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Abstract: To solve the problem of data accuracy degradation of vehicle GNSS/INS integrated
navigation systems when the GNSS signal is unavailable or there is a GNSS outage, this paper
improves the existing GNSS/INS integration methodology for land vehicle navigation based on
the AI method. First, a GNSS/INS integration methodology for land vehicle navigation based on
position update architecture (PUA) using LightGBM regression for predicting the position of a vehicle
during a GNSS outage is presented. It uses LightGBM to model the relationship between INS data
and vehicle position changes. On-board INS and GNSS data are collected when the GNSS signal
is available and are used to train the PUA-LightGBM model; in the event of a GNSS outage, INS
data are used as the input to the PUA-LightGBM to predict the change in vehicle position. Second, a
vehicle navigation data acquisition system was designed for model validation. This included a self-
developed GNSS/INS integrated navigation system and a Novatel pwrpak7-e1 GNSS/INS integrated
navigation system for data acquisition on six road segments. Finally, the collected data were used
for machine learning training of the PUA-LightGBM model and the existing PUA-RandomForest
model. As a result, the PUA-LightGBM predicts the vehicle position with less error in the event of
a GNSS outage and takes less time to train. It was also demonstrated that by allowing the model
to be dynamically trained or updated while the vehicle is moving the PUA-LightGBM could adapt
perfectly to the predictions of vehicle position changes in different complex road segments.

Keywords: LightGBM; integrated navigation algorithm; global navigation satellite system; inertial
navigation system; GNSS outage

1. Introduction

Navigation and positioning are among the most widely used technologies in intelligent
transportation systems, advanced vehicle control, and vehicle safety systems [1]. The main
idea behind their algorithms is to use satellite data and vehicle dynamics data to calculate
the current specific position of the vehicle. An algorithm’s robustness determines the
accuracy of the information output from the vehicle navigation system and its ability to
adapt to the environment. GNSS/INS integrated navigation is a low-cost, highly accurate,
and versatile integrated navigation solution [2]. Global navigation satellite systems (GNSS)
provide real-time information on the position of a vehicle, primarily via satellites. The
inertial navigation system first gathers information about angular and linear motion relative
to inertial space. It then uses inertial navigation differential equations to calculate vehicle
speed and position changes. The GNSS and INS are complementary in many ways [3]:
(1) The raw vehicle dynamics data measured by the INS are often noisy. The vehicle position
information obtained through independent INS solving can drift over time, requiring
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external assistance to calibrate the INS data. GNSS systems, on the other hand, can
provide long-term stable data when the signal is available and can be used to limit INS
errors. (2) There could be GNSS outages in practical operation due to signal blockage or
interference, such as the presence of buildings, tunnels, forest cover, etc. In this case, the
vehicle cannot obtain the data provided by the GNSS. Hence, continuity data provided
by the INS can compensate for the lack of position data in the event of a GNSS outage.
(3) The data provided by the GNSS for the vehicle are updated less frequently, while the
INS provides accurate short-term data at a very high rate, which can be used to interpolate
GNSS trajectories. (4) The INS provides the complete vehicle state (e.g., position, speed,
attitude, etc.), whereas a single GNSS receiver cannot provide angular information about
the vehicle. These are also the reasons for creating vehicle integrated navigation algorithms
that integrate GNSS and INS. However, the accuracy of the integrated navigation algorithm
could be inevitably reduced by a long-time outage of GNSS. As a result, the solution to this
problem has emerged as a hot topic in integrated navigation algorithm research.

The approaches to vehicle integrated navigation algorithms can be classified into two
categories. One category is the vehicle integrated navigation algorithms based on Bayesian
filtering techniques. Kalman filtering (KF) is one of the most common implementations. Liu
et al. applied a dual-filter smoother to an extended Kalman filter (EKF)-based INS/GPS in-
tegrated navigation algorithm for vehicles. The authors found that the algorithm provided
accurate navigation parameters in the presence of GPS signal blockage, thereby improving
the overall data fusion [4]. Yang et al. proposed a MEMS-INS/GNSS integrated naviga-
tion algorithm for vehicles combined with Allan variance analysis under non-complete
constraints. The resulting algorithm is applicable to the loose/tight integrated naviga-
tion method for vehicles with specific fault detection and troubleshooting capability [5].
Sasani et al. proposed the attitude and heading reference system (AHRS) algorithm for an
INS/GPS loose integrated navigation system, which was found to suppress the divergence
of the INS solution during a GPS outage [6]. Wang et al. proposed an SINS/OD integrated
navigation algorithm for vehicles based on the state transformation extended Kalman filter
(ST-EKF). The authors discovered that it achieved higher positioning and heading angle
accuracy than the conventional EKF algorithm [7]. Cui et al. used an improved cubature
Kalman filter (CKF) algorithm based on the sigma point update framework for GNSS/INS
integrated navigation and found that it improved the reliability of the navigation system
in a GNSS-challenged environment [8]. Bijjahalli and Sabatini proposed a novel low-cost
high-performance vehicle integrated navigation algorithm. It employed EKF to fuse data
from GNSS, INS, visual odometry, and vehicle dynamics models (as virtual sensors) [9].
The other category is artificial intelligence (AI) technology-based integrated navigation al-
gorithms for vehicles, which aim to find linear and non-linear relationships between sensor
data during vehicle operation, thus completing the process of data fusion. Chiang et al.
used multilayer feedforward neural networks and backpropagation learning algorithms to
improve the INS/DGPS integrated navigation method for vehicles. The resulting algorithm
eliminates the effects of neural network parameters and random noise on positioning
accuracy [10]. Aggarwal et al. proposed a D-S neural network for GPS/INS data fusion
by combining D-S evidence theory with a neural network model. The authors found that
the model improved the positioning accuracy of the vehicle integrated navigation system
under GPS outage conditions [11]. Noureldin et al. implemented an autoregressive process
in a stochastic modeling approach based on microelectromechanical systems inertial sensor
(MEMS-INS) errors to reduce INS errors. The authors used AI to improve the accuracy
of information fusion by enhancing the conventional KF module, resulting in improved
performance of a low-cost MEMS-INS/GPS integrated navigation system for vehicles [12].
Chiang and Huang proposed an INS/GPS integrated navigation method that combines
artificial neural networks and uses historical information. This method prevents the con-
tinuous growth of INS errors when GPS is unavailable for long periods [13]. Yue et al.
proposed a two-layer, highly robust algorithm for vehicle integrated navigation systems
that fuses GNSS and INS data via support vector machine regression (SVR) and adaptive
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Kalman filtering (AKF). This resulted in an algorithm that improves vehicle integrated nav-
igation system positioning accuracy when GNSS signals are weak [14]. Liu et al. proposed
a GPS/INS neural network (GI-NN) deep learning network structure as an INS aid when
GPS is unavailable; this algorithm uses historical data from the IMU and exploits both
spatial and temporal features in the IMU to achieve better localization results [15]. Using a
T2FHNN (type-2 fuzzy Hammerstein neural network), Khankalantary et al. proposed a
data fusion scheme for a SINS/GNSS integrated navigation system with better navigation
accuracy and stability [16].

In summary, some researchers have made significant progress in improving vehicle
positioning accuracy through improved integrated navigation algorithms. However, little
information is available on vehicle integrated navigation algorithms based on efficient AI
methods. The machine learning methods used in the existing literature for vehicle position
prediction models almost did not consider the efficiency optimization issue, such as the
cost of time and computational resources required for model training [12,15]. In addition,
most previous AI models for predicting a vehicle’s position in the event of a GNSS outage
cannot be updated online after the initial machine learning training. This results in these
models only having good position prediction accuracy when the vehicle is driving on
certain types of road segments covered in the training set. Moreover, the models cannot
adapt to complex and dynamic changes in road segments. Overall, these models lack
robustness. The AI method based on an improved position update architecture (PUA) for
GNSS/INS integrated navigation can predict the position of a vehicle in the case of a GNSS
outage. As a result, the objective of this study is to propose a new LightGBM machine
learning algorithm based on an improved PUA for GNSS/INS integrated navigation that
predicts vehicle position in the event of a GNSS outage. Additionally, the study proposes to
solve the problem of the inefficient model training used in AI-based integrated navigation
algorithms by improving model training efficiency. Furthermore, the PUA-LightGBM
model is being proposed for the first time.

The structure of the paper is as follows: The LightGBM framework and the PUA-
LightGBM model are described in Section 2. Section 3 describes the methodology and
process of the experiments and the workflow of the PUA-LightGBM model in detail. The
results and discussions of the experiments are presented in Section 4. Section 5 provides
a conclusion.

2. Introduction to LightGBM Machine Learning Model Based on PUA
2.1. LightGBM Machine Learning Model

Gradient boosting decision tree (GBDT) is a common machine learning model used
in artificial intelligence that employs several basic learners that are iteratively trained
to produce the optimal model. LightGBM is a distributed and efficient framework for
implementing the gradient boosted decision tree (GBDT) algorithm [17], which fits a new
decision tree by approximating the negative gradient of the loss function as the residual of
the current decision tree.

To improve the efficiency of machine learning model training while losing as little
accuracy as possible in model prediction, the following seven optimization methods exist
for LightGBM: (1) histogram-based decision tree algorithm, (2) gradient-based one-side
sampling (GOSS), (3) exclusive feature bundling (EFB), (4) leaf-wise with max depth
limitation, (5) categorical feature support, (6) parallel learning support, and (7) increase
cache hit chance. Methods (1)–(4) are optimization algorithms, and (5)–(7) are optimizations
for engineering applications.

GOSS and EFB, two main techniques used by LightGBM, improve efficiency by re-
ducing the number of samples and features, respectively. The GOSS algorithm retains all
instances with large gradients and samples with small gradients at random. EFB bundles
mutually exclusive features and can losslessly reduce feature dimensionality.
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2.2. Position Update Architecture and PUA-LightGBM Model

The position update architecture is a data fusion architecture for GNSS/INS integrated
navigation that uses the AI method, which defines the AI-based integrated navigation
model’s inputs and outputs (Figure 1A). The architecture trains the AI model based on INS
data and GNSS data, with the inputs to the model being the velocity (VINS) and azimuth
(θINS) given by the INS and the outputs being the differences in longitude (δE) and latitude
(δN) between the two epochs. Based on the linear and non-linear relationships between the
motion data and vehicle position coordinates, PUA provides a training model for predicting
vehicle position changes. Hence, it is reasonable to use PUA to determine the inputs and
outputs of AI. PUA makes it possible to apply AI methods to find relationships between
vehicle dynamics data and position changes [18]. Initially, El-Sheimy et al. implemented
an AI-based integrated navigation algorithm using ANN and PUA; in addition, AI-based
integrated navigation algorithms using PUA have been proposed successively: DSNN [11],
RFR [19], DS-SVM [20], etc.
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Figure 1. PUA-based LightGBM machine learning model. (A) Position update architecture (PUA),
t—time; VINS(t)—Velocity provided by INS at t; θINS(t)—Heading angle provided by INS at t;
δNPUA(t)—Latitude difference between epoch t and epoch t − 1; δEPUA(t)—Longitude difference
between epoch t and epoch t − 1; (B) Scheme of the LightGBM machine learning model based on
the PUA.

This study proposes to use the PUA-based LightGBM machine learning model to pre-
dict changes in vehicle position during GNSS outage conditions. During vehicle operation,
the data from the INS are combined with data from the GNSS to construct a training dataset
and train a position change prediction model. When there is a GNSS outage, the INS data
are used in the model to predict the change in vehicle position in real-time, as shown in
Figure 1B. It is important to note that this paper uses vehicle three-axis acceleration as a
feature input based on PUA. One of the main advantages of LightGBM is its high training
efficiency [17]. From a practical deployment point of view, LightGBM models for vehicle
position prediction in the event of a GNSS outage could collect more data. In this way,
the model can update or expand the dataset while the vehicle moves, allowing it to be
retrained at a lower cost and with greater adaptability.

3. Experimental Analysis and Method
3.1. Data Acquisition

A vehicle navigation data acquisition system was designed to acquire vehicle dynamics
and position data before and after the GNSS outage (Figure 2A). The system consisted of
a self-developed GNSS/INS integrated navigation system (Kalman-filter-based, loosely
coupled integration is used), a Novatel pwrpak7-e1 GNSS/INS integrated navigation
system, and a computer. The self-developed GNSS/INS integrated navigation system
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included a No. 2 satellite antenna, MEMS inertial measurement unit, data acquisition board,
data fusion board, and power supply unit. The data acquisition board was equipped with an
integrated UB4B0M GNSS board (accuracy: better than 1.5 m for single-point positioning).
The IMU200A inertial measurement unit (IMU) consisted of a gyroscope (range, ±300◦/s;
zero bias, 25.2◦/hr; angular random walk, 144◦/

√
hr) and an accelerometer (range, ±17 g;

zero bias, 0.2 mg; velocity random walk, 12 m/s/
√

hr), which were fixed to a platform
in the vehicle. Foam was used as a buffer material between the IMU and the platform
to minimize external interference during IMU operation. Its working process was as
follows: While the vehicle was moving, the No. 2 antenna installed on the vehicle’s roof
searched for and tracked satellite signals. When the number of satellites searched reached
four or more, the GNSS board embedded in the data acquisition board demodulated the
received signals. Then, it calculated the GNSS data, which included the vehicle’s position
coordinates. Simultaneously, the vehicle’s three-axis angular motion data and three-axis
acceleration data output from the IMU were transmitted in real time to the data acquisition
board, which intercepted and converted the GNSS data and INS raw data (IMU output) to
the preset data format to complete the data acquisition process. Then, the pre-processed
data were transferred to the data fusion board, where they were solved and fused to obtain
the final GNSS and INS data. Subsequently, these data were transferred to the computer
via the serial port of the data fusion board.

The Novatel pwrpak7-e1 GNSS/INS integrated navigation system consisted of No. 2
and No. 3 satellite antennas, a Novatel pwrpak7-e1 navigation unit with an integrated
satellite receiver, and an Epson G320 MEMS-IMU (gyroscope: range, ±150◦/s; zero bias,
3.5◦/hr; angle random walk, 0.1◦/

√
hr. Accelerometer: range, ±5 g; zero bias, 0.1 mg;

velocity random walk, 0.5 m/s/
√

hr). It was possible to capture a vehicle’s trajectory,
i.e., its location, with greater accuracy. The procedure was as follows: The No. 1 and
No. 3 satellite antennas searched for and track the satellite signals. When the satellite
positioning conditions were met, the Novatel pwrpak7-e1 performed the initial alignment
to establish the initial INS benchmark, then completed the process of collecting, calculating,
and fusing the GNSS and INS data and finally transmitted the data to the computer via the
communication interface.

For the experiments, an open closed-loop urban road trajectory (perimeter x road
width: 8168.0 × 20.6 m) was first selected (Figure 2B) to ensure that GNSS outages would
not occur automatically. While the vehicle was moving and the GNSS signal was available,
the position, speed, heading angle, pitch angle, and three-axis acceleration data were
collected simultaneously at a frequency of 50 Hz by two integrated navigation systems
installed on the vehicle. The data collected by the self-developed integrated navigation
system were then used to build a training set for the LightGBM model, which was used
to predict vehicle position in the event of a GNSS outage. Furthermore, to closely match
all realistic driving scenarios encountered by a typical land vehicle, the data acquisition
board of the self-developed integrated navigation system was manually disconnected from
the satellite antenna in several scenarios. These scenarios included uphill straight, uphill
bend, downhill straight, downhill bend, and two flat straight segments, which simulated
six GNSS outage situations encountered by the vehicle, with each outage lasting 20 s. When
simulating an outage in the self-developed integrated navigation system, only the INS
system can properly output data, as the input of the LightGBM model for vehicle position
prediction is under GNSS outage.

Because the outage would not occur in regular operation when a Novatel pwrpak7-e1
integrated navigation system was employed, it provided accurate vehicle position data
throughout, which were used as a baseline reference against the predicted output of the
LightGBM machine learning model.
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3.2. Model Training

First, data pre-processing was performed. A dataset was constructed using the output
data of the self-developed integrated navigation system; when the GNSS signal was avail-
able, incomplete strips of data were removed. Then, 80% of the dataset was divided into a
training set, and the remaining 20% was used as a test set. The latitude and longitude data
were compared to obtain the differences in longitude and latitude between the two epochs.
It is worth noting that LightGBM is a high-performance framework for implementing
GBDT, which is a tree model. Because the numerical scaling of the tree model does not
affect the position of the split point or its structure, data normalization is not required. The
training environment used was Windows 10 with an Intel i7-6700HQ processor, and the pro-
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gramming language was Python version 3.7 (Python Software Foundation, Fredericksburg,
VA, USA).

The LightGBM model training process was then carried out, as shown in Figure 3 [21].
The inputs and outputs of the PUA-LightGBM model for vehicle position prediction in
the event of a GNSS outage were determined according to Section 2.2. This means that
the inputs were the velocity (VINS) and azimuth (θINS) given by the INS and the three-axis
acceleration of the vehicle, and the outputs were the differences in longitude (δE) and
latitude (δN) between the two epochs. The longitude difference prediction and latitude
difference prediction models were trained separately to implement a multiple-output
regression. The parameter settings used in the model training and the descriptions of the
relevant parameters are given in Table 1.

Appl. Sci. 2022, 12, 5565 7 of 13 
 

two epochs. It is worth noting that LightGBM is a high-performance framework for im-
plementing GBDT, which is a tree model. Because the numerical scaling of the tree model 
does not affect the position of the split point or its structure, data normalization is not 
required. The training environment used was Windows 10 with an Intel i7-6700HQ pro-
cessor, and the programming language was Python version 3.7 (Python Software Foun-
dation, Fredericksburg, VA, USA). 

The LightGBM model training process was then carried out, as shown in Figure 3 
[21]. The inputs and outputs of the PUA-LightGBM model for vehicle position prediction 
in the event of a GNSS outage were determined according to Section 2.2. This means that 
the inputs were the velocity (VINS) and azimuth (θINS) given by the INS and the three-axis 
acceleration of the vehicle, and the outputs were the differences in longitude (δE) and 
latitude (δN) between the two epochs. The longitude difference prediction and latitude 
difference prediction models were trained separately to implement a multiple-output re-
gression. The parameter settings used in the model training and the descriptions of the 
relevant parameters are given in Table 1. 

 
Figure 3. Training process of PUA-LightGBM model and histogram-based decision tree algorithm. 
DT—Regression Decision Tree; 𝑓୧(𝑥 )—Output of DTi; ∑ 𝑓௜(𝑥ሻ௡௜ୀଵ —final output of the PUA-
LightGBM model. 

Table 1. The parameters of the LightGBM model. 

Parameter Name Value Parameter Implication 
learning_rate 0.05 Learning rate 
num_leaves 63 The number of leaves in a tree 

num_iterations 300 Number of basic learners 
bagging_fraction 0.8 The fraction of data to be considered for each iteration. 
feature_fraction 0.9 The fraction of features to be considered in each iteration.

The output data were first used to initialize a regression decision tree (DT) based on 
the loss function. Following that, n regression decision trees were created. A negative gra-
dient, or pseudo-residual, was calculated using the output value of the initialized DT with 
the set sample output value. This residual was then used as the output value of the set 
sample to train the first DT. The best split point needed to be found when training the DT, 
and LightGBM discretized the continuous floating-point feature values and generated a 
histogram (bins). As the data were traversed, the cumulative statistics of each discrete 

Figure 3. Training process of PUA-LightGBM model and histogram-based decision tree algo-
rithm. DT—Regression Decision Tree; fi(x)—Output of DTi; ∑n

i=1 fi(x) —final output of the PUA-
LightGBM model.

Table 1. The parameters of the LightGBM model.

Parameter Name Value Parameter Implication

learning_rate 0.05 Learning rate
num_leaves 63 The number of leaves in a tree

num_iterations 300 Number of basic learners
bagging_fraction 0.8 The fraction of data to be considered for each iteration.
feature_fraction 0.9 The fraction of features to be considered in each iteration.

The output data were first used to initialize a regression decision tree (DT) based on
the loss function. Following that, n regression decision trees were created. A negative
gradient, or pseudo-residual, was calculated using the output value of the initialized DT
with the set sample output value. This residual was then used as the output value of the
set sample to train the first DT. The best split point needed to be found when training the
DT, and LightGBM discretized the continuous floating-point feature values and generated
a histogram (bins). As the data were traversed, the cumulative statistics of each discrete
value in the histogram were counted. Feature selection was accomplished by traversing the
histogram based on the discrete values to determine the best split point. The algorithm cost
O(#data × #feature) for histogram building and O(#bin × #feature) for split point finding.
Since #bin is usually much smaller than #data, the histogram building dominated the
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computational complexity [17]. DT growth employs a leaf-wise technique, which locates
and divides the leaf node with the maximum splitting gain relative to the present leaf node.
In addition, during DT construction, the histogram of a leaf node can be obtained from the
difference between its parent node’s histogram and its sibling node’s histogram. When
DT reaches a depth limit or a limit on the number of leaf nodes, the residuals are fitted
by assigning leaf node weights to fit this time. After training, the LightGBM model for
vehicle position prediction in the event of a GNSS outage can be updated, and the process
can be repeated until n regression decision trees are constructed. Following this process,
the final LightGBM model for vehicle location prediction in the event of a GNSS outage
was generated. In Figure 3, fi(x) is the output of DTi. The final output of the LightGBM
model for vehicle position prediction in the event of a GNSS outage is ∑n

i=1 fi(x), which is
the prediction of the differences in longitude (δE) or latitude (δN).

3.3. Model Predictions

The model is ready for use once it has been trained. When there is a GNSS outage,
the IMU can continue to work regardless of the external environment. The velocity (VINS)
and azimuth (θINS) provided by INS as well as the vehicle’s three-axis acceleration were
employed in the model to obtain the model’s prediction of the differences in longitude (δE)
and latitude (δN) between the two epochs. The longitude and latitude information provided
before the GNSS outage were added to the prediction model’s longitude difference and
latitude difference outputs, respectively, to obtain the vehicle’s latitude and longitude
location information.

In this study, the performance of the GNSS outage position prediction model was
evaluated by two metrics: the root mean square error (RMSE) and the coefficient of de-
termination (R2), which are both commonly used in regression tasks. The equations are
shown in Equations (1) and (2).

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (1)

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − yi)

2 (2)

where n is the total number of data points, yi is the actual value, ŷi is the predicted value,
yi is the mean of the observed data, RMSE is the root mean square error, and R2 is the
coefficient of determination. The smaller the RMSE value, the higher the model prediction
accuracy; the closer the R2 value is to 1, the better the model fits the data.

In practical application, the model is used to predict the position and trajectory of a
vehicle when there is a GNSS outage, and it is compared with the actual vehicle trajectory.
Then, it gives the average error of the predicted trajectory compared to the real trajectory.
Model training time is critical in practice because the data acquisition system can capture
new data that are generated while the vehicle moves with a strong GNSS signal. A subset
of this new data can be used to augment the dataset. The shorter the training time for each
model, the less time it takes to retrain the LightGBM model for vehicle position prediction
during a GNSS outage. This means new models can be deployed faster and adapt to more
driving conditions. As a result, the training time of the model was also used as the final
evaluation metric.

4. Results and Discussion
4.1. Performance of the PUA-LightGBM Model

Table 2 presents the performance comparison of the PUA-LightGBM model to the
PUA-RandomForest model. Both the PUA-LightGBM model and the PUA-RandomForest
model are position prediction models for vehicles in the event of a GNSS outage. PUA-
RandomForest is an INS/GPS integrated method for position prediction based on PUA
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using a random forest regression model. PUA-RandomForest reduces position errors com-
pared to PUA-ANN, which has been proven to work better than the Kalman filter [19].
Because LightGBM only supports a single output, training the PUA-LightGBM model
requires sequential training of the PUA-LightGBM (δE) for longitude difference prediction
and PUA-LightGBM (δN) for latitude difference prediction, resulting in a total training
time of 3.076 s. The performance metrics (root mean square error and coefficient of de-
termination) of the PUA-LightGBM model for longitude and latitude change prediction
are evidently similar to those of the PUA-RandomForest model. However, the training
time of the PUA-LightGBM model for longitude and latitude variation prediction is only
3.7% of the training time of the PUA-RandomForest model. This demonstrates the ability
of the PUA-LightGBM model to have a short training time while maintaining accuracy.
This is attributed to the existence of algorithms and strategies for efficiency optimization
in LightGBM, such as the histogram-based decision tree algorithm, leaf-wise leaf growth
strategy with max depth limitation, gradient-based one-side sampling (GOSS) algorithm,
exclusive feature bundling (EFB), etc. This is in line with the findings of Chen et al. [22] and
Ju et al. [23]. The former used LightGBM to efficiently predict protein interactions, while
the latter combined convolutional neural networks and LightGBM to improve the accuracy
and efficiency of ultra-short-term wind power prediction models.

Table 2. Performance comparison of the PUA-LightGBM model to the PUA-RandomForest model.

Model Name RMSE R2 Training Time (s)

PUA-LightGBM (δE) 1.927 × 10−7 0.983 1.563
PUA-LightGBM (δN) 1.334 × 10−7 0.986 1.513
PUA-RandomForest 1.417 × 10−7 0.989 83.082

Note: PUA-LightGBM (δE)—The PUA-LightGBM model for predicting the difference in longitude between two
epochs; PUA-LightGBM (δN)—The PUA-LightGBM model for predicting the difference in latitude between two
epochs; RMSE—The root mean square error; R2—The coefficient of determination.

The existing algorithms for vehicle position prediction can give more accurate and
reliable navigation solutions than traditional machine learning algorithms. However, these
algorithms have disadvantages such as long design time and high computational bur-
dens [15], complex and insufficiently streamlined structures [12], and complex modelling
processes [16]. PUA-LightGBM model has a high-efficiency working process while main-
taining a high level of accuracy. An efficient training process is critical in application
scenarios of vehicle position prediction during a GNSS outage. Firstly, the shorter training
time allows the model dataset to be expanded, and an updated model is retrained while
the vehicle is moving. Meanwhile, the GNSS outage vehicle position prediction model can
be updated at a low cost, enabling the prediction of position changes in the presence of
more dynamic changes in the vehicle. However, this may necessitate an analysis of data
characteristics and the removal of similar training data to avoid wasting resources due to
data redundancy. Secondly, the models can be applied to various land vehicles and do
not require data to be collected and modeled in advance for the type of vehicle or driving
characteristics. Data are simply collected while the vehicle is moving, and the model is
quickly trained when the dataset reaches a certain volume. This allows for the prediction
of vehicle position changes in the event of a GNSS outage.

A major requirement for safe travel is fast and accurate navigation assistance [1]. From
the transport provider’s point of view, using the PUA-LightGBM model provides accurate
vehicle positioning at a low hardware cost. Even if the vehicle encounters GNSS outages
(e.g., obstruction of GNSS signals by tall buildings, forests, and tunnels), the vehicle’s
position information is still provided. Furthermore, based on the high adaptability of
PUA-LightGBM, positioning products using PUA-LightGBM are easily scalable.

To the best of our knowledge, the LightGBM algorithm has not been used to predict
vehicle position in the event of a GNSS failure. Furthermore, updating the GNSS outage
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vehicle position prediction model while the vehicle is moving has not been proposed yet,
which may be useful for future research.

4.2. The Field Test Analysis

Figure 4 shows the vehicle trajectories outputted by PUA-LightGBM (in yellow) and
Novatel pwrpak7-e1 (in red) on the six road segments of the field test. The trajectory
output from PUA-LightGBM is the model-predicted trajectory, and the Novatel pwrpak7-
e1 integrated navigation system provides the trajectory as the vehicle reference trajectory.
As can be seen from the trajectory figure, the PUA-LightGBM model predicted the position
changes of vehicles on straight roads (Figure 4B,C,E,F) better than those of vehicles on
curved road (Figure 4A,D). This is in line with the analysis by Chiang and Huang, which
found that the results predicted by the position prediction model during U-turns or sharp
turns (where there are significant dynamic changes in the vehicle’s movement) produce
significant position errors [13]. The vehicle motion is more stable when travelling on
a straight road, and the PUA-LightGBM model is better at predicting position changes.
However, the two turning segments chosen for the experiments were both sharp turning
segments, where the vehicle experienced significant dynamic changes in motion and
vibration of the vehicle body. The INS data at this point did not accurately reflect the
vehicle’s turning state, and the model’s training set did not contain enough vehicle turning
situations, causing the PUA-LightGBM model to be less effective in predicting the position
change of the vehicle when driving around a turn.
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Table 3 shows the average absolute error between the predicted and true positions
of the PUA-LightGBM and PUA-RandomForest models for the GNSS outage scenario.
PUA-LightGBM outperformed PUA-RandomForest on road segments a, b, and f in terms of
position prediction. On road segments c, d, and e, the position prediction accuracy of PUA-
LightGBM was slightly lower than that of PUA-RandomForest. Overall, the prediction
error of PUA-LightGBM was less different from PUA-RandomForest. The PUA-LightGBM
model, on the other hand, had a much shorter training time than the PUA-RandomForest
model (Table 2). This suggests that PUA-LightGBM is more efficient in training, costs less,
and has the potential for dynamic updating. The model does not need to be trained in
advance and can be dynamically trained or updated while the vehicle is moving. This
provides some flexibility to the PUA-LightGBM model and allows it to predict vehicle
position changes on a variety of complex road segments via dynamic updating of the model.

Table 3. Average absolute positional error for the PUA-LightGBM model and the PUA-RandomForest model.

Outage Road
Segment Road Length (m)

Average Absolute Positional Error (m) Percentage
Improvement (%)PUA-RandomForest PUA-LightGBM

a 191.18 61.85 59.71 +3.5
b 222.58 22.11 21.90 +0.95
c 215.24 17.43 17.55 −0.69
d 246.46 32.84 33.52 −2.1
e 231.65 23.33 24.48 −4.9
f 146.88 22.03 21.92 +0.50

5. Conclusions

This paper proposes a prediction model of vehicle position change in the event of a
GNSS outage based on position update architecture using LightGBM. The model solves the
problem of data accuracy degradation of the GNSS/INS integrated navigation system for a
vehicle when the satellite signal quality is weak or there is a GNSS outage and improves
the existing AI-based GNSS/INS integrated navigation algorithm. When the vehicle is
capable of receiving available GNSS signals, on-board INS and GNSS data are collected,
and the PUA-LightGBM model is trained. In the event of a GNSS outage, INS data are used
as the input to PUA-LightGBM to obtain the changes in longitude and latitude between
the two epochs output by the model, thus predicting the vehicle’s position at this time.
Experiments on six road segments were conducted using a self-designed vehicle navigation
data acquisition system. The results show that the error in predicting vehicle position in
the event of a GNSS outage for PUA-LightGBM is less than that of PUA-RandomForest.
However, the time required to train the PUA-LightGBM model is only 3.076 s, which
is significantly less than the time required to train the PUA-RandomForest model. The
authors believe that two factors should be considered in future research to enhance the
predictive model’s effectiveness in the event of a GNSS outage. One is reducing the noise
in INS data to obtain better position predictions. The other is the higher training efficiency
of PUA-LightGBM, which can save time and enable the model to be dynamically trained or
updated during vehicle operation. Thus, the PUA-LightGBM can adapt to the prediction of
vehicle position change on various complex road segments. The limitation of this study
is that the validation of the PUA-LightGBM model was not real-time. It might be better
to develop a real vehicle navigation system for embedding the PUA-LightGBM model in
the future.
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