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Abstract: This study analyzed the characteristics of pitched baseballs from TV broadcast videos to
understand the effects of the Magnus force on a pitched-baseball trajectory using aerodynamic theory.
Furthermore, an automatic measurement and analysis system for pitched-baseball trajectories, ball
speeds, and spin rates was established, capturing the trajectory of the baseball thrown by the pitcher
before the catcher catches it and analyzing its related dynamic parameters. The system consists
of two parts: (1) capturing and detecting the pitched baseball in all frames of the video using the
YOLOv3-tiny deep learning algorithm and automatically recording the coordinates of each detected
baseball position; (2) automatically calculating the average speed and spin rate of the pitched baseball
using aerodynamic theory. As the baseball thrown by the pitcher is fast, and live-action TV videos
like sports and concerts are typically at least 24 fps or more, this study used YOLOv3-tiny algorithm
to speed up the calculation. Finally, the system automatically presented pitching data on the screen,
and the pitching information in the baseball game was easily obtained and recorded for further
discussion. The system was tested using 30 videos of pitched baseballs and could effectively capture
the baseball trajectories, throw points, catch points, and vertical displacements. Compared with the
values from the TV broadcast, the average errors on the calculated ball speed and spin rate were 1.88%
and 7.51%, respectively. Using the ratio of the spin rate and ball speed as a parameter to analyze
the pitching state of the pitcher’s four-seam fastball in the Nippon Professional Baseball and Major
League Baseball matches, it was observed that when this ratio increased, the Magnus displacement
of the ball increased, thereby decreasing its late break. Therefore, the developed system provides
scientific pitching data to improve the performance of baseball pitchers.

Keywords: magnus force; pitched-baseball trajectory; YOLOv3-tiny deep learning algorithm; ball
speed; spin rate

1. Introduction

Watching sports has always been an important form of entertainment for people.
Rather than attending the games physically, many people choose to watch the games at
home. Consider Major League Baseball (MLB) as an example. The broadcast rights of
Fox Sports have reached USD 5.1 billion in 10 years, indicating that sporting events are of
considerable commercial interest in the United States of America. Almost all professional
teams invest significant funds to enhance their team’s combat effectiveness and attract
many outstanding players. Since 2015, MLB has used the Statcast system, which utilizes
two cameras and a Doppler radar, to record players’ performance data, making baseball
data more scientific and enabling the players to view the training results through these
data [1–3]. For pitchers, in addition to the ball speed, the spin rate has been identified as an
important parameter. According to the literature [1], the Statcast system uses Trackman
radar technology to track and analyze the speed and spin rate of the pitched ball using
optical sensing. However, these devices are expensive and require a fixed installation,
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which makes them difficult to deploy at an arbitrary time and place. In addition, it is
very difficult to train baseball pitchers using a scientific method because of the relatively
imperfect equipment and grounds for grassroots baseball. Therefore, this study proposes
an economical use of aerodynamic theory to analyze pitched-baseball characteristics from
high-quality (1080 p or 4 k resolution image) TV broadcast videos. This technology can
analyze the trajectories, throw points, catch points, vertical displacements, ball speeds, and
spin rates of pitched baseballs. According to fluid mechanics [4], in addition to gravity, the
Magnus effect generated by the interaction between the baseball and air (fluid) when the
baseball is traveling in the air must be considered. Taking the high-spin-rate four-seam
fastball as an example, the Magnus force increases and its direction resists gravity [4], and
the ball appears to move upwards to the batter. According to the literature [5,6], an increase
in the spin rate of the four-seam fastball increases the rate of swing, reduces the rate of
being hit, and increases the proportion of fly balls. Changes in ball characteristics affect the
magnitude and direction of the Magnus force, such as the differences in the ball speed, spin
rate, and rotation axis, which changes the trajectory of its flight. This phenomenon is called
a late break [6]. According to the boundary-layer concept proposed by Ludwig Prandtl [7],
the drag effect is caused by fluid viscosity and the object only exists in a very thin layer on
the surface of the object called the boundary layer. The fluid outside the boundary layer is
regarded as an ideal fluid, and its viscosity can be ignored. In this situation, the problem
of a flying baseball can be theoretically dealt with in two parts. The first part is the area
outside the boundary layer above the baseball surface. The air in this area can be regarded
as an ideal fluid, which can be analyzed using Euler’s equation [4]. The second part is
the area within the boundary layer that is affected by the fluid viscosity and drag effect
caused by the surface contact between the fluid and the object. However, when a baseball
is flying, its flying speed causes turbulence in the separated area behind the baseball. The
Navier–Stokes equation is insufficient to address the problem of the inner boundary layer
because of the existence of fluid viscosity [4]. Therefore, this study utilized the dimensional
analysis method to quantify the inner boundary layer of the flying baseball and obtained
the mathematical form of the baseball flight aerodynamics.

Object tracking has been used for the analysis of sporting events for many years, and
it can be divided into multi-angle tracking and single-angle tracking, based on the number
of angles. Multi-angle tracking uses images from multiple angles to reconstruct three-
dimensional spatial information to track a baseball. A well-known commercial baseball
data analysis software, K Zone [8], which has been used in baseball games, uses three-angle
images to track the baseball’s location, and it is expensive to build. The literature used
TV broadcasting to analyze baseball trajectories from a single perspective [9]. It used a
positive frame difference image and morphological operations to filter the background and
then used size, shape, compactness, and Kalman filters to filter noise to detect and record
baseball flight trajectories. In addition, the literature used a high-speed camera to capture
real-time images of the seams on the surface of the baseball and calculated the speed of the
baseball through the relative displacement between the seam positions of each image [10].
When performing morphological processing or applying filters, many parameters need to
be adjusted individually for different videos. The afterimages produced by broadcasting
cameras distort the shape of the baseball, making it difficult to recognize a baseball using
shape recognition for circular object detection, such as the Hough transformation [11].
Moreover, when using colors to identify baseballs, each scene has a different light and
shadow background, and the color of the baseball on the screen may no longer be pure
white, making it necessary to adjust the color mask parameters for different videos. Using
deep learning to adjust the chroma, saturation, size, and exposure of each image during
training can easily solve the problem of using shape, size, and color to detect the baseball.
Furthermore, an optimized deep learning model (increasing the number of training sam-
ples) is more accurate for baseball detection. This saves a great amount of adjustment time
and cost compared to image recognition optimization.
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In recent years, a significant amount of research has been conducted on the devel-
opment of deep learning algorithms [12–26]. The You Only Look Once (YOLO) machine
learning object-recognition algorithm developed by Joseph Redmon and Ali Farhadi vividly
describes the characteristics of the multiple-object-tracking algorithm from input to output
using only a single-stage neural network to train and target the image [17,18]. It overcomes
the shortcoming of traditional object detection, that is, individual objects must be trained
and detected separately, and simultaneously increases the computing performance consid-
erably. Moreover, many recent studies have adopted YOLOv3 [17,19,20,23,26], which has
the advantages of the previous generation algorithms, an updated multi-scale detection
function with a more powerful feature extraction network, and improved accuracy and
performance. YOLOv4 [24–26] utilizes spatial pyramid pooling and a path aggregation
network to improve the performance of YOLOv3. However, because the baseball thrown
by the pitcher is fast and live-action TV videos like sports and concerts are typically at
least 24 fps or more [27], this study used YOLOv3-tiny algorithm to speed up the calcu-
lation [18]. While its accuracy is not as high as that of YOLOv3 and YOLOv4, it exhibits
high performance and its computing speed is close to the real-time speed of the ball in
live-action TV videos [19,23,26]. This algorithm is used along with the aerodynamic theory
to recognize baseballs and analyze the characteristics of throw points, catch points, and
vertical displacements of pitched baseballs from the TV broadcast videos. Eventually, using
the ratio of the spin rate and ball speed as a parameter to analyze the pitching state of the
pitcher’s four-seam fastball in the Nippon Professional Baseball (NPB) and MLB matches
for the late break of the pitched baseball due to the Magnus effect. It also provides baseball
broadcast units with pitching information of the pitchers to enhance fans’ satisfaction while
watching the games.

2. Materials and Methods
2.1. Dynamic Analysis of a Pitched-Baseball Trajectory Using Aerodynamic Theory

A baseball in flight is mainly affected by the gravitational force
→
Fg, force of air resistance

→
FD, and Magnus force

→
FM, as shown in Figure 1. To simplify the calculation, this study has

ignored the influence of the wind direction on the baseball.
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Figure 1. Force analysis during baseball flight.

The boundary-layer theory proposed by Ludwig Prandtl describes the interaction
between a flying baseball and air [6]. When air flows across the surface of the baseball,
friction occurs. As air is a viscous fluid, the velocity gradually decreases to zero as it
approaches the surface of the baseball, and the area in which this happens is called the
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boundary layer. Due to the viscous force within the boundary layer, Bernoulli’s principle is
not applicable. The flow outside the boundary layer is closer to the inviscid flow and can
be regarded as an ideal fluid to which the Bernoulli’s principle can be applied. As shown in
Figure 2, the green area is the boundary layer, and the line segment is the fluid streamline.
According to Bernoulli’s principle, the fluid velocity from A to B (or A to D) increases
outside the boundary layer, and the fluid velocity from B to C (or D to C) decreases. It can
be seen that points A and C are high-pressure points, and points B and D are low-pressure
points. When the pressure difference is sufficiently large, the boundary layer flows back and
creates a separation point, and boundary-layer separation occurs from B to C (or D to C).
As shown in Figure 2, the fluid instability after the separation point (points B and D) is
called turbulent flow. Compared to the entire flow field, the turbulent flow is a low-pressure
area. The pressure difference between the turbulent flow area and the rest of the flow field
is the main cause of the air resistance. The air resistance is in the opposite direction of the
baseball flight, and through dimensional analysis [4] the baseball air resistance formula is
obtained as

→
F D = −1

2
CDρAv2

(→
v
v

)
, (1)

where CD is the drag coefficient, ρ is the air density, A is the cross-sectional area of the
baseball, and v is the ball speed. The value of the drag coefficient CD is 0.3 from a wind
tunnel experiment [28].
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According to fluid mechanics [4], it can be assumed that the flying baseball is a rotating
cylinder placed in a fluid field. As the real fluid is viscous, the fluid in contact with the
rotating cylinder exhibits the same rotational speed as that of the cylinder, as shown in
Figure 3. In Figure 3, according to Bernoulli’s principle, the flow velocity increases, and
the pressure decreases above the ball and vice versa below the ball, assuming that the
baseball is rotating clockwise. This pressure difference causes the ball to shift upwards, and
this phenomenon is the Magnus force effect. For a flying baseball, a Magnus force effect
is generated when the sphere rotates. Although the complicated interaction between the
seams of the baseball and the boundary layer causes the Magnus force to change over time,
it can be averaged according to the Magnus force formula as follows [29]:

→
F M = −1

2
CMρAv2

(→
ω ×→v

ωv

)
, (2)

CM =

{
1.5S , S ≤ 0.1

0.09 + 0.6S , S > 0.1
, (3)
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where CM is the Magnus coefficient, ω is the angular velocity, S = Rω
v is the spin parameter,

and R is the radius of the baseball.
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The pitching image angle provided by the broadcasting unit camera makes the analyses
of the horizontal displacement of the baseball flight and the baseball rotation axis very different.
Therefore, this study assumed that the rotation axis of the baseball is horizontal and has only
analyzed the types of baseballs that have been subjected to vertical displacement, including
four-seam fastballs, forkballs, and change-up balls, and then analyzed the flying force of the
baseballs in a two-dimensional plane. The viewing angle and position of the pitching image
based on the broadcast unit were fixed. This study assumed that the x-axis is in the rightmost
connection direction, and the y-axis is in the vertical direction in the image of the pitcher board
and the home plate (Figure 4). In addition, we defined the rightmost point of the pitcher board
as the origin of the image coordinate system, as shown in Figure 4. Therefore, the baseball
force is: →

∑ Fx =
→

FDx +
→

FMx= (−1
2

CDρAv2
x) + (−1

2
CMρAv2sinθ) · sinθ, (4)

→
∑ Fy =

→
FDy +

→
Fg +

→
FMy =

(
−1

2
CDρAv2

y

)
+ (−mg) + (−1

2
CMρAv2sinθ)cosθ, (5)

where m is the weight of the ball, g is the acceleration due to gravity, and θ = tan−1 y2−y1
x2−x1

is
the pitch angle. The coordinates of the baseball at the throw point of the pitcher are (x1, y1). x1,
y1 and x2, y2 are the flight distances and heights of the ball at t1 and t2, respectively.
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As this study only considers the Magnus force effect in the y-direction, Equation (5)
can be rewritten as →

∑ Fy =
→
FDy +

→
Fg +

→
FMy =

→
∑ FDg +

→
FMy , (6)

where
→

∑ FDg =
→
FDy +

→
Fg. When the time is t, the average acceleration, velocity, and

displacement in the y-direction caused by air resistance and gravity are as follows:

aDg =

(
−1

2
CDρAv2

y −mg
)

/m, (7)

vDg(t) = vDg(t1) + aDgt, (8)

yDg(t) = yDg(t1) + vDg(t1)∆t +
1
2

aDgt2. (9)

In addition, the average acceleration, velocity, and displacement in the y-direction
caused by the Magnus force are as follows:

aMy =

(
(−1

2
CMρAv2sinθ)cosθ

)
/m, (10)

vMy(t) = vMy(t1) + aMy t, (11)

yMy(t) = yMy(t1) + vMy(t1)∆t +
1
2

aDg t2. (12)

Finally, this study used deep learning algorithms to recognize the baseball and calcu-
lated the y-axis displacement ∆y (late break) between the pitcher’s throw and the catcher’s
catch from the broadcast unit image as follows:

∆y = yDg + yMy . (13)

As yDg can be obtained from Equation (9), yMy can be obtained using Equation (13).
Finally, from Equations (2), (3), and (10) to (12), the angular velocity ω of the flying baseball
can be obtained as follows:

ω =
1
R
(

4m
t2CMρAsinθcosθ

(
yDg + yMy(t1) + vMy(t1)∆t− ∆y

)
)1/2. (14)

The average ball speed vA of the baseball flight between time ti (when thrown by the
pitcher) and te (when received by the catcher) can be obtained as follows:

vA =
xe − xi
te − ti

, (15)

where xi is the x-axis coordinate of the pitcher throw, xe is the x-axis coordinate of the
catcher receive, and this study assumed that xe − xi is the distance from the pitcher board
to the home plate (18.44 m).

2.2. Recognition of a Pitched-Baseball Trajectory by Deep Learning Algorithm

To analyze the results of the ball speed and spin rate of the baseball through aero-
dynamic theory, this study used the YOLOv3 deep learning algorithm to recognize the
baseball and its flight trajectory. YOLOv3, the third generation of YOLO, has the advan-
tages of the previous generations’ algorithms and has an updated multi-scale detection
function and a more powerful feature extraction network. Therefore, it can detect objects
of different scales simultaneously, thereby improving the accuracy and performance. The
YOLOv3 algorithm is divided into the following two major parts [17]: (1) feature extraction
and (2) multi-scale detection. The architecture of YOLOv3 is illustrated in Figure 5. The
feature extractor of YOLOv3 is Darknet-53, which was modified from Darknet-19 used by
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YOLOv2 [30]. Using the concepts of residual network, ResNet, and residual learning, it
avoids the gradient diminishing problem by increasing the number of network layers for
more complex feature extraction.
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In the multi-scale detection portion, YOLOv3 uses feature pyramid networks (FPNs)
upgraded from the original single-layer 13 × 13 feature prediction network to a three-layer
13 × 13, 26 × 26, and 52 × 52 feature prediction network. The single layer of five bounding
boxes is changed to three layers of three bounding boxes each, which is equivalent to a total
of nine bounding boxes. The FPN architecture merges the better target at the lower level
with the better semantic features at the higher level and makes independent predictions
at different feature levels, showing an obvious improvement in small object detection.
YOLOv4 [24–26] utilizes a spatial pyramid pooling and path aggregation network to
improve the performance of YOLOv3.

However, because the baseball thrown by the pitcher is fast and live-action TV videos
like sports and concerts are typically at least 24 fps or more [27], this study used YOLOv3-
tiny algorithm to speed up the calculation [18]. To speed up the calculation, this study
further used YOLOv3-tiny to recognize the baseball and its flight trajectory. YOLOv3-
tiny is a simplified version of YOLOv3, as shown in Figure 6. The backbone network
of Darknet-53 is simplified to a network similar to that of Darknet-19, and the 52 × 52
small object prediction branch and its feature layer have been omitted, leaving only two
independent prediction branches. Although the accuracy is not as high as that of YOLOv3
and YOLOv4, the calculation becomes extremely fast [19,23,26]. The efficiency and accuracy
of the calculation were sufficient for the identification and tracking of the baseballs used in
this study. In the next section, this study has compared the performance of models trained
by YOLOv3 and YOLOv4 with that of a model trained by YOLOv3-tiny algorithm.
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3. Experiments

To use the deep-learning algorithm to recognize the baseball and its flight trajectory,
this study used 485 screenshots of the baseball TV broadcast. Among them, 80% of the
screenshots (388 sheets) were randomly selected as training data sets, and the remaining
20% (97 sheets) were used for verification. In addition, this study sets the hyperparameters
to a learning rate of 0.001, a mini-batch size of 64, a momentum of 0.9, and weight decay of
0.0005. First, the size of the input image was adjusted. As the resolution increases, the detec-
tion of small objects improves, but the computational load increases, and the computational
speed decreases during training. Therefore, this study used a 416 × 416-pixel (referred to
as the tiny-416 model) and a 608 × 608-pixel (referred to as the tiny-6081 model) resolution
to analyze the baseball recognition capability by YOLOv3-tiny. Moreover, the intersection
over union (IoU) and mean average precision (mAP) were used to compare and analyze the
accuracy [20,24,25,31,32]. IoU is the intersection of the combined points of the predicted
and actual frames. In this study, the object was considered to be successfully recognized
when the IoU was greater than 0.5. Additionally, the calculations of mAP, Precision, Recall,
and F1-score based on the IoU of 0.5 is as follows:

mAP =
∑ AP

NC
, (16)

where NC is the target type. AP is

AP =
∑ Precision

N
, (17)
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where N is the number of pictures. Precision, recall, and F1-score are expressed as

Precision =
TP

TP + FP
, (18)

Recall =
TP

TP + FN
, (19)

F1 =
2× Precision× Recall

Precision + Recall
, (20)

where TP is a positive sample that is correctly classified, FP is a positive sample that is
misclassified, and FN is a negative sample that is misclassified. Regarding the tiny-416 and
tiny-6081 models, based on the results of 6000 epochs of training experiments, it is clear
that the IoU, precision, recall, F1-score, and mAP of the tiny-6081 model are better than
those of the tiny-416 model, as shown in Table 1. This verifies that the larger the resolution
of the picture, the better the recognition of the small objects. In addition, the number of
training epochs is positively correlated with accuracy, but numerous monotonic samples
may lead to overfitting, making it difficult to identify images that are not in the training set.
Therefore, this study adjusted the number of training epochs from 6000 (tiny-6081 model) to
12,000 (tiny-6082 model) in the initial training by YOLOv3-tiny. Table 1 shows that the IoU,
precision, recall, F1-score, and mPA of the tiny-6082 model are better than those of the tiny-
6081 model. In addition to using YOLOv3-tiny, this study trained a model using YOLOv3
as well for comparison purposes. In the comparative experiment, the input image was
trained with 12,000 epochs at the 416 × 416 (v3-416 model) and 608 × 608 (v3-608 model)
resolutions by YOLOv3, and the 608 × 608 (v4-608 model) resolution by YOLOv4. The
training results in Table 1 show that the IoU, precision, recall, F1-score, and mPA of the
v3-416, v3-608, and v4-608 models are better than those of the tiny-6082 model. Moreover,
the performance of the v4-608 model by YOLOv4 is the best of all models in Table 1.
However, the execution speed of the tiny-6082 model is approximately 2.5 times that of the
v3-416, v3-608, and v4-608 models. Additionally, the execution speeds of the v3-416, v3-608,
and v4-608 models perform below 20 fps. Live-action TV videos like sports and concerts
are typically at least 24 fps or more [27]. Therefore, this study utilized the tiny-6082 model
with an image resolution of 608 × 608 pixels and 12,000 epochs of training set to complete
the recognition of the baseball and its flight trajectory. Python software was used to analyze
30 testing videos of a pitched baseball using the YOLOv3-tiny deep learning algorithm for
flight trajectory, ball speed, and spin rate, as shown in Figure 7.

Table 1. Results of the network test comparison.

Model YOLOv3-Tiny-
416

YOLOv3-Tiny-
6081

YOLOv3-Tiny-
6082 YOLOv3-416 YOLOv3-608 YOLOv4-608

IoU (%) 53.7 64.5 68.7 73.4 73.9 78.2
Precision (%) 61.9 86.5 89.1 97.6 97.2 99.8

Recall (%) 53.8 85.1 89.2 95.4 97.8 99.1
F1 (%) 57.6 85.8 89.1 96.5 97.5 99.5

mAP (%) 62.7 87.1 90.4 98.9 97.8 99.1
Frame rate based

on GPU (FPS) 48.5 47.1 47.0 19.0 18.9 17.1

First, after importing the video, the program defined the coordinate system of the video.
Second, baseballs were recognized using the YOLOv3-tiny algorithm. After the pitcher
throws the ball, the coordinate of the first recognized baseball object was recorded and
presented as a point on the video screen. Third, the baseball was recognized at subsequent
points in its trajectory in sequence. The coordinate of each recognized baseball position was
marked, and all the points were connected with a line to complete the presentation of the
ball flight trajectory. Fourth, according to the coordinates of the baseball positions recorded
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in each frame, the program started to find the point where the baseball was captured
(captured point) when the number of recorded points was greater than five. When the
coordinates of the baseball were observed to be the same for five consecutive frames, the
program determined it as the captured point. Finally, the ball speed and spin rate were
calculated using the aerodynamic theory and physical parameters (Table 2) of the pitched
baseball, and they were presented on the screen to complete the calculation and recording
of the pitched-baseball flight trajectory, vertical displacement, ball speed, and spin rate.
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Table 2. Physical parameters of a pitched baseball.

Weight of Baseball (m) Air Density (ρ) Radius of Baseball (R) Acceleration due to Gravity (g) Drag Coefficient (CD)

0.145 kg 1.2 kg/m3 0.037 m 9.81 kg/m2 0.3

4. Results and Discussion

To obtain a comparative standard value for the measurement data of the pitcher’s
ball speed and spin rate, this study used 30 home-game videos of the Fukuoka Softbank
HAWKS baseball team, including real-time displays of the ball speed and spin rate by
the Fox Networks Group. The testing videos of the pitched baseballs included four-seam
fastballs, forkballs, and change-up balls. This automatic measurement and analysis system
of pitched-baseball trajectories showed the pitch angle, speed, spin rate, vertical movement,
and other information of the flying baseball in real time. Moreover, this study made
a numerical comparison of the measurement results with the ball speed and spin rate
provided by the broadcasting unit, and the related automatic measurement results are
shown in Figures 8–10 and Table 3. In Figures 8–10, the measurement results of this study
are shown in the upper left corner, and the measurement results of the broadcast unit are
shown in the lower right corner. The trajectories and the coordinates of the throw point
and catch point of the pitched baseball are represented for four-seam fastball, forkball, and
change-up ball in Figures 8–10, respectively. The three bounding boxes with classification
confidences and coordinates of the ball by YOLOv3-tiny in the trajectory of pitched baseball
are depicted in Figures 8–10, respectively. Most values of classification confidence in this
study are close to 100%. However, the worst classification confidence of 69.1% is presented
in Figure 10, because the ball was flying between a red billboard and green grass when
the ball in the video was recognized. According to the measurement results in Table 3,
this algorithm accurately recorded the trajectory of the ball. The average error of the
measured ball speed was 1.88% with a standard deviation of 1.16, and the average error of
the measured spin rate was 7.51% with a standard deviation of 4.33.
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Table 3. Measurement results of the pitched-baseball trajectories.

Pitch
Type

Speed
(km/h)

Spin Rate
(rpm)

Pitch Angle
θ (deg) ∆y (m) yDg (m) yMy

(m) Measured
Speed (km/h)

Measurement Error
of Speed (%)

Measured Spin
Rate (rpm)

Measurement Error
of Spin Rate (%)

Spin
Rate/Speed

Four-
seam

fastball

152 2453 −0.94 0.58 1.25 −0.67 153 0.57 2442 0.45 15.97
149 2319 −0.44 0.47 1.13 −0.65 153 2.60 2094 9.70 13.70
149 2320 0.21 0.26 0.95 −0.69 153 2.60 2523 8.75 16.50
154 2314 −2.03 0.95 1.62 −0.68 153 0.73 2267 2.03 14.83
145 2418 −2.38 1.14 1.82 −0.68 142 2.10 2387 1.28 16.81
145 2386 −2.14 1.07 1.74 −0.68 142 2.10 2153 9.77 15.17
148 2329 −1.36 0.78 1.44 −0.66 153 3.29 2342 0.56 15.32
150 2306 −1.71 0.88 1.53 −0.65 153 1.91 2432 5.46 15.91
148 2323 −1.37 0.79 1.45 −0.66 153 3.29 2042 12.10 13.36
146 2272 −0.61 0.57 1.23 −0.66 142 2.77 2335 2.77 16.45
152 2282 −1.57 0.82 1.49 −0.67 153 0.57 2726 19.46 17.83
154 2306 −1.91 0.91 1.55 −0.64 153 0.73 2276 1.30 14.89
154 2311 −2.25 1.02 1.67 −0.65 153 0.73 2051 11.25 13.42
150 2082 −2.39 1.14 1.79 −0.65 153 1.91 2358 13.26 15.42
150 2261 −2.51 1.15 1.83 −0.67 153 1.91 2432 7.56 15.91
152 2131 −2.53 1.16 1.81 −0.64 153 0.57 2321 8.92 15.18
153 2180 −2.17 1.02 1.67 −0.65 153 0.08 2328 6.79 15.23
151 2418 −0.91 0.59 1.29 −0.70 153 1.24 2595 7.32 16.98
149 2416 −1.31 0.74 1.45 −0.70 153 2.60 2589 7.16 16.94
150 2477 −1.04 0.63 1.35 −0.72 153 1.91 2592 4.64 16.96

Forkball

138 1498 −0.31 0.72 1.29 −0.57 132 3.99 1642 9.61 12.39
144 1515 −0.35 0.64 1.22 −0.58 142 1.42 1672 10.36 11.78
134 1380 −0.60 0.90 1.46 −0.56 132 1.13 1519 10.07 11.47
137 1193 −1.93 1.32 1.83 −0.50 132 3.29 1121 6.04 8.46
140 976 −1.50 1.19 1.65 −0.45 138 1.60 1029 5.43 7.47

Change-
up
ball

134 1539 −1.11 1.04 1.70 −0.66 132 1.13 1677 8.97 12.66
138 1930 −1.20 0.93 1.58 −0.65 132 3.99 1726 10.57 13.03
133 2009 −2.49 1.42 2.10 −0.69 132 0.38 1751 12.84 13.22
134 1552 −0.90 0.97 1.55 −0.59 132 1.13 1659 6.89 12.52
138 1800 −1.95 1.20 1.83 −0.63 132 3.99 1729 3.94 13.05

Average error 1.88 Average error 7.51
Standard

deviation of
error

1.16 Standard
deviation of error 4.33
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According to Equation (15), the ball speed estimation method in this study is related
to the number of frames per second (fps) of the video. The test video in this study was at
30 fps, and the single-frame interval was 0.0334 s. Errors between the measured ball speed
and the actual ball speed are due to the minimum measurement resolution of the time
parameter in the denominator of Equation (15). In addition, the spin rate estimation using
Equation (14) and the pitch angle have a significant correlation. The detection of the ball at
the moment of the pitcher’s throw can easily cause a sensing error, which causes an error in
the calculation of the pitch angle, ultimately leading to an error between the measured spin
rate and the actual spin rate. In addition, as seen from the measured results in Table 3, the
ball speeds of the four-seam fastballs are in the range of 145–154 km/h, and the spin rates
are the highest among the three pitch types, ranging from 2082 to 2477 rpm. Moreover,
the Magnus displacements are between 0.64 and 0.72 m in the upward direction. The ball
speeds of the forkballs are between 134 and 144 km/h, the spin rates are between 976
and 1515 rpm, and the Magnus displacements are between 0.45 and 0.58 m in the upward
direction, which were the smallest among the three pitch types. Due to the downward
displacement caused by air resistance and gravity, a small Magnus displacement results
in a large downward displacement of the forkball. Finally, for the change-up ball, the ball
speeds are between 133 and 138 km/h (slowest among the three pitch types), the spin
rates are between 1539 and 2009 rpm, and the Magnus displacements are between 0.59 and
0.69 m in the upward direction. From Table 3 and Equation (13) it is clear that the smaller
the Magnus displacement of the ball, the larger the longitudinal displacement when the
ball reaches home base. This also means that there is a larger late break. According to
Equations (10)–(12), the Magnus displacement is related not only to the physical parameters
of the baseball, but also, more importantly, to the pitch angle, ball speed, and spin rate.
Therefore, according to the Magnus displacements, ball speeds, spin rates listed in Table 3,
and a least-square fitting algorithm from IEEE Standards [33], the curve-fitting equation
between the Magnus displacement and ball speed was obtained with a coefficient of
determination (R2) of 0.30. Furthermore, the curve-fitting equation between the Magnus
displacement and spin rate was also obtained with an R2 of 0.71, showing a positive
correlation between the Magnus displacement and spin rate. As the pitching skill of
every pitcher is different, the spin rate of the ball may be different for different pitchers
even for the same pitch types and ball speed. Therefore, in this study, the spin rate was
divided by the ball speed, and the curve fitting of this ratio was done with the Magnus
displacement. The curve-fitting equation [33] between the Magnus displacement and the
ratio of the spin rate to the ball speed was obtained with an R2 of 0.78. Compared to the
spin rate alone, the ratio of the spin rate to the ball speed was found to be more positively
correlated with the Magnus displacement. For this reason, this ratio was a more effective
parameter for analyzing the late break of the pitcher. This study analyzed the Nippon
Professional Baseball (NPB) match between the Tohoku Rakuten Golden Eagles and the
Fukuoka Softbank HAWKS baseball team on 6 October 2019. Furthermore, this technology
was used to analyze the pitching state of the four-seam fastball of the starting pitcher
(Manabu Mima), as shown in Table 4. Manabu Mima pitched a total of four innings in
this game using 62 balls. The speeds of his four-seam fastballs were between 137 and 147
km/h, and the spin rates were between 2219 and 2495 rpm. The parameter of the spin rate
to ball speed ratio was between 15.10 and 18.21. According to the results of the previous
discussion, the smaller this parameter, the larger the late break phenomenon. Therefore,
according to the results in Table 4, this parameter for Manabu Mima increases in the four-
seam fastballs from the 27th to 48th ball, which also means that the late break of this pitcher
decreases. According to the actual game situation of the 27th to 48th ball (in the third
inning), Manabu Mima lost three points in this inning. Additionally, this study analyzed
the MLB matches on 14 and 18 April 2022, respectively, as shown in Tables 5 and 6. Shohei
Ohtani (the starting pitcher of the Los Angeles Angels baseball team) pitched a total of
3.2 innings in this game using 70 balls in the match on 14 April 2022. The speeds of his
four-seam fastballs were between 154 and 158 km/h, and the spin rates were between 2157
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and 2395 rpm. The parameter of the spin rate to ball speed ratio was between 13.93 and
15.59. According to the results in Table 5, this parameter for Shohei Ohtani increases in
the four-seam fastballs from the 10th to the 36th ball and after the 62nd ball, which also
means that the late break of this pitcher decreases. According to the actual game situations
of the 10th to 36th ball (in the second inning) and the 62th to 70th ball (in the fourth inning),
Shohei Ohtani lost four and two points in the second and fourth innings, respectively. In the
match on 18 April 2022, Clayton Kershaw (the starting pitcher of the Los Angeles Dodgers
baseball team) pitched a total of 5 innings in this game using 87 balls. The speeds of his
four-seam fastballs were between 143 and 146 km/h, and the spin rates were between 2310
and 2467 rpm. The parameter of the spin rate to ball speed ratio was between 16.01 and
17.23. According to the results in Table 6, this parameter for Clayton Kershaw increases
in the four-seam fastballs from the 59th to 81se ball, which also means that the late break
of this pitcher decreases. According to the actual game situation of the 59th to 81st ball
(from the fifth to sixth innings), Clayton Kershaw lost one and three points in the fifth and
sixth innings, respectively. Therefore, it was verified through the parameter of the spin rate
to ball speed ratio that the late break of the pitcher became smaller, thereby reducing the
power of pitching.

Table 4. Pitching state analysis of four-seam fastballs by Manabu Mima.

Number of Pitches 4 7 9 27 31 32 35 36 48 49 58

Speed (km/h) 144 147 146 147 145 146 143 143 137 147 143
Spin rate (rpm) 2398 2241 2357 2219 2313 2386 2415 2486 2495 2441 2284

Spin/speed 16.65 15.24 16.14 15.10 15.95 16.34 16.89 17.38 18.21 16.61 15.97

Table 5. Pitching state analysis of four-seam fastballs by Shohei Ohtani.

Number of Pitches 1 10 13 16 26 36 50 55 62 63 64

Speed (km/h) 155 158 157 154 157 158 154 157 158 153 154
Spin rate (rpm) 2157 2377 2373 2395 2378 2357 2189 2216 2350 2220 2228

Spin/speed 13.93 15.01 15.15 15.59 15.12 14.96 14.22 14.10 14.87 14.47 14.43

Table 6. Pitching state analysis of four-seam fastballs by Clayton Kershaw.

Number of Pitches 1 7 19 24 32 41 53 59 66 77 81

Speed (km/h) 144 144 145 145 144 146 146 143 145 143 143
Spin rate (rpm) 2377 2395 2398 2370 2310 2344 2351 2352 2426 2432 2467

Spin/speed 16.56 16.58 16.54 16.35 16.01 16.06 16.15 16.50 16.77 16.96 17.23

5. Conclusions

In this study, pitched-baseball characteristics were analyzed to observe the effects of
Magnus force on a pitched-baseball trajectory from TV broadcast videos using the aerody-
namic theory. Moreover, an automatic measurement and analysis system was established by
YOLOv3-tiny for the pitched-baseball trajectories, speeds, and spin rates. Finally, a system
was used to automatically present pitching data, such as the throw point, catch point, pitch
angle, ball speed, spin rate, vertical displacement, and ball trajectory on the screen. According
to the results of 30 testing videos of pitched baseballs, this system fully grasped the baseball
trajectories, throw points, catch points, and vertical displacements. The average errors of the
measured ball speeds and spin rates were 1.88% and 7.51%, respectively, compared to the
values of the ball speeds and spin rates provided by the TV broadcast. In addition, this study
used the ratio of the spin rate to the ball speed as a parameter to analyze the pitching state of
the pitcher’s four-seam fastballs. It can be seen from the results of the NPB and MLB matches
that when this parameter increased, the Magnus displacement of the ball also increased,
thereby decreasing its late break. As a result, the spin rate to ball speed ratio verified that
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the late break of the pitcher became smaller, and thus the power of pitching reduced. Using
this system, pitching information in the baseball game was easily obtained and recorded for
further discussion. The system developed in this study provides scientific pitching data to
improve the performance of baseball pitchers.
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