pit. As can be seen, the directionality of the texture affects the pressure
distribution even if the texture areas are equal. By contrast, the circular texture in Figure 6a
and the square texture in Figure 6d, which correspond to a more regular shape, do not
significantly change the velocity direction. For the elliptical texture in Figure 6b and the
diamond-shaped texture in Figure 6e, the length in the axial direction is greater than that in
the circumferential direction, which has a certain diversion effect.
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4.2. Analysis of the Static Characteristics

As can be seen from Figure 8a,b, with the linear increase in rotational speed, the gas
dynamic pressure effect is enhanced and the gas film force increases significantly. However,
the accelerated Couette flow does not have a significant effect on the flow in the axial
direction. Hence, the mass leakage rate does not change with the change of rotational
speed: the mass leakage rate of the elliptical texture is the largest and its value is maintained
close to 9.87 × 10−4 kg·s−1. Figure 8c graphically shows the relationship between attitude
angle and rotational speed. The attitude angles of the six texture types all show a decreasing
trend as the rotational speed increases. A smaller attitude angle can make the operation of
the sealing system more stable; thus, the higher the rotational speed, the better the stability
of the compliant foil gas seal. Furthermore, it is found that when the rotational speed is
60,000 r·min−1, the minimum attitude angle of the triangular textures is 12.45◦. In addition,
as can be seen from the data in Figure 8d, when the rotational speed increases linearly,
the viscous friction force also increases close to linearly because the speed gradient in the
thickness direction of the gas film increases with the increase in rotational speed and the
frequency of friction between the fluid layers.
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As shown in Figure 9a,b, as texture depth increases, the gas film forces of the six
textures all show a decreasing trend, and the mass leakages present a linear increasing
trend. The gas film force and mass leakage rate of the elliptical texture change with the
fastest speed, followed by the square texture. When hc < 5 µm, the gas film force and mass
leakage of the circular texture exceed those of the diamond-shaped texture, whereas when
hc ≥ 5 µm, the situation is reversed, which implies that when the depth of the textures
increases, the diversion effect is disadvantageous because the effect of the increasing gas
film thickness is more obvious in a low-pressure environment. When the texture depth
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varies from 1 to 11 µm, the gas film force of the inverted triangle and triangle are close and
show the best ranking of the gas film force. However, the leakage rate of the triangle is not
as good as that of the inverted triangle, and the difference is more obvious with the greater
texture depth. This implies that the mass leakage rate is more sensitive to the divergence
and convergence of the texture, and the fully divergent texture type is not conducive to
reducing the mass leakage rate.

It can be seen from Figure 9c that as the texture depth increases, the attitude angle
increases for different types of texture. The attitude angle of the elliptical texture is always
larger than that of others, and the value of the inverted triangle is the smallest. The greater
the texture depth, the more obvious the attitude angle difference of different textures is.
When hc ≥ 9 µm, the attitude angle of the diamond-shaped texture exceeds that of the
square texture, while the fluctuation of the inverted triangular texture tends to be gentle.
It can be seen from Figure 9d that as texture depth increases, the viscous friction force of
air film decreases. Compared with the other texture types, the elliptical texture has the
largest cross-section and increasing the texture depth can rapidly increase the volume of
the micro-pits, thereby considerably increasing the thickness of the gas film in the overall
range. Thus, the viscous friction force of the elliptical texture is the most affected by the
texture depth, i.e., it is reduced by 38.31%. By contrast, the viscous friction of the triangular
texture is the least influence, i.e., it decreases by 16.66%.
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4.3. Analysis of the Dynamic Characteristics

Figure 10a,c show the variation of the direct dynamic coefficients with different rota-
tional speeds. Specifically, kxx of the six texture types is positive and decreases as rotational
speed increases, whereas kyy is negative and increases gradually. When the speed varies
10,000 and 20,000 r·min−1, the range of change of direct stiffness coefficient is large, how-
ever, it becomes smaller once the speed exceeds 30,000 r·min−1, which indicates that the
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direct stiffness coefficient is easily affected by the speed variation in the low-speed range
and prone to instability. The changes in the direct damping coefficients have an approx-
imate trend; as the speed increases, cxx and cyy monotonically increases from a negative
value to a positive value. Regardless of the texture type, when the speed is less than
30,000 r·min−1, the rate of increase of cxx and cyy is higher. Once this speed is exceeded,
the fluctuation of the direct damping gradually becomes smaller; it eventually remains flat,
and the magnitude decreases to zero.

As can be seen from Figure 10b,d, the distributions of the cross dynamic characteristic
coefficients are mutually symmetrical. As the speed increases, the sum of cross damping
of the different texture types has different degrees of convergence, and the value keeps
approaching zero, indicating that the cross damping does not need to dissipate more energy;
thus, the speed increases to make the sealing system stable. As increasing the rotational
speed in the low-speed range significantly improves the dynamic pressure effect, when the
rotational speed exceeds a certain value, the dynamic pressure effect decreases, resulting in
a larger difference in the cross-damping coefficients when the rotational speed is less than
30,000 r·min−1.
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Figure 11 shows the influence of the texture depth on the dynamic characteristics.
Owing to the change in the texture depth, the Couette flow and Poiseuille flows of the
gas between the sealing interfaces are changed. The change in the fluid pressure dis-
tribution causes the changes in foil deformation; the thickness of the gas film changes
accordingly, and the complexity of the flow field is enhanced. Therefore, when the texture
depth changes, the dynamic characteristics fluctuate considerably. Figure 11a,b show the
relationship between the stiffness coefficient and the texture depth for different texture
types; kyy gradually increases with the increase of texture depth, and elliptical, triangular,
and inverted triangular textures have the maximum positive kxx at hc = 9 µm, after which
the value drops sharply. The distributions of kxy and kyx are still symmetrical. Except for
the triangular texture, the sum of the cross stiffnesses of the others is basically stable.
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From Figure 11b,c, when the texture depth increases, cxx of all textures decreases con-
tinuously. It is found by calculation that when the texture depth increases from 1 to 9 µm,
the sum of direct damping shows an initially decreasing and subsequently increasing trend.
According to the principle of energy, the difference of the cross stiffness has a positive impact
on the vortex motion, whereas the sum of direct damping has a negative impact; therefore,
the smaller the difference of the cross stiffness, and the greater the sum of the direct damping,
the faster the convergence of the vortex motion, and the better the stability of the film. Thus,
there is a high probability of instability when the texture depth exceeds 9 µm.
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5. Discussion

Compliant foil gas seals are mainly applied under high-speed conditions. The theo-
retical model in this paper cannot take into account high-speed gas effects such as inertial
effect, obstructed flow effect, and turbulent flow effect. Additionally, the coupling of mul-
tiple effects on the sealing properties of compliant foil gas seals cannot be characterized
by this research. In the future, the above deficiencies need to be improved by revising
the theoretical model, which is of great significance for accurately predicting the sealing
performance of ultra-high-speed compliant foil gas seals.

6. Conclusions

In this paper, considering the specific structure of the compliant foil gas seal, as well as
the stiffness and damping of the bump foil, the micro-scale dynamic lubrication equations
of the synchronous circular motion of gas and the rotor in the cylindrical coordinate system
are obtained. Then, the finite difference method and the iterative method are used to
solve the thickness and deformation equations simultaneously, following which, the static
and dynamic sealing characteristics corresponding to different micro-texture shapes are
obtained. The analysis results are as follows:

(1) Micro-textures machined on the surface of flat foil create local pressure rise regions
within a stable flow field. Owing to the difference in the texture shape characteris-
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tics and directionality, the gas film thickness and pressure distribution of different
compliant foil gas seals are different.

(2) As the rotational speed increases, the force and the viscous friction force increase
and the attitude angle decreases; however, the effect of the rotational speed on the
mass leakage rate is negligible. Thus, the compliant foil gas seal shows good usability
under low pressure and high-speed conditions.

(3) Stiffness coefficients kxy and kyx and cross damping coefficients cxy and cyx are sym-
metrical. This reflects the circularity and quasi-symmetry of the flow field distribution
as well as conform to the structural law of the compliant foil gas seal. Moreover,
according to the dynamic parameters, the texture depth can be selected within the
range of less than 9 µm to ensure stability.

(4) Among the six typical texture shapes, the elliptical texture has the smallest gas film
force and the largest mass leakage rate, which is the most unfavorable to the static
sealing performance. The gas film force of the triangle and the inverted triangle are
basically the same, but the inverted triangular texture can control the mass leakage
rate and improve stability, thus showing the best comprehensive sealing performance.

This article selects the optimal shape and depth of micro-textures for compliant foil
gas seals, and the results can guide the experimental testings and application of sealing
surface modification. Furthermore, the image recognition technology used in this study
provides implications for the complex interface design of friction pairs.
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