
Citation: Varna, D.; Abromavičius, V.

A System for a Real-Time Electronic

Component Detection and

Classification on a Conveyor Belt.

Appl. Sci. 2022, 12, 5608. https://

doi.org/10.3390/app12115608

Academic Editors: Amy J.C. Trappey,

John P.T. Mo and Ching-Hung Lee

Received: 26 April 2022

Accepted: 29 May 2022

Published: 31 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

A System for a Real-Time Electronic Component Detection and
Classification on a Conveyor Belt
Dainius Varna and Vytautas Abromavičius *

Department of Electronic Systems, Vilnius Gediminas Technical University (VILNIUS TECH), 03227 Vilnius,
Lithuania; vgtu@vgtu.lt
* Correspondence: vytautas.abromavicius@vilniustech.lt

Abstract: The presented research addresses the real-time object detection problem with small and
moving objects, specifically the surface-mount component on a conveyor. Detecting and counting
small moving objects on the assembly line is a challenge. In order to meet the requirements of
real-time applications, state-of-the-art electronic component detection and classification algorithms
are implemented into powerful hardware systems. This work proposes a low-cost system with an
embedded microcomputer to detect surface-mount components on a conveyor belt in real time. The
system detects moving, packed, and unpacked surface-mount components. The system’s performance
was experimentally investigated by implementing several object-detection algorithms. The system’s
performance with different algorithm implementations was compared using mean average precision
and inference time. The results of four different surface-mount components showed average precision
scores of 97.3% and 97.7% for capacitor and resistor detection. The findings suggest that the system
with the implemented YOLOv4-tiny algorithm on the Jetson Nano 4 GB microcomputer achieves a
mean average precision score of 88.03% with an inference time of 56.4 ms and 87.98% mean average
precision with 11.2 ms inference time on the Tesla P100 16 GB platform.

Keywords: convolutional neural networks; deep learning; machine learning; object detection; SMD
component

1. Introduction

Object detection is one of the fundamental tasks in computer vision. It deals with
detecting instances and location in an image of certain objects. Later, detected objects can
be classified into different categories (such as face [1,2], traffic signs [3–5], vehicles [6,7],
pedestrians [8], human pose estimation [9], disease detection in various images [10–12],
etc.), segmented [13–15], captioned [16], tracked [17], and suchlike.

In recent years, deep learning, described as representation learning involving a hierar-
chy of features, has rapidly advanced object detection and its implementation in several
fields, such as computer vision (CV) [18], voice recognition [19,20], natural language pro-
cessing [21], remote sensing, human motion tracking [22], and medical applications [23].
In particular, remote sensing has many specific challenges involving sensors and soft-
ware, and inevitably uses approaches similar to CV, such as statistical analysis, synthesis,
and deep learning [24]. Object detection in natural images, which contain many different
objects, is a central and highly challenging task in the CV field [25].

Deep learning contains a large field of algorithms and methods to solve various tasks.
For example, convolutional neural networks (CNN) are very commonly applied for image
analysis [26,27]. The accuracy of CNN classification depends on several factors, such as data
set, optimization method, and structure of the neural network [28]. CNN-based current
object detectors are capable of detecting very small objects in a provided image [29,30].
Recently, interest has increased for applications using graph convolutional networks and
meta-learning. Graphs naturally appear in numerous application domains, ranging from

Appl. Sci. 2022, 12, 5608. https://doi.org/10.3390/app12115608 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12115608
https://doi.org/10.3390/app12115608
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-1588-6572
https://doi.org/10.3390/app12115608
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12115608?type=check_update&version=1

Appl. Sci. 2022, 12, 5608 2 of 19

social analysis to bioinformatics to computer vision [31,32]. Graph convolutional networks
preserve data properties, such as structure and information [33]. Meta-learning is essentially
an ensemble of learning algorithms for the task of learning to predict data. Meta-learning
has been successfully applied for few-shot learning problems [34,35]. However, such neural
network structures require high computational capacity and are not easy to implement
in today’s embedded systems for practical real-time applications [36]. In their paper,
Szegedy et al. proposed a scaled version of a CNN architecture [37]. This architecture
is called InceptionV3. InceptionV3 and its modifications are used in a wide number of
applications as a backbone for classification, object detection, etc. [38,39]. Another popular
deep learning implementation, called SSD, was proposed by Liu et al. [40]. It uses a single
deep neural network and discretizes the output space of bounding boxes into a set of
default boxes over different aspect ratios and scales per feature map location. SSD has two
components: a backbone model and a head. The backbone model is usually a pre-trained
image classification network [41], the head is usually a stack of convolutional layers on
top of a backbone model. SSD network architecture is simple to understand and easy to
implement [42]. Another popular object detection algorithm, which is easy to implement in
embedded systems, is Yolo, proposed by Redmon and Farhadi [43]. Yolo algorithm and its
modifications have been successfully applied to many tasks that require object detection in
real time [44–46].

In theory, currently developed deep learning methods allow us to detect any object in
an image. However, in practice, small and dense objects still pose a challenge; e.g., Mal-
laiyan Sathiaseelan et al. found that current object-detection techniques are not sufficient
for detecting printed circuit board (PCB) components [47]. Moreover, such methods are
not as efficient as expected when integrated into the manufacturing process. Therefore,
some research works offer implementation designs [48]. In industry, the general goal is to
speed up the manufacturing process and reduce the size of a product [49]. Therefore, there
is a constant need to improve object-detection methods to keep up with the accelerating
processes of the manufacturing industry while detecting smaller objects [50–52]. On the
other hand, the hardware also improves, allowing industry to implement novel object-
detection methods into integrated systems. Thus, this further catalyzes the development
of new object-detection methods and investments in the deep learning sector of industry.
Therefore, deep learning methods confront the challenge of being integrated into constantly
developed hardware and have to cope with the accelerating manufacturing process. It is of
great practical significance to construct an automatic identification system for electronic
components that can operate in real-time [53].

The manufacturing process can be improved in several ways, e.g., by detecting flaws,
such as holes, dents, scratches, and similar defects. Deep learning methods for real-time
object detection are applied to integrate fault detection in several stages of the manufac-
turing process, such as component assembly, quality control, manufacturing, production
counting, etc. [54,55]. To detect these faults as soon as possible, object-detection methods
are integrated in the early stages of the manufacturing process [56]. Such real-life object-
detection applications differ in their methodology, including the dataset used for training,
the training parameters and the object detection criteria [57].

Currently, counting objects and detecting their flaws on the assembly line is not
very popular. Usually, object detection methods are applied for already-made PCB’s [47].
Counting electronic components on a conveyor is a challenge because it requires the real-
time detection of relatively small objects, which move relatively fast. Thus, an implemented
object detection method needs to have not only high accuracy but also low latency. In their
work, Li et al. used the Yolo V3 algorithm to detect electronic components on a PCB
board [58]. Despite the high mean average precision, low precision scores for capacitors and
resistors were achieved. Several other works tried to apply deep learning for component
detection on a PCB [59,60]. In other work, Kuo et al. proposed a graph convolutional
network for component detection on a PCB [59], and Yolo-based architecture was proposed
by Fabrice and Lee [60]. In both works, a mean average precision higher than 98% was

Appl. Sci. 2022, 12, 5608 3 of 19

achieved. However, a practical application of the proposed solutions would require a
dataset that has many classes and is updated regularly. It is not investigated how the
proposed methods would work in real-time application, implemented in an embedded
circuit, e.g., on an assembly line. For initial training of the architecture, there are few
publicly available datasets [61,62]. However, they tend to be formatted for a specific task.

In this work, we implement and experimentally investigate the capabilities of object-
detection methods in a real-time system to count moving electronic components on a
conveyor. Additionally, we provide a detailed comparison of the most popular deep
learning architectures and modification approaches, including the experimental results ap-
plying deep learning architectures in integrated systems for real-time applications. For this
purpose, a dataset was collected to train the investigated architectures. The dataset was
collected using Data Capture Control application, data augmentation was implemented
using Matlab. The algorithms investigated were implemented using PyTorch and Keras
platforms. Experimental experiments implemented using CV2 and Numpy libraries using
Python. All algorithms investigated were implemented in the Google Colab cloud platform
and the Nvidia Jetson embedded microcomputer.

2. Materials and Methods

The proposed system is capable of detecting and counting surface-mounted devices
(SMDs) on a conveyor. For this task, we needed a dataset with images such as SMD
components. Several available datasets offer only images of SMD components on a PCB.
Therefore, to train the investigated algorithms, an SMD-type component dataset was
collected on a conveyor belt. The system is composed of a hardware computing unit with
a camera and a mechanical system—a conveyor belt on which components are moving.
The hardware unit is responsible for the real-time identification and detection of the
electronic SMD components on the conveyor. The system workflow diagram is shown in
Figure 1. It is assumed that the desired model is loaded into the system. The images of the
SMD components are captured while they move on a conveyor. In the images obtained,
the bounding box and the type of SMD components are displayed as an output of the
system. The most challenging part is a successful identification of components in real-time.
In the remainder of this section, we will describe the details of the proposed approach.

Figure 1. Workflow diagram of the detection system for the deployment and training.

Appl. Sci. 2022, 12, 5608 4 of 19

2.1. Hardware Setup

The hardware setup designed for the detection and counting of electronic components
is shown in Figure 2. The system was designed to be inexpensive and meet the requirements
of real-time detection in an industrial environment. The microcomputer was powered by
a general power source. A camera was connected to the microcomputer for video input
and an HDMI-connected screen was used to display results. SD memory was connected to
store data and software for object detection. The user controls the microcomputer through
the LAN interface and input devices. Additionally, a ventilator was connected to cool
the microcomputer.

For the hardware setup described, an Nvidia Jetson Nano microcomputer was cho-
sen [63]. It has a 128-core Maxwell GPU, 4-core ARM A57 CPU, 4 GB LPDDR4 memory,
HDMI and display connectors, USB, and other interfaces. To capture moving objects,
a Raspberry Pi NoIR Camera v2 CSI camera was connected [64]. The camera has an 8-
megapixel sensor and supports 1080p30 and 720p60 video formats. SD card size was 64 GB.
SD card containing a dataset and data for training epochs. Power supplied by micro-USB
T6712DV. The user interface was communicated through the LAN, using VNC Server
software. Additionally, for customization, a mouse and keyboard were connected via USB.
Ventilator power was 2.5 W, which was supplied by USB from the microcomputer.

Nvidia Jetson Nano microcomputer was chosen because of its ratio between price and
performance. The device can implement the currently available deep learning algorithms.
Moreover, the device supports Nvidia JetPack, which included board supports package,
Linux OS, CUDA, cuDNN, and TensorRT deep learning libraries, dedicated for object
detection. Additionally, the device has many input and output ports, power is supplied
through USB, and has various interfaces, such as GPIO, CSI.

The Raspberry Pi Noir CSI camera was connected to the microcomputer. The camera
has a high-quality 8 megapixel Sony IMX219 image sensor, which is capable of working
with various illuminance conditions. The camera is capable of capturing 3280 × 2464 px
static images, and also supports 1080p30, 720p60 and 640 × 480p90 video modes [64].
The small size and light weight of the camera module allow it to be easily mounted on
the conveyor. In case of low illuminence, the No Infrared lens filter allows one to capture
high-quality images.

Figure 2. Hardware setup schematic of object detector. Implementation for a SMD component con-
veyor.

Appl. Sci. 2022, 12, 5608 5 of 19

During the testing phase of our hardware setup, high temperatures (beyond 65 °C)
of the microcomputer were observed. To maintain the working temperature of the CPU
and GPU, an external 2.5 W ventilator was connected. The size of the ventilator was
160 × 150 × 100 mm, with a 5 V USB power supply. With the connected ventilator,
the temperature of the system did not rise above 35 °C. For stable illuminence, a 4400 K
color and 6600 lm brightness was used.

2.2. Dataset Collection and Augmentation

The dataset was collected using Nvidia Data Capture Control [65]. This SDK allows
the collection and labelling of the data stream from the camera in real time. The tool allows
several settings, such as simplified labeling of data for classification and detection, to easily
distribute data to the training, validation, and test sets.

The dataset consists of images of SMD-type electronic components, which are moving
on a conveyor belt. There are four types of components in the collected dataset:

• Capacitors;
• Resistors;
• Diodes;
• Transistors.

Illustrations of these components are shown in Figure 3. These components were
chosen because of their popularity, quantity, form of packing (most of the time SMD com-
ponents are packed in bulk), and difficulty to detect. For example, a capacitor (Figure 3a)
can be visually identified by soldering silver-colored joints on the left and right sides,
which cover the middle area of the ceramic with a light-brown color. As seen in Figure 3,
SMD components, used in our work, are difficult to distinguish between. The key to
distinguishing these components is their silver-colored solder joints. Resistors’ solder joints
look similar to capacitors, diodes are similar as well, but thinner compared to resistors.
Transistors have three small solder joints. Other key features are that resistor body area
only includes a number, while a diode additionally has a letter, a thin gray or white stripe,
which is drawn from top to middle. A transistor can include numbers and letters on
its body. However, these printouts are not certain; some manufacturers do not include
any identification prints. For this reason, the task of identifying the SMD components
is difficult.

Appl. Sci. 2022, 12, 5608 6 of 19

(a) (b)

(c) (d)

Figure 3. Four types of electronic components used for the dataset. (a) Capacitor, (b) resistor, (c) diode,
(d) transistor.

Another challenge is the unknown number and type of packing of the components.
Components on the conveyor are placed separately or in a package. In the collected dataset,
we have used images containing single, multiple unpacked, and multiple packed compo-
nents. The number of components was not labeled for training, but ranged from 1 to 30.
In this way, the investigated models were trained to identify an unknown number of differ-
ently packed components. An illustration of the packing style and multiple components is
shown in Figure 4.

(a) (b)

Figure 4. Sample images of a collected dataset with SMD components. (a) SMD components in a
package. (b) SMD components without a package.

For the initial dataset, we collected 3005 images. The dataset was divided to 2405 im-
ages for training, 300 images for validation and test sets. The images were divided by
random sampling. In total, 11,875 annotated components were in the dataset, which con-

Appl. Sci. 2022, 12, 5608 7 of 19

sists of 3297 capacitors, 4478 resistors, 3404 diodes and 696 transistors. The initial dataset
was used to test various conditions of our system, such as illuminence, angle of the camera,
and quality of images. Object-detection algorithms were also tested using this dataset.

After confirming the proper conditions of our system, an initial dataset was expanded
using data augmentation. The data were preprocessed to automatically reorient pixels
(removing EXIF orientation). An example of image augmentation is shown in Figure 5.
The data augmentation techniques that we used for the dataset were random cutouts,
color augmentation, rotation. These techniques were chosen because of their inability to
hide small features of electronic components. Random cutouts (shown in Figure 5a) are
similar to the size of SMD components and are intended to increase the robustness of
trained models. Soldering leads are the primary visual cue to distinguish SMD components.
Therefore, other augmentation methods, such as brightness or contrast adjustment, which
assimilate the leads and background, were not used for augmentation. Color augmentation
(shown in Figure 5b) adjusts input image hue property, which randomly alters the color
channels, causing a model to use alternative color schemes.

After data augmentation, the dataset consisted of 4061 images—3429 for training,
406 for testing and validation—with 15,950 annotated components: 6007 resistors, 4581
diodes, 4470 capacitors, and 892 transistors. Later dataset was augmented using scaling
and rotation (90°, random between −15° and +15°, as shown in Figure 5c). The final dataset
consisted of 7661 images, which were divided, using random sampling, into 7061 images
for the training set, 300 images for the test set, and 300 images for the validation set. The
final dataset consisted of 28,536 annotated SMD components:

• 8198 capacitors;
• 10,467 resistors;
• 8543 diodes;
• 1328 transistors.

(a) (b)

(c)

Figure 5. Pre-processing techniques used for dataset augmentation. (a) Random cut-outs, (b) color
augmentation; (c) random rotation between −15° and +15°.

Additionally, in the dataset, non-relevant objects that had similar color palettes and
shapes as the SMD components were included. Furthermore, the illumination conditions
and angle of the camera were adjusted to induce possible data variations of real-life

Appl. Sci. 2022, 12, 5608 8 of 19

conditions, such as dust or the appearance of an accidental unknown object. In Figure 6,
an annotation location map for the dataset is shown. Most components are shown to be
located in the center of the image (yellow, green color).

(a) (b)

Figure 6. Annotation map of the location of the SMD component in the data set. Green and
yellow represent higher density. (a) Annotation map of the initial dataset. (b) Annotation map of
augmented dataset.

Dataset was collected using Pascal VOC format, and eventually converted to COCO,
darknet, YOLO-keras, YOLO-V4 PyTorch, YOLO-V5 PyTorch formats. The image resolution
in the dataset is 1280 × 720 px and file size is between 26–40 KB. To export data to different
formats, RoboFlow [66] was used. Different formats were used to test the performance of
different implementations of deep learning algorithms.

2.3. Training of Models

In this work, we implemented and investigated SSD-Mobilenet-v1, YOLO-V3, YOLO
Scaled-YOLO-V4, YOLO-V4, YOLO-V5 algorithms. Training algorithms were implemented
using the PyTorch and Keras libraries. Additionally, reduced network architectures were
trained to investigate the performance of the designed hardware. All the investigated
algorithms were trained using AMD Ryzen 5 5800H CPU, Nvidia Geforce RTX 3060 GPU,
and Google Colab service with Tesla P100-16 GB GPU.

The models were trained using our collected dataset. Initially, we used pre-trained
models. The number of iterations and epochs were kept identical for all trained architec-
tures. The training methodology was based on [67,68]. The size of the trained models and
libraries used are given in Table 1.

The first model we investigated was a regression-based SSD-Mobilenet-v1 algorithm.
SSD-300 and Mobilenet detector were used [69]. This algorithm is frequently implemented
on smartphones and integrated devices for real-time applications of various object-detection
problems. In our experiment, a pre-trained mobilenet-v1-ssd-mp-0.675 model was used.
The model was loaded using PyTorch library functions and trained on the collected dataset.
The model was trained for 100 epochs. The training results showed a validation loss of
2.1466. The size of the trained model was 36.2 MB.

Appl. Sci. 2022, 12, 5608 9 of 19

Table 1. Size and libraries used for the trained algorithms.

Model Library Model Size, MB

SSD-MobileNet-v1 PyTorch 36.2

YOLOv3 Keras 237.2
YOLOv3-tiny 33.9

YOLOv4 Darknet 244.2
YOLOv4-tiny 22.5

YOLOv4-Scaled PyTorch 401.3
YOLOv5s 14.1

Several YOLO algorithms were investigated in our experiment, such as YOLOv3,
YOLOv3-tiny, YOLOv4, YOLOv4-tiny, YOLOv4-Scaled, and YOLOv5s. For the input of the
algorithms, 416 × 416 px size images were used. The main differences between all YOLO
algorithms were the backbone of the network: YOLOv3 uses Darknet53, YOLOv4 uses the
CSPdarknet53 backbone, and YOLOv5 uses the Focus structure with the CSPdarknet53
backbone [70].

YOLOv3 and YOLOv3-tiny models were configured and trained using the Keras
library [71]. Both models were trained for 100 epochs using Layers freeze. YOLOv3 model
validation loss was 12.607, and size was 237.2 MB. The YOLOv3 tiny model training was
stopped when validation loss was 11.642, the model file size was 33.9 MB.

Darknet library was used to train YOLOv4 and YOLOv4-tiny models [72]. The models
were trained for 8000 batch iterations. Final size of the YOLOv4 model was 244.2 MB, and
of the YOLOv4-tiny—22.5 MB.

Furthermore, to train and adopt the YOLOv4-Scaled and YOLOv5s models, the Py-
Torch library was used. The models were trained for 100 epochs and the model sizes were
401.3 and 14.1 MB, respectively. A detailed training diagram is given in Figure 7. In the
given figure, Intersection over Union (IoU), objectness and classification losses are shown.
The loss of IoU shows how well the algorithms investigated can detect the center and edges
of the components. Based on the results shown, YOLOv4-Scaled achieved a lower IoU
loss after training for 100 epochs. Objectness loss shows the probability to find the object
in the detect square box. It is shown that YOLOv5s achieved better objectness by approx.
0.014 points. Classification loss shows how well the algorithm can assign a correct label to
the detected objects. Based on the results shown, both algorithms displayed similar results.

Appl. Sci. 2022, 12, 5608 10 of 19

(a) (b)

(c)

Figure 7. IoU (a), objectness (b), and classification (c) loss of YOLOv4-Scaled and YOLOv5s models.

2.4. Evaluation Criteria

In the experimental research, several evaluation metrics were used and implemented,
as described in [73,74]. An average precision (AP) score was calculated for each SMD
component, and mean AP (mAP) score was used to assess the performance of the system
to detect the four components [73]. IoU threshold was set to 0.75. Additionally, to evaluate
the speed with which implemented architectures can detect objects, the architectures
were compared by the speed of frames processed per second (FPS) and Inference Time
(IT) [74]. Experimental results were obtained using Google Colab with Tesla P100-16 GB
and Nvidia Jetson Nano 4 GB hardware setup. A sample image of successfully detected
capacitors, moving in a line as packed components, on a conveyor belt, is shown in Figure 8.
Components in the image were detected using the YOLOv4 architecture.

Appl. Sci. 2022, 12, 5608 11 of 19

Figure 8. Frame of electronics components detection input using YOLOv4 architecture.

3. Experimental Results

In Section 2, the implementation of the integrated system for the SMD component
detector was described on a conveyor capable of running several state-of-the-art deep
learning algorithms. In addition, we describe the collected data set and the training of the
models. Using the proposed hardware setup, we conducted experimental research to find
the limitations of the IT and mAP scores with various implementations of deep learning
algorithms, when counting SMD components on a conveyor.

The experimental results of the deep learning algorithms implemented in the proposed
hardware, when detecting capacitors, are given in Table 2. As the results show, the highest
AP score was displayed by the YOLOv4-tiny algorithm—97.3%—using both hardware
setups. In general, the average precision between two hardware setups was less than
0.5% for the SSD-Mobilenet-V1, YOLOv3-Keras, YOLOv3-tiny, YOLOv4 and YOLOv4-tiny
architectures. Tesla P100 compared to Jetson Nano showed higher AP by 1.1%, 3.3% for
the YOLOv4-Scaled and YOLOv5s architectures, respectively. The inference times were
different by magnitudes from 2 to 50, depending on the investigated algorithm. Lowest
IT, of 10.4 ms was found for the YOLOv4 tiny algorithm when using Tesla P100 setup,
and 23.8 ms for SSD-Mobilenet-V1 algorithms (AP was 66.6%) when using the Jetson
Nano setup.

Appl. Sci. 2022, 12, 5608 12 of 19

Table 2. Experimental results of investigated deep learning algorithm implementations for capaci-
tor detection.

Tesla P100-16 GB Jetson Nano 4 GB

Model AP, % FPS IT, ms AP, % FPS IT, ms

SSD-
Mobilenet-

V1
66.7 89 11.2 66.6 42 23.8

YOLOv3-
Keras 90.2 14 71.4 90.1 1 1000

YOLOv3-
tiny 83.1 19 52.6 82.7 4 250

YOLOv4 94.4 49 20.4 94.6 1 1000
YOLOv4-

tiny 97.3 96 10.4 97.3 18 55.6

YOLOv4-
Scaled 87.8 44 22.7 86.7 4 250

YOLOv5s 88.6 89 11.2 85.3 8 125

The experimental results of the deep learning algorithms on the proposed hardware,
when detecting resistors, are given in Table 3. As the results show, the highest AP was
found using the YOLOv4 algorithm, 98.6% with the Jetson Nano hardware setup, and 98.5%
using YOLOv4-tiny on Tesla P100. In general, the average precision between two hardware
setups was less than 1% for SSD-Mobilenet-V1, YOLOv3-Keras, YOLOv4, YOLOv4-tiny,
and YOLOv4-Scaled architectures, while Tesla P100 showed higher AP by 11.1% when
using YOLOv3-tiny architecture and higher by 1.9% when using YOLOv5s architecture,
compared to Jetson Nano. The inference times were different by magnitudes from 2 to
20, depending on the algorithm investigated. The lowest IT—10.9 ms—was found when
investigating the YOLOv4 tiny algorithm using the Tesla P100 setup, and 24.4 ms for
SSD-Mobilenet-V1 algorithms (AP was 75.1%) when using Jetson Nano setup.

Table 3. Experimental results of investigated deep learning algorithm implementations for resistor
detection.

Tesla P100-16 GB Jetson Nano 4 GB

Model AP, % FPS IT, ms AP, % FPS IT, ms

SSD-
Mobilenet-

V1
75 89 11.2 75.1 41 24.4

YOLOv3-
Keras 92.7 15 66.7 92.7 1 1000

YOLOv3-
tiny 76.3 18 55.6 65.2 6 166.7

YOLOv4 97.7 48 20.8 98.6 1 1000
YOLOv4-

tiny 98.5 92 10.9 98.5 18 55.6

YOLOv4-
Scaled 89.1 44 22.7 89.1 2 500

YOLOv5s 92.9 70 14.3 91 8 125

Experimental results of deep learning algorithms implemented on the proposed hard-
ware, when detecting diodes, are given in Table 4. As the results show, the highest AP score
was displayed by the YOLOv3-Keras algorithm—88.6% and 88.7% using Tesla P100 and
Jetson Nano hardware setups, respectively. In general, the AP between two hardware se-
tups was less than 1% for SSD-Mobilenet-V1, YOLOv3-Keras, YOLOv3-tiny, YOLOv4-tiny,
and YOLOv4-Scaled algorithm implementations. Tesla P100 hardware setup, compared to
Jetson Nano, showed a lower AP by 19.7% when the YOLOv4 algorithm was implemented

Appl. Sci. 2022, 12, 5608 13 of 19

and a higher AP by 1.2% when the YOLOv5 algorithm was implemented. The inference
times were different by magnitudes from 2 to 50, depending on the investigated algorithm.
The lowest IT—8.2 ms—was found for YOLOv4-tiny algorithm implementation when
using Tesla P100 setup, and 24.4 ms for SSD-Mobilenet-V1 algorithms (AP was 67.2%)
when using the Jetson Nano setup.

Table 4. Experimental results of investigated deep learning algorithm implementations for diode
detection.

Tesla P100-16 GB Jetson Nano 4 GB

Model AP, % FPS IT, ms AP, % FPS IT, ms

SSD-
Mobilenet-

V1
67.3 92 10.9 67.2 41 24.4

YOLOv3-
Keras 88.6 16 62.5 88.7 1 1000

YOLOv3-
tiny 65.3 21 47.6 65.2 6 166.7

YOLOv4 66.2 49 20.4 85.9 1 1000
YOLOv4-

tiny 76.2 122 8.2 76.5 18 55.6

YOLOv4-
Scaled 70.7 46 21.7 70 2 500

YOLOv5s 82.8 79 12.7 81.2 8 125

The experimental results of the deep learning algorithms implemented on the pro-
posed hardware, when detecting transistors, are given in Table 5. As the results show,
the highest AP score was displayed by the YOLOv4 algorithm—95.4% and 97.2% for both
hardware setups. In general, the AP between two hardware setups was less than 1%
for SSD-Mobilenet-V1, YOLOv3-Keras, YOLOv3-tiny, YOLOv4-tiny, YOLOv4-Scaled and
YOLOv5s algorithm implementations. Tesla P100 hardware setup, compared to Jetson
Nano, showed a lower AP of 1.8% when YOLOv4 and YOLOv5s algorithms were imple-
mented. The inference times were different by magnitudes from 2 to 50, depending on the
algorithm investigated. The lowest IT—11 ms—was found when using the YOLOv5s algo-
rithm (AP was 68.8%) on the Tesla P100 setup, and 27.8 ms when using SSD-Mobilenet-V1
algorithm (AP was 60.5%) on the Jetson Nano setup.

Table 5. Experimental results of investigated deep learning algorithm implementations for transistor
detection.

Tesla P100-16 GB Jetson Nano 4 GB

Model AP, % FPS IT, ms AP, % FPS IT, ms

SSD-
Mobilenet-

V1
60.6 89 11.2 60.5 36 27.8

YOLOv3-
Keras 66.9 15 66.7 66.9 1 1000

YOLOv3-
tiny 63.5 19 52.6 63.5 6 166.7

YOLOv4 95.4 46 21.7 97.2 1 1000
YOLOv4-

tiny 79.9 65 15.4 79.8 17 58.8

YOLOv4-
Scaled 69.6 41 24.4 69.5 2 500

YOLOv5s 68.8 91 11 70.6 8 125

Appl. Sci. 2022, 12, 5608 14 of 19

The experimental results of deep learning algorithms implemented on the proposed
hardware, when detecting all four components, are given in Table 6. As the results show,
the highest mAP score of 94.08% was demonstrated using the implementation of the
YOLOv4 algorithm on Jetson Nano with an inference time of 1000 ms. Furthermore,
the YOLOv4 model showed 88.433% mAP on the Tesla P100 with IT of 20.8 ms. The second-
highest mAP score was found using the Jetson Nano hardware setup with implementation
of the YOLOv4 algorithm; it was 88.03%, and IT was 56.4 ms, and a 87.98% mAP score
with 11.2 ms using Tesla P100 platform was observed. The differences in mAP between
the hardware setups of the implementations of the SSD-Mobilenet-V1, YOLOv3-Keras,
YOLOv4-tiny, YOLOv4-Scaled, and YOLOv5s algorithms were less than 1.25%. Higher
mAP differences were found using the YOLOv3-tiny and YOLOv4 algorithms; these were
higher by 2.9% and 9.15% when comparing the Tesla P100 hardware setup with the Jetson
Nano. Inference time of SSD-Mobilenet-V1 was one of the lowest—11.1 and 25.1 ms for
Tesla P100 and Jetson Nano hardware setups, respectively. However, the mAP scores of
the SSD-Mobilenet-V1 algorithm were 67.4% and 67.35% for Tesla P100 and Jetson Nano
setups, respectively.

Table 6. Experimental results of investigated deep learning algorithm implementations for detection
of capacitor, resistor, diode and transistor SMD components.

Tesla P100-16 GB Jetson Nano 4 GB

Model AP, % FPS IT, ms AP, % FPS IT, ms

SSD-
Mobilenet-

V1
67.4 89.75 11.1 67.35 40 25.1

YOLOv3-
Keras 84.6 15 66.8 84.6 1 1000

YOLOv3-
tiny 72.05 19.25 52.1 69.15 5.5 187.5

YOLOv4 88.43 48 20.8 94.08 1 1000
YOLOv4-

tiny 87.98 93.75 11.2 88.03 17.75 56.4

YOLOv4-
Scaled 79.3 43.75 22.9 78.83 2.5 437.5

YOLOv5s 83.28 82.25 12.3 82.03 8 125

4. Discussion

The highest mAP score under 70 ms IT for all components was achieved using the
YOLOv4-tiny algorithm on a Jetson Nano platform: 88.03% mAP. Naturally, a larger
YOLOv4 network showed a higher mAP score of 94.08% mAP, but at IT of 1000 ms. Our
experimental results are in line with similar research [75]. The authors of this paper imple-
mented and investigated the performance of several deep learning algorithms (including
YOLOv4 and YOLOv4-tiny) for an electronic component conveyor belt. Their findings show
that YOLOv4-tiny achieves slightly higher mAP. However, the hardware and mounting
type of electronic components were different from our work. In their research (compared
to ours), the authors used a more powerful hardware system, with an Intel Core i7-8700
CPU, NVIDIA TITAN Xp GPU, 32 GB RAM. In addition, the authors intend to deploy their
proposed method on an embedded computing device in their future work. Furthermore,
the detected electronic components were of through-hole technology type, which is visually
much easier to distinguish; in particular, differences between resistors and capacitors are
clearly identifiable. In another work [60], the results of the experimental research showed
that YOLOv4 architectures achieve a higher mAP score compared to YOLOv3 when detect-
ing SMD components on a PCB board. However, the hardware used in this investigation is
not reported.

Appl. Sci. 2022, 12, 5608 15 of 19

The detection of electronic components on the conveyor did not reach 100%, due to
the three main challenges of the problem. The first is the difficulty of distinguishing the
SMD components from one another; the main differences between the components are the
size and shape of the leads. The second challenge is to meet the requirements of real-time
detection: while we run a real-time detection, the conveyor moves and changes its velocity.
Thus, it adds noise to the input image (e.g., blur, unwanted reflections from lightning).
Such noises introduce distortions and make it difficult to distinguish components that
already have small visual differences. The third challenge is the requirement that the model
is able to operate in the embedded computing device. Such devices usually have limited
computing power and are required to operate in real-time. In practice, it is a common
setup to reduce deployment and scaling costs. Thus, these three challenges decrease the
performance of the detector.

In our work, we investigated the detection of four different electronic components,
these being capacitors, resistors, diodes, and transistors. In practice, resistors and capacitors
contribute to the largest volume of electronic components on a conveyor. The average
precision for the detection of capacitors and resistors was 97.3% and 97.7%, respectively.
Several recently published research papers accentuate the challenge of detecting these
two components with a higher that 96% mAP [47,58,76]. Our results show a considerable
improvement in the detection of resistors and capacitors.

To deploy a deep learning algorithm in a real-time object detection system, one needs
to choose an algorithm that can process a certain number of images per second. In prac-
tice, FPSs above 15 are sufficient when detecting and counting SMD components on a
conveyor (or inference time below 70 ms). Similar research works, proposing the auto-
matic identification of electronic components, deploy their system on powerful graphical
processors including NVIDIA TITAN Xp GPU [75], NVIDIA Quadro P5000 [58], NVIDIA
GTX 1050 [53]. On the contrary, our proposed system setup includes a microcomputer
running on an embedded device. Based on our results, the Tesla P100 platform achieved the
desired inference time for all models investigated. However, considering scale, price and
performance ratio, a more realistic approach would be to deploy such a system on a Jetson
Nano microcomputer. In this case, only several algorithms achieved mAP above 90%, with
ITs below 70 ms. Our results show that YOLOv4-tiny is the best choice to implement in an
integrated system with a Jetson Nano microcomputer when detecting four types of SMD
components; when detecting capacitors, the algorithm achieves 97.3% AP at 55.6 ms IT;
when detecting resistors, the algorithm achieves 98.5% AP at 55.6 ms IT.

Based on the experimental results, we can see that Tesla P100 detects objects at higher
FPS. One way to speed up the FPS for the Jetson Nano would be pruning technique.
In our work, we avoided using pruning of the models. Instead, we investigated the
performance of deploy-ready models, such as YOLOv4-tiny, SSD-Mobilenet-V1, YOLOv3-
tiny, YOLOv5s. Therefore, a trade-off between IT and mAP can be noticed when comparing
pruned models with their counterparts (e.g., YOLOv4 and YOLOv4-tiny), which is the
expected outcome, since reducing the size of model improves the IT and reduces the mAP.
However, when comparing similarly sized, but different architectures (e.g., SSD-MobileNet-
V1 and YOLOv3-Keras) a trade-off between IT and mAP was not found.

In theory, deployed models should achieve similar AP scores regardless of the hard-
ware they are deployed with. However, our results show that several algorithms, such
as YOLOv3-tiny, YOLOv4 achieve different AP scores based on the hardware they are
deployed with. Such dependencies may arise from custom hardware-based neural network
accelerators [77]. However, future research directions should not only aim to improve the
AP and IT scores in case of real-time SMD component detection, but also investigate the
dependencies of the AP score based on the deployed platform.

5. Conclusions

In this study, a real-time integrated SMD component detection and classification sys-
tem with a camera and a CNN deep learning model was proposed. In addition, in this work,

Appl. Sci. 2022, 12, 5608 16 of 19

we provide a performance comparison of several CNN deep learning models deployed in
the system. The performance of the algorithms investigated was compared using mean
average precision and inference time. The proposed hardware setup shows how to build a
low-cost integrated system for a conveyor in order to detect packed and unpacked moving
SMD components. The system meets the requirements for real-time detection in an indus-
trial environment with all limitations. Experimental results were obtained using the dataset
containing 7061 images of 8198 capacitors, 10,467 resistors, 8543 diodes, 1328 transistors.
Based on the results of this study, we can conclude that:

1. Proposed system includes a hardware setup with a camera and an implemented CNN
deep learning model, and meets the requirements of real-time detection and counting
of SMD components on a conveyor belt;

2. When detecting SMD-type capacitors on a conveyor, the highest mAP of 97.3% was
achieved using YOLOv4-tiny algorithm implementation on the Tesla P100-16 GB and
Jetson Nano 4 GB microcomputers;

3. When detecting SMD-type resistors and transistors, the highest mAPs of 97.7%
and 98.6% (for resistors) and 95.4% and 97.2% (for transistors) were achieved us-
ing YOLOv4 algorithm implementation on Tesla P100-16 GB and Jetson Nano 4 GB
microcomputers, respectively;

4. When detecting SMD-type diodes, the highest mAP of 88.6% and 88.7% was achieved
using YOLOv3-Keras algorithm implementation;

5. When detecting four types of SMD components on a conveyor, the highest mAP
using an Nvidia Jetson Nano 4 GB microcomputer was achieved with the YOLOv4
algorithm, which is 94.08% with 1000 ms IT; using the YOLOv4-tiny algorithm on a
Jetson Nano 4 GB microcomputer, IT is 56.4 ms, with an mAP score of 88.03%;

6. When detecting four types of SMD components on a conveyor, the highest mAP using
Google Colab’s Tesla P100-16 GB was achieved with the YOLOv4 algorithm, which is
88.43% with 20.8 ms IT.

Author Contributions: Conceptualization, D.V.; methodology, D.V. and V.A.; software, D.V.; valida-
tion, D.V.; formal analysis, D.V.; investigation, D.V.; resources, D.V.; data curation, D.V.; writing—
original draft preparation, D.V. and V.A; writing—review and editing, D.V. and V.A.; visualization,
D.V.; supervision, V.A.; project administration, V.A. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available upon reasonable request
from the corresponding author. The data are not publicly available due to privacy issues.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AP Average precision
CNN Convolutional neural networks
CV Computer vision
FPS Frames per second
IoU Intersection over union
IT Inference time
mAP Mean average precision
PCB Printed circuit board
SMD Surface Mount Device

Appl. Sci. 2022, 12, 5608 17 of 19

References
1. Kumar, A.; Kaur, A.; Kumar, M. Face detection techniques: A review. Artif. Intell. Rev. 2019, 52, 927–948.
2. Minaee, S.; Luo, P.; Lin, Z.; Bowyer, K. Going deeper into face detection: A survey. arXiv 2021, arXiv:2103.14983.
3. Wali, S.B.; Abdullah, M.A.; Hannan, M.A.; Hussain, A.; Samad, S.A.; Ker, P.J.; Mansor, M.B. Vision-based traffic sign detection

and recognition systems: Current trends and challenges. Sensors 2019, 19, 2093.
4. Tai, S.K.; Dewi, C.; Chen, R.C.; Liu, Y.T.; Jiang, X.; Yu, H. Deep learning for traffic sign recognition based on spatial pyramid

pooling with scale analysis. Appl. Sci. 2020, 10, 6997.
5. Gu, Y.; Si, B. A Novel Lightweight Real-Time Traffic Sign Detection Integration Framework Based on YOLOv4. Entropy 2022,

24, 487.
6. Sang, J.; Wu, Z.; Guo, P.; Hu, H.; Xiang, H.; Zhang, Q.; Cai, B. An improved YOLOv2 for vehicle detection. Sensors 2018, 18, 4272.
7. Maity, M.; Banerjee, S.; Chaudhuri, S.S. Faster r-cnn and yolo based vehicle detection: A survey. In Proceedings of the 2021

5th International Conference on Computing Methodologies and Communication (ICCMC), Erode, India, 8–10 April 2021;
pp. 1442–1447.

8. Tumas, P.; Jonkus, A.; Serackis, A. Acceleration of HOG based pedestrian detection in FIR camera video stream. In Proceedings of
the 2018 Open Conference of Electrical, Electronic and Information Sciences (eStream), Vilnius, Lithuania, 26 April 2018; pp. 1–4.

9. Li, Z.; Zhang, R.; Lee, C.H.; Lee, Y.C. An evaluation of posture recognition based on intelligent rapid entire body assessment
system for determining musculoskeletal disorders. Sensors 2020, 20, 4414.

10. Sarvamangala, D.; Kulkarni, R.V. Convolutional neural networks in medical image understanding: A survey. Evol. Intell. 2022,
15, 1–22.

11. Gaur, L.; Bhatia, U.; Jhanjhi, N.; Muhammad, G.; Masud, M. Medical image-based detection of COVID-19 using deep convolution
neural networks. Multimed. Syst. 2021, 1–10. https://doi.org/10.1007/s00530-021-00794-6.

12. AbdElhamid, A.A.; AbdElhalim, E.; Mohamed, M.A.; Khalifa, F. Multi-Classification of Chest X-rays for COVID-19 Diagnosis
Using Deep Learning Algorithms. Appl. Sci. 2022, 12, 2080.

13. Minaee, S.; Boykov, Y.Y.; Porikli, F.; Plaza, A.J.; Kehtarnavaz, N.; Terzopoulos, D. Image segmentation using deep learning: A
survey. IEEE Trans. Pattern Anal. Mach. Intell. 2021. https://doi.org/10.1109/TPAMI.2021.3059968.

14. Hesamian, M.H.; Jia, W.; He, X.; Kennedy, P. Deep learning techniques for medical image segmentation: Achievements and
challenges. J. Digit. Imaging 2019, 32, 582–596.

15. Shamim, S.; Awan, M.J.; Mohd Zain, A.; Naseem, U.; Mohammed, M.A.; Garcia-Zapirain, B. Automatic COVID-19 Lung Infection
Segmentation through Modified Unet Model. J. Healthc. Eng. 2022, 2022, 6566982.

16. Hossain, M.Z.; Sohel, F.; Shiratuddin, M.F.; Laga, H. A comprehensive survey of deep learning for image captioning. ACM
Comput. Surv. (CsUR) 2019, 51, 1–36.

17. Wang, Q.; Zhang, L.; Bertinetto, L.; Hu, W.; Torr, P.H. Fast online object tracking and segmentation: A unifying approach. In
Proceedings of the IEEE/CVF conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019;
pp. 1328–1338.

18. O’Mahony, N.; Campbell, S.; Carvalho, A.; Harapanahalli, S.; Hernandez, G.V.; Krpalkova, L.; Riordan, D.; Walsh, J. Deep
learning vs. traditional computer vision. In Proceedings of the Science and Information Conference, Las Vegas, NA, USA, 25–26
April 2019; Springer: Berlin/Heidelberg, Germany, 2019, pp. 128–144.

19. Wang, D.; Wang, X.; Lv, S. An overview of end-to-end automatic speech recognition. Symmetry 2019, 11, 1018.
20. Pipiras, L.; Maskeliūnas, R.; Damaševičius, R. Lithuanian speech recognition using purely phonetic deep learning. Computers

2019, 8, 76.
21. Otter, D.W.; Medina, J.R.; Kalita, J.K. A survey of the usages of deep learning for natural language processing. IEEE Trans. Neural

Networks Learn. Syst. 2020, 32, 604–624.
22. Syed, A.S.; Sierra-Sosa, D.; Kumar, A.; Elmaghraby, A. A Deep Convolutional Neural Network-XGB for Direction and Severity

Aware Fall Detection and Activity Recognition. Sensors 2022, 22, 2547.
23. García-Zapirain, B.; Elmogy, M.; El-Baz, A.; Elmaghraby, A.S. Classification of pressure ulcer tissues with 3D convolutional neural

network. Med Biol. Eng. Comput. 2018, 56, 2245–2258.
24. Ball, J.E.; Anderson, D.T.; Chan Sr, C.S. Comprehensive survey of deep learning in remote sensing: Theories, tools, and challenges

for the community. J. Appl. Remote Sens. 2017, 11, 042609.
25. Liu, L.; Ouyang, W.; Wang, X.; Fieguth, P.; Chen, J.; Liu, X.; Pietikäinen, M. Deep learning for generic object detection: A survey.

Int. J. Comput. Vis. 2020, 128, 261–318.
26. O’Shea, K.; Nash, R. An introduction to convolutional neural networks. arXiv 2015, arXiv:1511.08458.
27. Han, D.; Liu, Q.; Fan, W. A new image classification method using CNN transfer learning and web data augmentation. Expert

Syst. Appl. 2018, 95, 43–56.
28. Albawi, S.; Mohammed, T.A.; Al-Zawi, S. Understanding of a convolutional neural network. In Proceedings of the 2017

International Conference on Engineering and Technology (ICET), Antalya, Turkey, 21–23 August 2017; pp. 1–6.
29. Ren, Y.; Zhu, C.; Xiao, S. Small object detection in optical remote sensing images via modified faster R-CNN. Appl. Sci. 2018,

8, 813.
30. Ghadi, Y.Y.; Waheed, M.; al Shloul, T.; A. Alsuhibany, S.; Jalal, A.; Park, J. Automated Parts-Based Model for Recognizing

Human–Object Interactions from Aerial Imagery with Fully Convolutional Network. Remote Sens. 2022, 14, 1492.

Appl. Sci. 2022, 12, 5608 18 of 19

31. Zhang, S.; Tong, H.; Xu, J.; Maciejewski, R. Graph convolutional networks: A comprehensive review. Comput. Soc. Netw. 2019,
6, 1–23.

32. Zhang, Y.D.; Satapathy, S.C.; Guttery, D.S.; Górriz, J.M.; Wang, S.H. Improved breast cancer classification through combining
graph convolutional network and convolutional neural network. Inf. Process. Manag. 2021, 58, 102439.

33. Poux, F. How to Represent 3D Data?; Towards Data Science: Toronto, Canada, 2020.
34. Wang, Y.X.; Ramanan, D.; Hebert, M. Meta-learning to detect rare objects. In Proceedings of the IEEE/CVF International

Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 9925–9934.
35. Zhang, P.; Bai, Y.; Wang, D.; Bai, B.; Li, Y. Few-shot classification of aerial scene images via meta-learning. Remote Sens. 2021,

13, 108.
36. Gorospe, J.; Mulero, R.; Arbelaitz, O.; Muguerza, J.; Antón, M.Á. A Generalization Performance Study Using Deep Learning

Networks in Embedded Systems. Sensors 2021, 21, 1031.
37. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826.
38. Zhuang, X.; Zhang, T. Detection of sick broilers by digital image processing and deep learning. Biosyst. Eng. 2019, 179, 106–116.
39. Dong, N.; Zhao, L.; Wu, C.H.; Chang, J.F. Inception v3 based cervical cell classification combined with artificially extracted

features. Appl. Soft Comput. 2020, 93, 106311.
40. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of

the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Berlin/Heidelberg,
Germany, 2016; pp. 21–37.

41. Li, Z.; Peng, C.; Yu, G.; Zhang, X.; Deng, Y.; Sun, J. Light-head r-cnn: In defense of two-stage object detector. arXiv 2017,
arXiv:1711.07264.

42. Khemiri, R.; Kibeya, H.; Sayadi, F.E.; Bahri, N.; Atri, M.; Masmoudi, N. Optimisation of HEVC motion estimation exploiting SAD
and SSD GPU-based implementation. IET Image Process. 2018, 12, 243–253.

43. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
44. Simon, M.; Amende, K.; Kraus, A.; Honer, J.; Samann, T.; Kaulbersch, H.; Milz, S.; Michael Gross, H. Complexer-yolo: Real-time

3d object detection and tracking on semantic point clouds. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops, Long Beach, CA, USA, 16–17 June 2019.

45. Huang, R.; Pedoeem, J.; Chen, C. YOLO-LITE: A real-time object detection algorithm optimized for non-GPU computers.
In Proceedings of the 2018 IEEE International Conference on Big Data (Big Data), Seattle, WA, USA, 10–13 December 2018;
pp. 2503–2510.

46. Rodríguez-Rangel, H.; Morales-Rosales, L.A.; Imperial-Rojo, R.; Roman-Garay, M.A.; Peralta-Peñuñuri, G.E.; Lobato-Báez, M.
Analysis of Statistical and Artificial Intelligence Algorithms for Real-Time Speed Estimation Based on Vehicle Detection with
YOLO. Appl. Sci. 2022, 12, 2907.

47. Mallaiyan Sathiaseelan, M.A.; Paradis, O.P.; Taheri, S.; Asadizanjani, N. Why is deep learning challenging for printed circuit
board (pcb) component recognition and how can we address it? Cryptography 2021, 5, 9.

48. Sledevič, T.; Serackis, A. mNet2FPGA: A Design Flow for Mapping a Fixed-Point CNN to Zynq SoC FPGA. Electronics 2020,
9, 1823.

49. Chien, C.H.; Chen, P.Y.; Trappey, A.J.; Trappey, C.V. Intelligent Supply Chain Management Modules Enabling Advanced
Manufacturing for the Electric-Mechanical Equipment Industry. Complexity 2022, 2022, 8221706.

50. Yang, J.; Li, S.; Wang, Z.; Dong, H.; Wang, J.; Tang, S. Using deep learning to detect defects in manufacturing: A comprehensive
survey and current challenges. Materials 2020, 13, 5755.

51. Ghafoor, I.; Peter, W.T.; Munir, N.; Trappey, A.J. Non-contact detection of railhead defects and their classification by using
convolutional neural network. Optik 2022, 253, 168607.

52. Lee, C.H.; Liu, C.L.; Trappey, A.J.; Mo, J.P.; Desouza, K.C. Understanding digital transformation in advanced manufacturing and
engineering: A bibliometric analysis, topic modeling and research trend discovery. Adv. Eng. Inform. 2021, 50, 101428.

53. Xu, Y.; Yang, G.; Luo, J.; He, J. An electronic component recognition algorithm based on deep learning with a faster SqueezeNet.
Math. Probl. Eng. 2020, 2020, 2940286.

54. Wang, J.; Ma, Y.; Zhang, L.; Gao, R.X.; Wu, D. Deep learning for smart manufacturing: Methods and applications. J. Manuf. Syst.
2018, 48, 144–156.

55. Lee, C.H.; Trappey, A.J.; Liu, C.L.; Mo, J.P.; Desouza, K.C. Design and management of digital transformations for value creation.
Adv. Eng. Inform. 2022, 52, 101547.

56. Yang, J.; Li, S.; Wang, Z.; Yang, G. Real-time tiny part defect detection system in manufacturing using deep learning. IEEE Access
2019, 7, 89278–89291.

57. Singhal, A.; Sinha, P.; Pant, R. Use of deep learning in modern recommendation system: A summary of recent works. arXiv 2017,
arXiv:1712.07525.

58. Li, J.; Gu, J.; Huang, Z.; Wen, J. Application research of improved YOLO V3 algorithm in PCB electronic component detection.
Appl. Sci. 2019, 9, 3750.

Appl. Sci. 2022, 12, 5608 19 of 19

59. Kuo, C.W.; Ashmore, J.D.; Huggins, D.; Kira, Z. Data-efficient graph embedding learning for PCB component detection. In
Proceedings of the 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), Waikoloa Village, HI, USA, 7–11
January 2019; pp. 551–560.

60. Fabrice, N.; Lee, J.J.; et al. SMD Detection and Classification Using YOLO Network Based on Robust Data Preprocessing and
Augmentation Techniques. J. Multimed. Inf. Syst. 2021, 8, 211–220.

61. Lu, H.; Mehta, D.; Paradis, O.; Asadizanjani, N.; Tehranipoor, M.; Woodard, D.L. Fics-pcb: A multi-modal image dataset for
automated printed circuit board visual inspection. Cryptol. ePrint Arch. 2020. Available online: https://eprint.iacr.org/2020/366
(accessed on 23 April 2022).

62. Mahalingam, G.; Gay, K.M.; Ricanek, K. Pcb-metal: A pcb image dataset for advanced computer vision machine learning
component analysis. In Proceedings of the 2019 16th International Conference on Machine Vision Applications (MVA), Tokyo,
Japan, 27–31 May 2019; pp. 1–5.

63. Nvidia. Jetson Nano. 2019. Available online: https://developer.nvidia.com/embedded/develop/hardware (accessed on 23
April 2022).

64. Raspberry. Camera Module. Available online: https://www.raspberrypi.org/documentation/hardware/camera/ (accessed on
23 April 2022).

65. Nvidia. Capture SDK. Available online: https://developer.nvidia.com/capture-sdk (accessed on 23 April 2022).
66. Roboflow. A Computer Vision Developer Framework. Available online: https://roboflow.com/ (accessed on 23 April 2022).
67. Zhang, S.; Wu, Y.; Men, C.; Li, X. Tiny YOLO optimization oriented bus passenger object detection. Chin. J. Electron. 2020,

29, 132–138.
68. Rahmaniar, W.; Hernawan, A. Real-time human detection using deep learning on embedded platforms: A review. J. Robot.

Control (JRC) 2021, 2, 462–468.
69. SSD-Mobilenet. Single Shot MultiBox Detector Implementation in Pytorch. Available online: https://github.com/qfgaohao/

pytorch-ssd (accessed on 24 April 2022).
70. Ge, Z.; Liu, S.; Wang, F.; Li, Z.; Sun, J. Yolox: Exceeding yolo series in 2021. arXiv 2021, arXiv:2107.08430.
71. Ketkar, N. Introduction to Keras. In Deep learning with Python; Springer: Berlin/Heidelberg, Germany, 2017; pp. 97–111.
72. Feng, H.; Mu, G.; Zhong, S.; Zhang, P.; Yuan, T. Benchmark analysis of Yolo performance on edge intelligence devices.

Cryptography 2022, 6, 16.
73. Padilla, R.; Netto, S.L.; Da Silva, E.A. A survey on performance metrics for object-detection algorithms. In Proceedings of the

2020 international conference on systems, signals and image processing (IWSSIP), Niteroi, Brazill, 1–3 July 2020; pp. 237–242.
74. Canziani, A.; Paszke, A.; Culurciello, E. An analysis of deep neural network models for practical applications. arXiv 2016,

arXiv:1605.07678.
75. Guo, C.; Lv, X.l.; Zhang, Y.; Zhang, M.l. Improved YOLOv4-tiny network for real-time electronic component detection. Sci. Rep.

2021, 11, 1–13.
76. Li, J.; Chen, Y.; Li, W.; Gu, J. Balanced-YOLOv3: Addressing the Imbalance Problem of Object Detection in PCB Assembly Scene.

Electronics 2022, 11, 1183.
77. Wang, E.; Davis, J.J.; Zhao, R.; Ng, H.C.; Niu, X.; Luk, W.; Cheung, P.Y.; Constantinides, G.A. Deep neural network approximation

for custom hardware: Where we’ve been, where we’re going. ACM Comput. Surv. (CSUR) 2019, 52, 1–39.

https://eprint.iacr.org/2020/366
https://developer.nvidia.com/embedded/develop/hardware
https://www.raspberrypi.org/documentation/hardware/camera/
https://developer.nvidia.com/capture-sdk
https://roboflow.com/
https://github.com/qfgaohao/pytorch-ssd
https://github.com/qfgaohao/pytorch-ssd

	Introduction
	Materials and Methods
	Hardware Setup
	Dataset Collection and Augmentation
	Training of Models
	Evaluation Criteria

	Experimental Results
	Discussion
	Conclusions
	References

