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Abstract: Considering the low coverage of roadside cooperative devices at the current time, auto-
mated driving should detect all road markings relevant to driving safety, such as traffic signs that tend
to be of great variety but are fewer in number. In this work, we propose an innovative few-shot object
detection framework, namely Meta-YOLO, whose challenge is to generalize to the unseen classes by
using only a few seen classes. Simply integrating the YOLO mechanism into a meta-learning pipeline
will encounter problems in terms of computational efficiency and mistake detection. Therefore,
we construct a two-stage meta-learner F model that can learn the learner initialization, the learner
update direction and learning rate, all in a single meta-learning process. To facilitate deep networks
with learning, the fidelity features of the targets improve the performance of meta-learner F , but we
also design a feature decorrelation module (FDM), which firstly transforms non-linear features into
computable linear features based on RFF, and secondly perceives and removes global correlations
by iteratively saving and reloading the features and sample weights of the model. We introduce a
three-head module to learn global, local and patch correlations with the category detection result
outputted by the aggregation in meta-learner F , which endows a multi-scale ability with detector
φ. In our experiments, the proposed algorithm outperforms the three benchmark algorithms and
improves the mAP of few-shot detection by 39.8%.

Keywords: traffic signs detection; few-shot detection; feature decorrelation; meta-learning

1. Introduction

Traffic sign detection is the premise for driverless cars to understand traffic information,
avoid traffic congestion and accidents, and ensure the safe and orderly driving of vehicles.
It is also an essential submodule of driver assistance systems. Currently, CNNs are widely
used for traffic sign detection [1–4], which relies heavily on a large number of accurate
bounding box annotations and artificially balanced training classes. When the contextual
information of the training and testing sets is distributed unevenly, a serious mistake will
occur that fails to generalize. It is a great challenge to guarantee the accuracy and robustness
of detection results when samples are limited because of the large variation in object scales,
such as vehicle speed, and the inconsistencies in traffic signs due to regional differences.

Meta-YOLO draws inspiration from classical CNNs and few-shot techniques. We
outline some of the salient works here to set the context.

Traffic Sign Detection by CNNs. In recent years, researchers have generally adopted
a visual scheme based on deep CNNs (convolutional neural networks) to achieve the task
of traffic signs detection. A one-stage detector is based on the regression method, which
directly outputs the location and category of the bounding boxes densely in a single-shot,
such as YOLOv1-v4 [5–8], SSD [9] and RetinaNet [10]. A two-stage detector is based on
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a region proposal, including R-CNN [11], Fast R-CNN [12], Faster R-CNN [13] and Mask
R-CNN [14].

In view of the complex background and unbalanced sample distribution, Li et al. [15],
on the basis of a fully study of the relationship between different traffic signs with digital
characters, designed an SE block that could automatically learn the importance of each
channel from global information. This method simplifies the detection of a wide variety of
numerical traffic signs to 10 digital categories, but it is difficult to distinguish similar false
targets in complex real traffic scenes. Min et al. [16] proposed an LW-RefineNet to segment
the scene and obtain the information regarding the spatial positional at pixel level, and
then the constraint model is constructed to establish the search regions. Experiments show
that this method alleviates the mis-detection of small traffic signs. However, it is limited in
scenarios where both sides of the road, and other scenarios (such as intersections), have
ineffective detection. The above research shows that fully understanding and representing
the real features of the extracted traffic signs is an effective solution to distinguish similar
objects and filter false associations, which provides a basis for the design of the FDM
module in this algorithm. Too small traffic signs are one of the main causes of mis-detection,
and improving the multi-scale ability of detection algorithms is a common method to
solve the challenge of small target detection. Cao et al. [17] presented an improved Sparse
R-CNN and constructed hierarchical residual-like connections within each single radix
block, while a cross-channel attention mechanism was added in the RoI division process to
fuse shallow feature information. However, due to its single attention mechanism, global
correlation in RPN may suffer from spatial scale dislocation, and local correspondence
between objects may be ignored. Wang et al. [18] applied an inception and channel attention
mechanism to a superclass detector and directly concatenated feature maps of different
channels, which overcomes Cao et al.’s [17] complex backbone problems. At the same time,
there is a negative impact on robustness because the importance of the different feature
channels is not considered. Although the traffic sign detection algorithm based on CNN
has achieved remarkable results in real-time performance and accuracy, most methods
require a good deal of labeled sample data, and, in fact, our dataset cannot exhaust all
traffic scenes. Based on this consideration, we combined the meta-paradigm with CNN to
promote the robustness to unseen classes’ tasks.

Few-shot object detection. Since the performance of large neural networks is limited
by the size of the training set, a small number of samples within the training set can easily
lead to overfitting of the network and failure to realize the potential of deep networks.
Few-shot learning is a method of deep learning training and prediction with insufficient
sample data. In few-shot tasks, models trained with small samples can easily fall into
overfitting to small samples as well as underfitting to the target task.

Meta-learning has shown great potential in solving few-shot problems [19–22], and its
unique implementation can improve the accuracy of target detection for the classification
of novel categories. The main idea is to use meta-info accumulated from historical tasks
as prior knowledge, and then learn a small number of target samples to quickly master
new tasks. This method has strong adaptability and robustness to unseen scenarios. Meta-
learning approaches used for few-shot detection are roughly divided into three groups:
gradient-based [23,24], nearest-neighbor [25,26] and model-based [27,28]. Zhao et al. [29]
proposed a multi-scale few-shot detection model based on fine-tuning, which utilizes
residual involution blocks to construct the all feature learning architecture as well as design
PAM to aggregate from all feature levels. This method exploits shallow feature semantic
information for object location in the first stage and is partly fine-tuned on a small balanced
dataset in the second stage. However, Zhang et al. [30] visualized the feature distribution
of samples in the pre-training space, proving that fine-tuning has limited performance
improvement in meta-learning and can easily increase the risk of base task overfitting.
Therefore, in this work, we take meta-info to update the meta-learner to replace fine-tuning.
Whang et al. [31] proposed a general object detection system, which combines the feature-
based domain attention mechanism with sequence and exception networks, and assigns



Appl. Sci. 2022, 12, 5543 3 of 17

network activation to different domains through SE adapter library learning, so as to
automatically obtain the importance of each feature channel. The core idea of SENet is to
learn the feature weight according to the loss, so that the weight of an effective feature
map is large, and the weight of an ineffective feature map is small, so as to achieve better
results. However, the general detection system ignores the problem of spatial dislocation,
which leads to the poor performance in detecting traffic signs with small targets and a
chaotic background. Han et al. [32] improved the problem of training on base training to
generate candidate proposals for novel classes and missing high IOU boxes in the RPN
stage. A coarse-grained prototype matching network (meta-RPN) was proposed, which
takes a non-linear classifier based on metric learning to replace the traditional linear target
classifier, dealing with the similarity between anchor boxes and novel classes in query
images, so as to improve the recall of the few novel class candidate boxes. A fine-grained
prototype matching network (meta-classifier) was designed. The network has spatial
feature alignment and foreground attention modules to deal with the similarity between
noise and novel classes, so as to enhance the overall detection accuracy. However, within
the meta optimizer lies the problem of prototype deviation. The reason for this problem
is the use of an average-based method to roughly estimate the gradient when the labeled
samples are limited in each category.

Given the above considerations, in this work, our aim is to address the challenging few-
shot traffic sign detection problem, as shown in Figure 1. Specifically, given the problem of
unbalanced sample distribution, we aim to obtain a model that can detect both base and
novel objects at test time. We believe that this eliminates the impact of distribution shifts
between training and testing data, which is vital for improving the detection accuracy and
generalization ability of the constructed model. Therefore, we use the method of Random
Fourier Features and sample weighting to effectively remove the statistical correlation
between relevant and irrelevant features.
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Figure 1. We aim to obtain a few-shot traffic sign detection model by training on the base classes
with meta-learner guidance at image level; consequently, the model is able to detect novel objects on
testing images with learning from a limited annotated sample.

Traffic sign detection is a key part of autonomous driving technology with good
performance for both speed and accuracy. This requires a detector with the ability to detect
unseen classes accurately in real time. Few-shot is a feasible approach to the above problem,
which can detect new classes with only a small number of labeled samples needing to be
trained. The current transfer learning is more effective for solving few-shot problems, but
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it needs to be trained on the source domain and then fine-tuned on the target domain with
few samples, which is not suitable for dynamic environments and urgent tasks.

Meta-learning provides a new and feasible solution to the above few-shot problem.
We designed a traffic sign detector that unifies the few-shot learning ability by two-stage
meta-learner φ learning class features from base classes at the image-level and a multi-scale
ability to predict novel classes in conformity with limited support examples.

The proposed meta-learning FSD framework, shown in Figure 2 contains a meta-
learner model F and a detector model φ. We extract query features and support features by
utilizing the YOLOv4 backbone network, gaining the ability to quickly adjust parameters to
be at the optimal level for new tasks with the meta-learner. Here, the learning process exists
at two terms: the initialization term and adaptation term, shown in Figure 3, improving a
strong discriminative ability of a detector to distinguish different categories from the multi-
relation detector module. Our framework boils down exactly to a typical meta-learning
paradigm, encouraging the name Meta-YOLO.
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Figure 2. The architecture of our proposed Meta-YOLO. It comprises a meta-learner model and a
detector model. The weights of the obtained query features and support features are shared by the
feature extractor utilizing the YOLOv4 backbone network. The aggregator outputs the category
detection results by combining the query features with the category features associated to the target
instance in the support images received by the decorrelation module and the classifier. To perform
feature multi-scale detection, a multi-relational detector module with a three-head mechanism
is employed.

Our contributions are as follows:

1. We present Meta-YOLO, a novel few-shot traffic sign detection framework that unifies
image-level meta-info of object localization and classification into a one-stage module.

2. We design a feature decorrelation module (FDM) that gets rid of spurious correlations
and, in turn, focuses more on the real connection between discriminative features
and labels. This module can overcome the complex backgrounds’ interference in the
detection process, thus enhancing the robustness of the system.

3. We introduce a three-head mechanism that allows the detector to jointly attend to
information from the spatial position relationship of different levels. The application
of this mechanism’s advance ability allows a detector to distinguish between different
categories as well as to detect different scale targets.

The rest of this paper is organized as follows: in Section 2 we discuss details of
the feature decorrelation module, while the architecture and implementation details of
our network are presented in Section 3. We give experimental results in Section 4 and
conclusions in Section 5.
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Figure 3. Illustrating the two-stages of meta-learner. Initialization term fuses cross-task information
in specific scenarios, at meta-space (θ, α) that learns the meta-learner. Adaptation term is carried out
by the meta-learner in the learner space θ that learns task-specific learners.

2. Sample Weighting for Decoupling Dependencies

This section mainly describes the construction method of the feature decorrelation
module (FDM). Inspired by [33–36], we propose a method to perceive and decouple global
correlations by iteratively saving and reloading the features and sampled weights of the
model. The architecture of the feature decorrelation module is shown in Figure 4.
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Figure 4. The architecture of feature decorrelation module. The overall process takes place during
the training phase and consists of removing all linear and non-linear relationships between features
(Section 3) as well as global weight optimization (Section 2).
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Notations: X ⊂ RmX denotes the space of input,Y ⊂ RmY denotes the space of out-
come space,Z ⊂ RmZ denotes the space of representation. mX , mY, mZ are the dimensions
of space X , Y , Z , respectively. If we suppose that there are two different random variables
M, N in the representation space (their sample information and label information are stored
in X , Y , respectively), и and ν are Random Fourier Features mapping functions. f: X → Z
denotes the representation function and g: Z → Y denotes the prediction function.

If we suppose that most of the traffic signs are located in front of trees in support sets
SC, then RFF will extract the features of traffic signs and trees, while mapping the original
mX dimension features data extracted in the input space X to the higher dimensional
(mZ-dimensional) representation space Z by the representation function f ; therefore, the
samples are linearly separable in this feature space. Since the datasets do not contain all
the features of “trees”, we first multiply the difference between the predicted and ground
truth with the weights of the features to obtain the optimization target. Then we iteratively
change the weights of different features to obtain the features with the correct correlation
to traffic signs.

2.1. RFF-Based Feature Decorrelation

According to [33] the independence testing statistic IMN is defined as the Frobenius
norm of the partial cross-covariance matrix, i.e., IMN = ‖Σ̂MN‖2

F. Notice that IMN is always
non-negative, and two variables M, N tend to be independent as IMN is equal to zero. Thus,
IMN can effectively measure the independence between random variables. Actually, the
Frobenius norm corresponds to the Hilbert–Schmidt norm in Euclidean space [37], and,
according to the Hilbert–Schmidt norm [38], which needs the squared Hilbert–Schmidt
norm of ΣMN to be zero, it can be used as a criterion to supervise feature decorrelation.
Thus, based on the Frobenius norm, the partial cross-covariance matrix is as follows

Σ̂MN =
1

n− 1

n

∑
i=1

(u(Mi)−
1
n

n

∑
j−1

u
(

Mj
))T(

v(Ni)−
1
n

n

∑
j−1

v
(

Nj
)) (1)

where
u(M) =

(
u1(M), u2(M), . . . unM (M), uj(M)

)
∈ HRFF, ∀j;

u(N) =
(
v1(N), v2(N), . . . vnM (N), vj(N)

)
∈ HRFF, ∀j.

(2)

Here HRFF denotes the function space of Random Fourier Features. The results are
calculated using the partial cross-covariance matrix for random variables M and N after
weighting as follows

Σ̂MN;w =
1

n− 1

n

∑
i=1

(wiu(Mi)−
1
n

n

∑
j=1

wju
(

Mj
))T(

wiv(Ni)−
1
n

n

∑
j=1

wjv
(

Nj
)) (3)

We set the weight optimization method as follows, and this optimization strategy can
minimize the dependency between features.

w∗ = argmin
w∈∆n

∑
1≤i≤j≤mZ

‖Σ̂MN;w‖2
F (4)

The iterative equation is as follows

(t+1), g(t+1) = argmin
w∈∆n

∑n
i=1 wi

(t)LFDM(g((Xi)),Yi), (5)

w(t+1) = argmin
w∈∆n

∑1≤i≤j≤mZ
| |Σ̂M(t+1)N(t+1);w ||

2
F. (6)

where LFDM(., .) represents the cross-entropy loss function and t represents the time stamp.
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2.2. Global Optimization

In practice, especially for deep learning tasks, it needs enormous storage and com-
putational cost to learn sample weights globally. Moreover, SGD tends to fall into local
minima and saddle points, and the noise from small batch sampling makes the loss oscillate
back and forth; hence, global weights for all samples cannot be learned. In this section,
supported by the findings in [35], we propose a method to perceive and remove global
correlations though iteratively saving and reloading the features and sampled weights of
the model.

Our main idea is to maintain the upper bounds on the piecewise linearity of the
sample features Z(x) and weights w(x) while using them to determine the estimate of x in
each optimization step. Then, the upper bound of piecewise linear function U(x) can be
determined by the following function [35]

U1(x) = min
[

Z(xi) +
√

σi + (x− xi)
TK(x− xi)

]
;

U2(x) = min
[

w(xi) +
√

σi + (x− xi)
TK(x− xi)

] (7)

where σi is a noise term and K is a diagonal matrix with k terms of the Lipschitz constant.
We point out that we adopt the k-value estimation method of C. Malherbe et al. [36]. This
approach makes the algorithm run faster by using a random search of U(x) to check if the
upper bound of the new point is better than the existing optimal point and, if so, update it
to the new optimal value. Moreover, sample features Z(x) and weights w(x) are updated
at the end of each batch and represent the global information of the whole training dataset.

Although the local maximum region can be reached quickly using the above method, it
cannot be moved to the optimal position rapidly. In the light of this problem, we introduce
the classical confidence domain method of Powell et al. [39] to fit the quadratic surface of
the current optimal solution, and then the next iteration to the quadratic surface extreme
value point at a certain distance from the current optimal solution.

3. Methodology

Our aim is to solve the problem of few-shot traffic sign detection. We first define
the problem and task of FSD under meta-learning. Following recent work, we propose
the solution: Meta-YOLO, which is implemented by integrating YOLOv4 into a meta-
learning pipeline. The traffic sign detection framework proposed in this paper, works in a
meta-learning process, composed of meta-learner and object detector.

3.1. Task Definition

Given two sets of categories, sets Cbase and Cnovel , which are mutually disjointed,
Cbase∩Cnovel = ∅; corresponding categories with a base dataset Dbase = { (X base
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′ . The task is to find all the attributes from query support 

category and label them with tight bounding boxes. 

Our goal is to build detection algorithms that work in a meta-learning process that 

allows a meta-learner to learn how to quickly adjust its parameters to the optimum for a 

new task in the presence of new classes with very few instances by training on a series of 

seen classes, thus teaching the detector 𝜙 to quickly detect unseen targets and output the 

predicted categories y and locations t. Among others, the meta-learner model should be 

trained on the distribution 𝑝(𝜏) according to the principle that the training and testing 

processes should be consistent. 

3.2. Network Description 

We adopt the backbone of YOLOv4 (i.e., CSPDarknet53) to implement the feature 

extractor; support features share all learnable parameters with query feature following 

the philosophy [40]. We filter out irrelevant information within the support image via 

FDM whose further details have been shown in Section 2. Meta-YOLO is conceptually 

simple and aims to quickly and accurately detect unseen traffic signs. The framework is 

shown in Figure 2, which is mainly composed of two parts: meta-learner model ℱ and 

detection model 𝜙. 

We set a learnable learning rate for all parameters so that the meta-learning system 

can learn good initialization as well as fast adaptation strategies. Given a query image, 

first the feature extractor generates its feature map and then adopts 1 × 1 convolution to 

make the feature map’s channel dimension compatible with the downstream modules. 

Unlike query feature, which retains image-level information, for support image it is 
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=1 } ∼ p(τ) contains very few samples in each novel
class. We propose a distribution p(τ) lies in the relevant task space and sample randomly
from this distribution.

Simulating the meta-learning paradigm, meta-training tasks meta− train(τ) are com-
prised of support set SC and query set QC, and meta-testing tasks meta − test(τ) are
comprised of support set SC

′ and query set QC
′ to keep consistency.

Arbitrary target categories and datasets corresponding to it are randomly sampled
from Cbase, a part of it as SC, another part as QC. Likewise, arbitrary target categories and
datasets corresponding to it are randomly sampled from Cbase, a part of it as SC, another
part as QC. N classes are randomly selected from Cnovel , K + § samples are randomly
selected from Dnovel corresponding to classes where K samples will be used as SC

′ and §
samples as QC

′. The task is to find all the attributes from query support category and label
them with tight bounding boxes.
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Our goal is to build detection algorithms that work in a meta-learning process that
allows a meta-learner to learn how to quickly adjust its parameters to the optimum for a
new task in the presence of new classes with very few instances by training on a series
of seen classes, thus teaching the detector φ to quickly detect unseen targets and output
the predicted categories y and locations t. Among others, the meta-learner model should
be trained on the distribution p(τ) according to the principle that the training and testing
processes should be consistent.

3.2. Network Description

We adopt the backbone of YOLOv4 (i.e., CSPDarknet53) to implement the feature
extractor; support features share all learnable parameters with query feature following the
philosophy [40]. We filter out irrelevant information within the support image via FDM
whose further details have been shown in Section 2. Meta-YOLO is conceptually simple
and aims to quickly and accurately detect unseen traffic signs. The framework is shown
in Figure 2, which is mainly composed of two parts: meta-learner model F and detection
model φ.

We set a learnable learning rate for all parameters so that the meta-learning system can
learn good initialization as well as fast adaptation strategies. Given a query image, first the
feature extractor generates its feature map and then adopts 1×1 convolution to make the
feature map’s channel dimension compatible with the downstream modules. Unlike query
feature, which retains image-level information, for support image it is necessary to extract
the category features of the certain object instance. Therefore, we utilize Fourier features
combined with sample weights to decouple dependencies and remove the irrelevant
information present in the support set. The design of aggregator follows previous work [41],
reweighting the query features fcls according to the output of the support set class feature
fqry. The support class features are combined with query features as in Equation (8) to
obtain the detection results of the corresponding category.

A
(

fqry, fcls
)
= fqry ⊗ fcls (8)

where ⊗ represents channel-wise multiplication. The support set is utilized in a loop
to construct a classifier for the sample class. The aggregator is then used to cascade
the information matching to the query set with the feature relationships and categories
corresponding to each image in the support set.

The detector we desire is with a powerful discriminative capacity to distinguish
between different categories as well as to detect different scale targets. Based on this,
three-heads, the global-relation head, the local-correlation head and patch-relation head,
are constructed to learn a deep embedding for global matching, pixel-wise and depth-wise
cross-correlation between support and query sets and a deep non-linear metric for patch
matching, respectively.

Revisiting Yolov4 backbone. The proposed Meta-YOLO utilizes the successful YOLOv4
for FSD to detect traffic signs, shown in Figure 2. YOLO [5–8] is the representative work of
one-stage model; the core idea is to input the complete image into the network and regress
the classes and coordinates of the bounding box in the output layer to achieve end-to-end
training. YOLOv4 [8] improves on YOLO v3 [7] to sit at the faster end of the speed–
accuracy trade-off. Its accuracy is already comparable to or even surpasses two-stage target
detection algorithms while maintaining a very high speed. The YOLOv4 backbone uses
CSPDarknet53 with the mish activation function to increase the network’s learning ability
and gradient transmission efficiency; the network’s regularization process is upgraded
and improved extensively by employing a better Dropblock. CSPDarknet53 is a backbone
structure based on the Yolov3 backbone network Darknet53, which draws on the experience
of CSPNet 2019. The use of this network structure enhances the learning capability of CNNs,
enabling a light weight while sustaining accuracy, decreasing computational bottlenecks
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and lowering memory costs. This is of great significance to YOLO, which not only ensures
the speed and accuracy of inference but also reduces the size of the model.

This work aims to address the problem of few-shot traffic sign detection under the
blessing of meta-learning. Then we evaluate the feasibility of the framework by equipping
it with an object detection architecture; to this end, relatively simple and efficient detectors
should be selected, i.e., YOLOv4. Meta-YOLO extends the YOLOv4 framework by inte-
grating meta-learning within an end-to-end convolutional neural network-based detection
framework. This creative design not only enhances the image feature extraction capability,
but also helps to improve the accuracy of one-stage classification on new categories; in fact,
the FSD accuracy and speed are greatly improved.

Meta-learner: With only a few labeled instances, it is intractable to decide how to
initialize parameters and learning rate as well as when to halt the learning process to shun
overfitting. We need to maximize the generalization capability rather than data fitting to
determine all the learning factors and eventually bring the model to the point where it can
acquire learning in just a few iterations while speeding up learning so that the detector can
learn and respond in a rapidly changing environment. Inspired by X. Yang et al. [42] and B.
Kang et al. [37], we introduce the following end-to-end meta-learner, which consists of two
terms: initialization and adaptation, as shown in Algorithm 1.

θ′ = θ − α ◦ ∇Lτ(θ) (9)

where θ and α are parameters of the meta-learner to be learned, and ◦ stands for element-
wise product. α ◦ ∇Lτθ is a vector whose direction corresponds to the update direction
and whose length corresponds to the learning rate. With some loss function `, ∇Lτθ is
the gradient of Lτ(θ), where Lτ(θ) consists of a conventional cross-entropy loss `cls for
classification, a smoothed-L1 loss `reg for bounding box regression and a cross-entropy
loss function for acquiring the relationship between different classes from class features, as
shown in Equation (10).

Lτθ =
1
|τ| ∑

τ∼pτ

`cls(φθ′) + `reg(φθ′) + `meta(φθ′) (10)

Our method first initializes the learner parameters with θ then adjusts it to θ′ in just
one phase at a time in direction α ◦ ∇Lτ(θ) and by adopting a learning rate implicitly
implemented in α ◦ ∇Lτ(θ).

With the above definition, the objective of meta-learning is

min
θ,α

∑
τ∼p(τ)

Lmeta−test(τ)(θ
′) = ∑

τ∼p(τ)
Lmeta−test(τ) (θ − α ◦ ∇Lmeta−train(τ)(θ) ) (11)

The meta-learner is updated iteratively from random initialization using gradient
descent, as shown in Figure 3.

θt = θt−1 − α∇Lτ (θ
t−1 ) (12)

Meta-learning generally occurs on batches of tasks where the detector φ is trained on
meta− train τ and use sLτ as a meta-info to update the meta-learner, which is then tested
on meta− test τ. The meta-learning process is repeated until the meta-learner is able to
learn how to tune the detector to give it the best performance. The improved end-to-end
two-stage meta-learner F , which learns not only the initialization of the learner but updates
direction and learning rate of the learner, is equipped to have positive performance for a
new task with scant instances.
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Algorithm 1: Meta-Learner for Meta-YOLO

Input: task distribution p(τ), meta-learning rate β

Output: detector’s parameters θ, detector’s learning rate α

1: Initialize θ, α;
2: While not end do
3: Sample batch of tasks τ ∼ p(τ);
4: for all τ do
5: Lmeta−train(τ)(θ) =

1
|meta−train(τ)| ∑

τ∼pτ
`τ(φθ);

6: θ′ = θ − α ◦ ∇Lτ(θ);
7: Lmeta−test(τ)(θ) =

1
|meta−test(τ)| ∑

τ∼pτ
`τ(φθ′ );

8: end for
9: (θ, α)← (θ, α)− β∇(θ,α) ∑

τ
meta− test(τ)(θ′) ;

10: end while

4. Experiments

This section evaluates the effectiveness of Meta-YOLO on few-shot traffic sign detec-
tion both qualitatively and quantitatively by testing it with two challenge datasets and
comparing with the baselines. Section 4.1 gives a brief introduction to the datasets used
in the experiment. Section 4.2 presents the setup of the experiment. The experiment and
comparisons of the three baselines and state-of-the-art methods are presented in Section 4.3.

4.1. Datasets

Empirically, three standard TSD benchmark datasets are considered: (1) the GTSDB
dataset [43], (2) the TT100K dataset [44] and (3) the MSTD [45] dataset These datasets share
a common characteristic in that they cover a variety of fine traffic sign categories, which fit
the actual detection demands and the evaluation of our claim on the robustness of few-shot
traffic sign detection. The main characteristics of the datasets used in the experiments are
shown in Table 1.

Table 1. Main characteristics available in TSD datasets.

Images Annotated Signs B-Boxes Classes Annotated Sign Size Acquisition
Location

GTSDB [4] 900 1206
√

43 16–128 longer edge Germany

TT-100K [40] 100,000 30,000
√

45 2×7 to 397×394 China

MTSD [45] 52,453 80,000
√

313 256 × 256 global

GTSDB The German traffic sign detection benchmark (GTSDB) is a single-image
traffic sign detection dataset and is widely used to evaluate traffic sign detectors. This
dataset consists of 900 images with 1206 traffic signs that are split into a training set of
600 images with 846 traffic signs and a testing set of 300 images with 360 traffic signs. The
resolution of this dataset is 1360 × 800.

TT100K The TT100K dataset is composed of 100,000 images with 30,000 traffic sign
instances, which are annotated with a sign type, a pixel map and a bounding box. It consists
of 45 categories of a relatively large real-world traffic benchmark. The image resolution in
this benchmark is 2048 × 2048 and covers large variations in lighting and weather. This
dataset has unbalanced category distribution.

MTSD: The Mapillary Traffic Sign dataset covers multiple locations on six continents
and consists of 52,453 high-resolution images with more than 80,000 annotated signs. This
dataset includes 313 categories and has variations in weather, season, moment, camera
and perspective.
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4.2. Experimental Setup

We set an object detection benchmark for traffic sign detection processed in the fol-
lowing way. Out of TT100K’s 45 instance categories, we randomly selected nine classes
as the novel ones, while keeping the other 36 as the base. During the initialization term
of meta-learning, only the base class objects are considered. In the adaptation term, there
are K-shot annotated bounding boxes for objects in each novel class and 3K annotated
bounding boxes for objects in each base class for training, where K is set at 1, 2, 3, 5 and 10.
We adopted the mean Average Precision (mAP) as the evaluation metric and a qualified
prediction that ought to be more than 0.5 IoU with the ground truth. To design a few-shot
learning setup, we considered three different novel/base class split settings, i.e., (“w1”,
“w27”, “pd”, “ip”, “i6”/rest); (“ip”, “pg”, “w27”, “w1”, “i6”/rest) and (“w1”, “p7”, “w27”,
“i6”, “pd”/rest).

Similarly, on the GTSDB dataset, we had 300 images from the validation set for
evaluation, and the remaining images for training. Out of its 43 instance categories, we
randomly selected 10 classes overlapped with TT100K as the novel ones while keeping
the remaining 33 as the base. We also considered the proposed model learning on the 43
base classes from GTSDB and exploiting it to detect the two novel objects in TT100K. This
setting features a cross-dataset problem that we called GTSDB to TT100K.

We took a similar approach to the MIST dataset as the previous two datasets. We
selected 55 classes as the novel classes, while keeping the rest as base classes.

As for the computer platform settings, a standard PC was used for all the experiments,
whose hardware and software configuration are listed as follows:

• NVIDIA GeForce RTX 2080Ti GPU
• Dynamic Memory: 128G DDR3 RAM
• Python + Pytorch(GPU)

4.3. Performance
4.3.1. Comparison with Baseline

We compared our model with three competitive baselines. We constructed baselines
as follows: YOLO-joint jointly trains the YOLOv4 detector on the base and novel classes,
and uses the identical number of iterations as Meta-YOLO to train this baseline model.
YOLO-based takes the same training strategy in Meta-YOLO. YOLO-ft applies the same
training strategy of ours but trains the detector to fully converge.

TT100K The K-shot traffic sign detection is performed based on K = (1, 2, 3, 5, 10)
across three novel/base class splits. As shown in the experimental evaluation results
in Table 2, our proposed model significantly outperforms the baseline. It reveals the
generalization weakness of the one-stage detector YOLOv4 with a small number of labels in
the training term. Comparing the performance results of the YOLO-joint and YOLO-based
baselines shows that joint training biases the detection results toward the base class and
nothing about the new class. Note that, YOLO-ft performs significantly better than the
other two baselines, which proves the necessity of a two-stage strategy for a meta-learner.
Furthermore, the attention maps are visualized in Figure 5. The attention maps show that
these highlighted regions are almost correlated with traffic sign instances, which indicates
that the feature decorrelation module effectively removes irrelevant features and enhances
the generalization of meta-learned representations.

GTSDB: We evaluated 10-shot/30-shot setups on the GTSDB [4] benchmark and
report the standard GTSDB metrics. The results on the novel classes are shown in Table 3.
In both cases, meta-YOLO outperforms the other baselines. The results show that the
performance of the baselines in detecting new classes is extremely poor, which is caused by
the unbalanced setting of the number of base classes and new classes, further revealing
the vulnerability of YOLO to the generalization problem. In Figure 6, some comparisons
between YOLO-ft and Meta-YOLO are visualized when detecting novel class traffic signs;
the results indicate our method is indeed effective.
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Table 2. Few-shot detection mAP on TT100K test set for novel classes. The baselines are evaluated
using three separate sets of novel classes.

Novel Set 1 Novel Set 2 Novel Set 3

Method/Shot 1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

YOLO-joint 0.0 0.8 1.9 4.3 6.2 0.3 0.8 5.5 7.3 12.4 0.0 0.9 2.6 5.3 8.4
YOLO-based 2.4 7.4 11.2 19.0 20.5 3.2 5.8 19.6 27.2 28.6 4.3 5.2 10.8 21.7 22.7

YOLO-ft 10.5 14.6 18.3 28.8 30.2 11.0 18.4 26.7 33.5 35.0 7.4 12.1 20.2 30.6 37.2

Ours 18.3 21.7 26.8 30.0 45.3 19.7 22.9 29.3 37.5 42.1 15.6 19.9 29.7 39.4 45.8
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Table 3. Few-shot performance on GTSDB test set for novel classes. For the novel categories, we
analyze performance for various numbers of training shots.

Average Precision Average Recall

Shot Baselines AP AP50 AP75 AR1 AR10 AR100

10

YOLO-based 2.4 5.3 1.7 5.3 7.9 7.9

YOLO-ft 6.2 13.5 5.4 8.0 12.6 12.7

ours 9.8 18.1 7.2 10.2 17.1 17.2

30

YOLO-based 2.6 5.8 1.9 7.3 9.4 9.4

YOLO-ft 12.7 18.3 10.2 13.6 20.5 20.7

ours 17.2 25.4 13.5 15.0 24.4 24.7

GTSDB to TT100K: In this cross-dataset few-shot traffic sign detection setup, all
the baselines are trained with 10-shot objects in novel classes on GTSDB, while they are
evaluated on the TT100K test set. Distinct from the previous experiments that concentrate
on evaluating cross-category model generalization, this setup goes further to manifest the
cross-domain generalization ability. The mAP of YOLO-based and YOLO-ft achieve the
detection performance of 20.1% and 32.6%, respectively. Instead, Meta-YOLO achieves
39.8%, while this performance is poorer than when using base classes in TT100K (which
has a mAP of around 42%).
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Adaptation speed. Our two-stage meta-learner model F is able to rapidly learn all
parameters and directions during the adaptation term. We use the AP, obtained from
Equations (13) and (14), to plot versus the number of training iterations to analyze the
adaptation speed of the models. Here we select the TT100K base/novel split three to train
under our method and the baseline, respectively, and its AP variations under different
iterations as shown in Figure 7. The results show that Meta-YOLO exhibits remarkable fast
adaptation ability, shown in Figure 7. It is noted that in the experiments shown in Table 3,
YOLO-based and YOLO-ft need 2.5K iterations for them to fully converge; however, ours
only requires 0.1K iterations to converge to a higher accuracy.

AP =
1

Rnum
∑

R={r1···rnum}
ρinterp(r) (13)

ρinterp(r) = max
r̃:̃r≥r

ρ(r̃) (14)

where Rnum is the number of positive samples, R = {r1 · · · rnum} is the recall of positive
samples and ρ(r̃) is the precision corresponding to the R = {r1 · · · rnum}.
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4.3.2. Comparison with State-Of-The-Art Methods

In order to ensure the justness of the experiments, in this section, the meta-YOLO
proposed by us is compared with state-of-the-art methods by Han et al. [46], Min et al. [16],
Zhang et al. [47] and Fan et al. [48]. The experiments were performed based on K=10 across
MIST datasets, and the results on mAP50, base and novel classes are shown in Table 4.
The results show that our method outperformed most algorithms. The performances of
meta-YOLO were 46.2 and 51.7 on mAP50, which are the best for all methods. Fan et al. [48]
combined a two-way contrastive training strategy and attention RPN to construct an object
detection frame that solved the problem of the poor generalization of few-shot. Although
the attention RPN method mitigates the dependence on region proposals to some extent,
its framework is still RPN and the detection backgrounds are complex traffic scenes, so its
performance is worse than ours with scarce training samples. It is worth noting that the
meta-DETR framework proposed by Zhang et al. [47] is on a par with our model, and even
better than ours in the novel class. We think this is mainly due to the semantic alignment
mechanism (SAM) that, using a residual connection, aligns the high-level and low-level
semantics and raises the function of regularization.

Table 4. Comparison of performance with other detectors under 10 shots.

mAP mAPbase mAPnovel

Method/Shot 5-Shot 10-Shot 5-Shot 10-Shot 5-Shot 10-Shot

Han et al. [46] 29.2 38.9 46.4 56.1 10.8 12.4

Min et al. [16] 32.1 43.4 50.1 58.6 10.4 11.7

Zhang et al. [47] 46.1 51.2 58.4 68.0 37.8 42.2

Fan et al. [48] 46.0 50.2 57.0 65.4 35.8 38.3

Ours 46.2 51.7 58.7 67.9 37.6 41.9

4.4. Ablation Studies

We constructed extensive ablation experiments to research how our proposed indi-
vidual components contribute to the detection performance. The experiments used the
TT100K base/novel split1 with 10-shot data on novel classes.

Effect of Feature Decorrelation Module (FDM). We introduced FDM into the model
to utilize RFF to map non-linear indivisible features of raw space to a higher dimensional
space, and transform these into linearly separable features, thereby obtaining the real
features of the object. As shown in Table 5 FDM is effective in hindering the reliance on
category-specific features. Without FDM the method has a strong effect on the performance
on novel classes, but is only slightly affected on base classes. With FDM included, the
detection performance of the base and novel classes improves, which shows that the more
generalizable representations are learned effectively.

Table 5. Ablation studies of several design choices.

Design Choice

Base Novel
FDM Three-Head

Mechanism LFDM

√
64.9 43.5

√ √
65.0 44.2

√ √
65.4 43.1

√ √
66.2 44.7√ √ √
67.9 45.3
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Effect of meta-learner. Since Meta-YOLO is formally designed as a meta-learner, it
is crucial to observe whether our method truly improves the performance. To verify our
claim, we ablated the initialization term of the meta-learner to observe the object detection
performances in the base and novel classes. As illustrated in Table 6, our two-stage strategy
significantly boosts the model generalization and learning capability.

Table 6. The ablation of meta-learner module F .

Initialization Term Adaptation Term Base Novel
√

58.2 21.8√ √
67.9 45.3

Effect of three-head mechanism. We introduced a three-head mechanism with three
different scale modules that complemented each other to predict objects within their
respective specified ranges. As shown in Table 6, the three-head mechanism achieves a
significant improvement in the detection performance for base classes. With a limited
number of base categories, it unavoidably has poor performance on novel classes.

5. Conclusions

In this work, we are devoted to addressing the problem of few-shot traffic sign de-
tection. Firstly, we propose a feature decorrelation module that can remove the statistical
correlation between relevant and irrelevant features, exploiting the characteristics of Ran-
dom Fourier Features and sample weighting. Secondly, we design a few-shot traffic sign
detection framework based on meta-learning, Meta-YOLO, based on a network feature
decorrelation module (FDM), which can prompt the network to take full advantage of
features from different scales and is able to learn the general knowledge and proper fast
adaptation strategies with the learnable learning rate set for each parameter. Thirdly, meta-
YOLO outperforms the three competitive baselines and improves the mAP of few-shot
detection by 39.8%. Comparing with state-of-the-art methods, our performance is also
better than most other detectors. The results of meta-YOLO’s performance variation under
different iterations show that two-stage meta-learner model F owns the ability to quickly
learn parameters. A large number of ablation studies confirm the positive impact of the
FDM, meta-learner and three-head mechanism during detection.

We designed a three-head mechanism to obtain the information regarding different
categories and levels, but we did not completely integrate the information obtained by
different heads. This is the limitation of our work. Perhaps the idea of residual connection is
helpful to alleviate this problem and we will continue to improve this problem in the future.
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