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Abstract: Deep learning approaches play a crucial role in computer-aided diagnosis systems to
support clinical decision-making. However, developing such automated solutions is challenging
due to the limited availability of annotated medical data. In this study, we proposed a novel and
computationally efficient deep learning approach to leverage small data for learning generalizable
and domain invariant representations in different medical imaging applications such as malaria,
diabetic retinopathy, and tuberculosis. We refer to our approach as Incremental Modular Network
Synthesis (IMNS), and the resulting CNNs as Incremental Modular Networks (IMNets). Our IMNS
approach is to use small network modules that we call SubNets which are capable of generating
salient features for a particular problem. Then, we build up ever larger and more powerful networks
by combining these SubNets in different configurations. At each stage, only one new SubNet module
undergoes learning updates. This reduces the computational resource requirements for training
and aids in network optimization. We compare IMNets against classic and state-of-the-art deep
learning architectures such as AlexNet, ResNet-50, Inception v3, DenseNet-201, and NasNet for the
various experiments conducted in this study. Our proposed IMNS design leads to high average
classification accuracies of 97.0%, 97.9%, and 88.6% for malaria, diabetic retinopathy, and tuberculosis,
respectively. Our modular design for deep learning achieves the state-of-the-art performance in
the scenarios tested. The IMNets produced here have a relatively low computational complexity
compared to traditional deep learning architectures. The largest IMNet tested here has 0.95 M of the
learnable parameters and 0.08 G of the floating-point multiply–add (MAdd) operations. The simpler
IMNets train faster, have lower memory requirements, and process images faster than the benchmark
methods tested.

Keywords: medical imaging; deep learning; malaria detection; diabetic retinopathy; tuberculosis
detection; modular networks

1. Introduction
1.1. Background

Recently, deep learning with convolutional neural networks (CNNs) has proven to be
highly effective for computer-aided detection (CAD) in medical image analysis. The trend
in CNN architectures recently has been towards ever deeper and wider networks with
dense connectivity. For example, ViT-G/14 [1] and ViT-MoE-15B [2] were the top two
CNN architectures in the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC)
competition in 2021 [3]. The ViT-G/14 and ViT-MoE-15B architectures contain 1.843 G and
14.70 G parameters, respectively. Furthermore, ViT-G/14 requires 965.3 G floating point
operations (FLOPs) per single image, which is a very computationally costly and power-
hungry solution. Perhaps even more significantly, larger networks require more training
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data to be able to generalize to new data [4]. In many medical image analysis applications,
access to properly-labeled truth imagery is limited, especially for rare diseases [4]. Data
collection and truthing in medical imaging can be cost-intensive, time-consuming, and
requires expert analysis. Transfer learning can help to reduce the amount of application-
specific data required for training. However, large amounts of data may still be needed to
obtain the desired reproducibility and generalizability, even with transfer learning [5,6].
Data augmentation is another approach to dealing with limited training data. However,
data augmentation can be very challenging in some medical imaging modalities such as
chest radiographs [7].

Modular CNN architectures are a promising approach for complex problem-solving
that may be able to help address the challenges described above. Some modular meth-
ods are inspired by the structure and function of the human brain. Recent findings in
neuroscience reveal a high level of modularity and hierarchy of neural structure in the
human brain [8]. In the early 1980s, neuroscientific research categorized the central nervous
system (CNS) in the human brain as a massively parallel and self-organizing modular
system [9–11]. The CNS consists of distinctive regions. Each region develops as a functional
module. The modules are densely connected and interact with one another to accomplish
complex perception and cognitive tasks in an efficient manner [9]. Traditional CNN archi-
tectures often use repeating structures such as layers or groups of layers. However, the
networks are generally trained as one monolithic entity with all learnable parameters being
updated simultaneously.

1.2. Applications

Malaria is a deadly disease that is considered endemic in many countries around the
world [12]. In the year 2020, the World Health Organization (WHO) reported an estimated
229 million cases of malaria worldwide, which caused an estimated 409,000 deaths [13].
Malaria occurs in humans via protozoa within the blood cells of the genus Plasmodium.
These parasites are transmitted by the bite of a female Anopheles mosquito [14]. The
mosquito bite injects the Plasmodium into the affected person’s blood, and then the Plas-
modium parasites pass quickly to the liver to mature and replicate [15]. The most common
imaging modality for detecting parasites in a thin blood smear sample is microscopical
imaging [16]. While microscopy is relatively low-cost and widely accessible, diagnosis
efficiency depends on the experience of parasitologists [17]. False-positive or false-negative
diagnoses can lead to inappropriate or unnecessary prescriptions that can cause side effects
in patients. Due to the global shortage of parasitologists in impoverished urban areas accu-
rately processing the large number of specimens encountered is not always possible [18,19].
Thus, CAD systems can be highly beneficial in this application.

Another disease for which CAD systems can help by providing accurate early detection
is diabetic retinopathy (DR). This condition is a typical development of diabetes, affecting
the retina’s small blood vessels, leading to vision deterioration [20]. The research described
in [21] studies the offloading footwear to prevent and lower mortality rates in high-risk
diabetic feet. A recent study has reported that DR affects the vision of 2.6 million people in
the world [20,22]. Several retinal imaging systems can be utilized to detect the indication of
diabetic retinopathy, including color fundus photography, fluorescein angiography, B-scan
ultrasonography, and optical coherence tomography [23]. The retina images that we use
in our study have been captured using fundus photography under a variety of imaging
conditions. Early-stage diagnosis of DR grading is integral to prevent the occurrence
of blindness. Hence, CAD systems could help save millions of people from potentially
preventable vision loss and blindness by improving early detection.

The third and final application we consider here is pulmonary tuberculosis (TB). This
disease is a significant public health issue causing more than 9 million expected new cases
and roughly 1.4 million deaths every year [24]. The detection of TB on chest radiographs
(CRs) is essential for diagnosing TB. Chest radiography imaging (e.g., X-ray or computed
tomography (CT) imaging) is easy to perform with fast diagnosis and has a high sensitivity
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for diagnosing TB infection. However, CRs are the fastest and most affordable form of
imaging and require significantly less radiation, data memory, and processing time than CT
scans [25]. The WHO recommends using CRs to screen and triage people for TB [26]. Note
that CRs are among the first procedures of examination related to suspects’ lung disease.
They are low-cost and widely accessible for health care providers. The use of CAD systems
for TB detection can help radiologist workflow so they may be able to process more cases
with greater accuracy.

1.3. Related Works

Various approaches have been proposed in the literature for medical imaging CAD
systems, including those for malaria, DR and TB [27–43]. The work described in [28] aims
to improve malaria parasite detection using tiny red blood smear patches; they utilize
several existing deep convolutional neural networks in place of handcrafted feature ex-
traction. The study claims that using preprocessing techniques such as standardization,
normalization, and stain normalization does not improve the overall performance model.
An effective multi-magnification deep residual neural network (MM-ResNet) has been
trained on microscopic phone image datasets of malaria blood smears obtained from the AI
research group at Makerere University. The MM-ResNet-50 end-to-end framework takes
three different images of size as inputs. It concatenates each ResNet-50 at the second to
the last layer, followed by a final fully connected layer [29]. VGG-16 and VGG-19 have
been trained on the National Institutes of Health (NIH) malaria dataset using hyperpa-
rameter tuning techniques described in [30], the CNN used to automate the screening
of malaria in low-resource countries achieves an accuracy of 0.9600. A survey article on
image analysis of microscopic blood slides uses many machine learning techniques for
malaria detection [31]. Patient information was considered, such as nationality, age, gender,
body region, and symptomatology of a patient as a part of features engineering for malaria
detection. Furthermore, they examined six machine learning algorithms, including support
vector machine (SVM), random forest (RF), multilayer perceptron (MLP), AdaBoost, gradi-
ent boosting (GB), and CatBoost to classify infected and non-infected cells [32]. A fast CNN
architecture present in [33] is used to classify thin blood smeary images. This paper studied
the performance of transfer learning approaches for various pre-trained CNN architectures,
including AlexNet, ResNet-50, VGG-16, and DenseNet-201. Furthermore, they studied the
performance of a traditional machine learning algorithm using a bag-of-features model
with SVM.

Many deep learning methods, originally proposed for the ILSVRC [44], have been
adapted to the medical image application. Among these are meta-algorithms for DR detec-
tion, which combine five CNN architectures into one predictive model [34]. Zhang et al. [35]
fine-tuned ResNet-50 that pre-trained on the ImageNet dataset. The work described in [36]
developed a real-time smartphone app to detect and classify DR by using a pre-trained In-
ception v3 model with a transfer learning technique. A hybrid machine learning technique
is introduced in [37] to detect and grade DR severity level. The study compares simple
transfer learning-based approaches using seven pre-trained networks. Another fine-tuned,
pre-trained approach for DR detection is presented in [38] using a cosine annealing strategy
to decay the learning rate. The transfer learning method for TB described in [39] was used
to neutrophil cluster detection. An automatic TB screening system presented in [40] is
based on transfer learning from lower convolutional layers of pre-trained networks. The
method in [42] uses a simple segmentation approach to classify the images’ foreground and
background. The segmented objects are then fed to a trained CNN to classify the objects
into bacilli and non-bacilli. A total of four state-of-the-art 3D CNN models are used to
detect the spatial location of lesions and classify the candidates into miliary, infiltrative,
caseous, tuberculoma, and cavitary types in [43]. A multi-strategy fast non-dominated
solution ranking algorithm with high robustness is described in [45].

Of particular relevance to our work is the Net2Net method introduced by Chen et al. [46]
The method is modular in that it allows two neural networks to mimic the behavior of
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a more complex network. The Net2Net is an effective technique to transfer the prior
knowledge from a trained neural network (teacher network) to a new deeper, or wider
network (student network). The Net2Net approach implemented in [46] combines two
neural networks to form a larger network. It does so by either increasing the width or
the depth of the network. The method replicates the teacher network weights to expand
the student network size either in width or depth. After replicating, the new addition is
initialized to be an identity network. This method can guarantee that the student model
can perform just as well as the teacher network at the start of training. The student model
obtains good accuracy much faster than training the larger network from scratch. While
Net2Net is a practical and innovative approach that works very well for knowledge transfer,
the Net2Net method has a few limitations. For example, the current implementation of
Net2Net in [46] uses only two networks. Furthermore, there are restrictions on the networks
in terms of kernel sizes, activation functions, and initialization, so as to achieve the stated
network properties.

Another related modular technique that is designed to work with small amounts of
training data is presented in [47]. The module uses the entire CNN network as modules.
It combines pre-trained modules with untrained modules, allowing the new network to
learn discriminative features. The pre-trained models VGG-16 and ResNet-50 were used.
The module fine-tunes the VGG-16 model on the Stanford Cars dataset by replacing the
last three layers with two consecutive fully connected layers, softmax, and loss function.
Then, the module merges the fixed VGG16 features with a ResNet-50. The output of both
models was then fed to two fully connected layers, softmax, and loss function.

1.4. Contributions

In this paper, we propose a novel and a computationally efficient deep learning
approach for medical image analysis using CNNs. We refer to our approach as Incremental
Modular Network Synthesis (IMNS), and the resulting CNNs as Incremental Modular
Networks (IMNets). Our IMNS approach is to use small network modules that we call
SubNets that are capable of generating salient features for a particular problem. Compared
with other modular methods in the literature, our IMNS approach has some distinct
features. First, we begin with small compact SubNet modules to keep the computational
complexity low. Second, we build networks using both series and parallel arrangements in
a sequential incremental manner. This provides freedom of building nearly any custom
network without restriction. The essential feature of our approach is that we start by
training one small SubNet and lock in those network parameters. We add depth or width
to that initial network and train only the new SubNet at a time. We do this incrementally
until we achieve the desired network performance. Our approach guarantees the freedom
of choosing any configuration for the initial network, including the number of layers, the
kernel size, series network incremental or parallel network incremental. To the best of
our knowledge this kind of modular network synthesis approach has not been previously
employed in medical image CAD applications.

1.5. Paper Organization

The remainder of the paper is organized as follows. A description of the datasets
used is presented in Section 2. In Section 3, we describe the proposed IMNS method and
resulting IMNets. Section 4 presents the experimental results. Finally, we offer discussion
and conclusions in Section 5.

2. Materials

In this paper, we utilized three different datasets to study the performance of our
method. First, we utilized a publicly available dataset provided by the NIH [48] for malaria
detection. Second, we used the publicly available Asia Pacific Tele-Ophthalmology Society
(APTOS) 2019 blindness detection challenge dataset [49] for DR detection. Lastly, for TB
detection, we make use of a publicly available Shenzhen chest radiograph dataset [50].
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2.1. Malaria Dataset

Malaria dataset provided segmented cell samples that have been obtained from the
thin blood smear slide images from the Malaria Screener research activity [48]. According
to the NIH, all images were manually labeled by a proficient slide reader at the Mahidol-
Oxford Tropical Medicine Research Unit in Bangkok, Thailand [48]. The dataset com-
prises 27,558 cell images with equal representation of parasitized and uninfected cells.
We randomly divided the dataset into 80% for training and 20% for testing representations
regarding each class. Moreover, we split the training dataset into 90% and 10% for training
and validation sets. Table 1 shows the hold-out validation distribution of the malaria
dataset and the number of training, validation, and testing samples. Figure 1 shows the raw
sample, which tends to have different illumination conditions. Therefore, we pre-processed
all images by applying the color constancy technique [51] to ensure the perceived color of
each image remained the same under different illumination conditions. Results of the color
constancy outputs for the input images in Figure 1 are shown in Figure 2.

Figure 1. Raw parasitized and uninfected sample images for malaria detection labeled by expert
slide readers.

Figure 2. Malaria detection images from Figure 1 after color constancy processing.

Table 1. The hold-out validation distribution of the data source for each application and the number
of training, validation, and testing cases.

hhhhhhhhhhhhhhDatasets
Applications Malaria Diabetic Retinopathy Tuberculosis

Images size 112× 112 299× 299 299× 299
No. of training set 19842 2637 477
No. of validation set 2204 293 53
No. of testing set 5512 732 132

2.2. Diabetic Retinopathy Dataset

The technicians in the Aravind Eye Hospital in India have collected retinal images
from patients who live in rural areas aiming to detect and prevent diabetic retinopathy [49].
Trained doctors then reviewed these images to provide the diagnosis. This APTOS 2019
dataset consists of 5590 retinal image samples. The dataset has been split up into training
and testing cases by the challenge host organization. The training dataset is comprised
of 3662 samples. The testing dataset contains 1928 samples, but the labels for the testing
dataset are not publicly available yet. The dataset contains five classes, including No DR
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and the other four stages of DR (Mild DR, Moderate DR, Proliferative DR, and Severe DR).
In this study, we grouped the dataset into two possible disease categories, normal and
DR classes. The four types of DR diseases have been grouped together in the DR class.
Moreover, since the testing dataset labels are not available, we solely used the training
dataset provided as part of the APTOS 2019 challenge. The training dataset was randomly
split into 80% for training and 20% for testing. Then, the training dataset is divided into 90%
and 10% for training and validation sets. Table 1 shows the number of training, validation,
and testing samples for DR dataset. Figure 3 shows random samples of labeled images
from the APTOS 2019 DR dataset after we grouped them into two classes.

We have studied and visualized the dataset, and we found that the images contain
artifacts, varying sizes, different optic nerve angles, and were captured under different
lighting conditions so that some are underexposed or overexposed. To handle this variabil-
ity, we propose applying pre-processing techniques to seek to normalize the data for these
factors. The eye image pre-processing technique consists of four steps:

1. We find the mask of the orange portion of the eye and separate it from the black background.
2. We locate the optic nerve that appears as a bright disk in the images. This is achieved

by applying a Gaussian low-pass filter with a spatial standard deviation approximately
equal to the radius of the optic nerve disk. The brightest pixel after the blurring
operation generally is located near the center of the optic nerve.

3. We compare the location of the optic nerve center to the center of the eye mask to
determine the orientation of the eye. We then rotate the image so that optic nerve is
consistently on the right of center in the resulting image.

4. Finally, we crop, zero pad, and interpolate to obtain the same size images. We do so
in such a way as to not change the aspect ratio of image, as this would contaminate
the geometric integrity of the data.

This simple pre-processing technique renders the retinal images in the database more
uniform and allows the CAD system to achieve improved performance. Examples of the
retinal images from Figure 3 after implementing the pre-processing steps described above
are shown in Figure 4.

Figure 3. Raw retinal images of a healthy retina (normal class) and DR damage blood vessels in the
retina (DR class).

Figure 4. Retinal images from Figure 3 after applying the proposed pre-processing steps to normalize
the images in the database.

2.3. Tuberculosis Dataset

We utilized the Shenzhen dataset [50] for TB detection that holds 326 normal CR
cases and 326 CR with active pulmonary tuberculosis. The chest radiograph images
in the Shenzhen dataset have been collected by Shenzhen No. 3 Hospital in Shenzhen,
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Guangdong province, China. In our experimental study using these data, we perform a
hold-out validation. We randomly divide the dataset into groups of 72% for training, 8%
for validation, and 20% for testing. Table 1 shows the hold-out validation distribution of
the TB dataset.

The CR images are in JPEG format with a resolution of 3000× 3000 pixels. Some
example labeled CR images from the Shenzhen dataset are shown in Figure 5. Figure 5
shows that some CR samples in the dataset have an inverse intensity polarity. We find that
it is critical to network performance to make all of the CR images have the same polarity.
Therefore, all cases are reviewed manually and inverted as needed. For this research, we
converted all the images to a size of 299× 299. The example images Figure 5 after the
corrective inversion processing are shown in Figure 6.

Figure 5. Chest radiograph samples from the Shenzhen dataset labeled by radiologists as normal
and tuberculosis. Starting from the left, the first, second, and fourth chest radiograph images have
inverse polarity.

Figure 6. Preprocessed chest radiograph images from the Shenzhen dataset to provide polarity uniformity.

3. Methods

In this section, describe the details of the proposed IMNS method. We begin with an
overview. Next, we explain the details of each SubNet and how they work together. Then,
we present the specific IMNet architecture used in our experimental study. Finally, we end
this section with a discussion of our network training process.

3.1. Overview

The inspiration for the IMNS approach comes from children’s building blocks. We
propose that CNN architectures can be assembled using modular components in a manner
that is akin to building a structure with a child’s building blocks. Each module requires only
an incremental additional training process. This allows for a potentially massive network
without the computational cost of training the final network at one time, which could be
prohibitive. The proposed IMNS uses a unique hybrid learning strategy that successfully
combines multiple SubNet to produce complementary information.

In our approach, each SubNets module is added incrementally onto existing architec-
ture in either a series or parallel fashion. These two scenarios are illustrated in Figure 7.
Note that in Figure 7a, a new SubNet is added in series to the feature computation layers of
the current IMNet. The classification layers are moved to the end of the network as shown.
Note also that the learnable parameters of the current IMNet are locked-in, and only the
learnable parameters of the new SubNet are updated. For large networks, this dramatically
reduces the computational demands of the back-propagation updates. At some stages of
the IMNS process, the user may wish to expand the network in parallel. This is shown
in Figure 7b. As before the classification layers are moved to the end, and only the new
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Subnet is updated in the back-propagation learning algorithm. One new operation that
is needed here is the concatenation layer that takes the feature maps generated from the
current IMNet and concatenates them with the feature maps generated by the new SubNet.
We concatenate these feature maps in the channel dimension.

Figure 7. Illustration of the IMNS workflow for building IMNets. (a) Addition of a series SubNet,
(b) addition of a parallel SubNet.

3.2. SubNet Architecture

The individual SubNet architectures considered here are shown in Figure 8. The
feature generating SubNets are comprised of a selected number of the layer groups shown
in Figure 8a. The classification layers are shown in Figure 8b. Figure 8a shows the convolu-
tional layer structure where each convolutional layer followed by a batch normalization
layer, rectified linear units (ReLU), and max pooling of window size 2× 2 with a stride of
2 to downsample the feature maps. Note that the number and size of convolution filters
present in each layer may differ. The classification block consists of one fully connected
layer, softmax function, and cross-entropy loss function as shown in Figure 8b.

(a) (b)

Figure 8. (a) Convolutional layer structure. (b) Classification layer structure.
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Let us formally define the output of a SubNet made up of L− 1 layer groups such as
those shown in Figure 8a followed by an L’th classification layer as shown in Figure 8b. To
begin, let us define one minibatch of input data as

X = {X1, X2, . . . , XN}, (1)

where Xn ∈ RH×W×D is the n’th exemplar from the minibatch. These inputs represent
potentially multi-channel images with H rows, W columns, and a channel depth of D.
Consider the case of classification with M distinct classes. Let the truth for each exemplar
be denoted as yn = [yn,1, yn,2, . . . , yn,M]T ∈ RM, for n = 1, 2, . . . , N.

Let us define the n’th exemplar, Xn, as the input to Layer group 1 of the network. Let
this be represented in lexicographical notation as the HWD× 1 vector x0

n. Note that this
is formed by reshaping the 3D data-cube in Xn into a column vector. The output of each
convolutional layer group shown in Figure 8a can be expressed as

xl
n = g(Wlxl−1

n + bl), (2)

for layer group l = 1, 2, . . . , L− 1 and exemplar n = 1, 2, . . . , N within the minibatch. The
weights of all of the convolution kernels for layer group l are represented in the weight
matrix Wl . The dimensions of W1 are HWN1

f × HWD where N1
f is the number of filters in

layer group l = 1. The dimensions are reduced in subsequent layer groups due to the max
pooling layers employed. Bias terms are represented in the vector bl . Note that xl

n is the
output 3D feature map cube of the current layer l in lexicographical form as a vector.

The ReLU and max pooling layers illustrated in Figure 8a are jointly represented with
the nested function

g(x) = MaxPool(Max(0, x)). (3)

The maximum of each element and 0 provides the ReLU operation. The ReLU activation
function g(·) is used here to overcome the vanishing gradient problem associated with
some other activation functions and allows the network to learn faster and perform better.
The MaxPool(·) operator uses 2× 2 spatial sub-sampling kernel to reduce the size of the
feature maps by a factor of 2 in each spatial dimension of each channel.

After the convolution layers groups, we implement the classification layer group as
shown in Figure 8b. The fully connected layer is similar to that in Equation (2), except here
the output size is equal to the number of classes, M, and the weight matrix connects every
input and output. It does not employ convolution kernels. Furthermore, there is no ReLU
or max pooling. The fully connected layer function may be represented as

xL
n = WLxL−1

n + bL, (4)

where xL
n = [xL

n,1, xL
n,2, . . . xL

n,M]T is the output. The vector xL−1 is the final feature map from
the L− 1 convolution layer groups. The biases for the fully connected layer are contained
in bL.

After the fully connected layer, we have the so-called soft-max operation that normal-
izes the output and is given by

ŷn = [ŷn,1, ŷn,2, . . . , ŷn,M]T = Softmax(xL
n), (5)

where

ŷn,m =
exL

n,m

∑M
j=1 exL

n,j
. (6)

Note that the outputs of the softmax operation, ŷn,m, are in the range [0, 1] and

M

∑
m=1

ŷn,m = 1. (7)
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All of the mathematical details mentioned above can be compactly summarized as follows

ŷ = f (X, φ), (8)

where ŷ = [ŷ1, ŷ2, . . . , ŷN ]
T is the predicated labels and all of the learnable parameters are

given by
φ = {Wl , bl |l ∈ {1, 2, . . . , L}}. (9)

Note that the function f (·) is the overall SubNet predictor module and φ denotes the
learnable parameters of the network. The learnable parameters are updated after each
minibatch based on the empirical risk computed over that minibatch. The empirical cross-
entropy error function used here is given by

Remp(X, φ) = − 1
M

N

∑
n=1

M

∑
m=1

yn,m × ln(ŷn,m). (10)

Note that Remp(·) depends on two arguments, the minibatch data X and the learnable
parameters in φ. The variable N is the number of examples in the minibatch, and M is the
number of classes. The variable yn,m is the truth labels and ŷn,m is the predicated labels
of our model. Once the loss is computed for one minibatch, back-propagation is used to
update the learnable parameters in φ for the SubNet using the adaptive moment estimation
(Adam) optimizer [52].

3.3. Series and Parallel Combinations

Consider the series combination of two SubNets: A + B. Let SubNet A have LA
convolution layers that follow Equation (2), and SubNet B has LB. The combined network
would have a total of L = LA + LB + 1 layers, where the final layer is the one fully connected
layer as shown in Equation (4). The parameters for SubNet A are

φA = {Wl , bl |l ∈ {1, 2, . . . , LA}}. (11)

These are fixed after the training for SubNet A. The parameters for the SubNet B convolu-
tion layers, plus the fully connected layer are given by

φB+ = {Wl , bl |l ∈ {LA + 1, LA + 2, . . . , LA + LB + 1}}. (12)

The parameters in φB+ are updated during the training of A + B. This output of the series
layers goes to the softmax layer as before using Equation (5). This scenario is illustrated in
Figure 7a.

Next, consider two parallel SubNets: A || B. Again, let SubNet A have LA convolution
layers that follow Equation (2), and SubNet B has LB. Let us define the convolution layer
parameters for each SubNet as

φA = {Wl
A, bl

A|l ∈ {1, 2, . . . , LA}} (13)

and
φB = {Wl

B, bl
B|l ∈ {1, 2, . . . , LB}}. (14)

The output of the SubNet A convolution layers is given by

xl
A,n = g(Wl

Axl−1
A,n + bl

A), (15)

where l = 1, 2, . . . , LA. The output of the the SubNet B convolution layers is given by

xl
B,n = g(Wl

Bxl−1
B,n + bl

B), (16)
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where l = 1, 2, . . . , LB. Note that the inputs to the two parallel SubNets are the same so that
we have x0

A,n = x0
B,n = Xn. Let the fully connected output layer be designated as Layer

L = Max(LA, LB) + 1. The output of this fully connected layer with the final feature maps
concatenated is given by

xL
n = WA||B

[
xLA

A,n
xLB

B,n

]
+ bA||B. (17)

This output goes to the softmax layer as before using Equation (5). The parameters in φA
are fixed and the parameters in φB along with WA||B and bA||B are updated. This scenario
is illustrated in Figure 7b.

3.4. Proposed IMNet Architecture

In general, the IMNS can be used to create a limitless number of final architectures
by combining the proposed SubNets, or other SubNet architectures. Here, we propose
one specific example that we believe effectively balances performance and computational
complexity for the medical imaging applications mentioned in Section 1. The proposed
IMNet architecture is illustrated in Figure 9. Figure 9 shows five SubNets, A, B, C, D, and
E, that are incrementally added to produce the final network. We use relatively small and
compact SubNet modules to maintain a small computational cost. The details for each
SubNet are provided in Table 2. Figure 7a shows the workflow for adding the SubNet in
series, and Figure 7b shows the addition of a parallel SubNet.

Figure 9. IMNet architecture used here in the experimental results. SubNets A, B, C, D and E are
added incrementally in order to produce the full network shown. Details of the SubNets are provided
in Table 2.

First, we use all of the available minibatches to train the SubNet A and minimize the
loss to obtain the optimum parameters using Equation (10). After training for SubNet A is
complete, we lock in the learnable parameters for this module and refer to it as IMNet A.
This network is used to generate the feature maps that will be the input to the new SubNet
B. The first convolutional layer of the SubNet B receives all the feature maps from L− 1
layer of SubNet A as input. In this case, the SubNet B is connected in a series configuration
that can be denoted as A + B and we refer to this as IMNet A, B.

Next, we lock the current IMNet A, B, and add a new SubNet C in parallel. This
combination of SubNets may be expressed as (A + B)||C and we refer to this as IMNet
A-C for notational convenience. We use the equations mentioned above to generate feature
maps using IMNet A, B and concatenate these with the feature maps generated by the
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new SubNet C. We use a reshape layer to match the feature map of IMNet A, B with
output feature maps of SubNet C and concatenate the feature maps in the depth dimension.
SubNet D is then added in series to produce the configuration (A + B)||C + D, denoted
here as IMNet A-D. Finally, we lock IMNet A-D and add the last new SubNet E in a
parallel configuration. This IMNS sequence can be represented as [(A + B)||C + D]||E
and we denote this as IMNet A-E. We selected this configuration because we find that
alternating between series and parallel SubNets is generally effective, as these two additions
tend to complement each other.

Table 2. SubNet architectures used in the IMNet in Figure 9.

Model Layers Filter Size Total Parameters MAdd

SubNet A
Conv-A2 3× 3× 8

0.018M 9.94MConv-A2 3× 3× 16
Conv-A3 3× 3× 32

SubNet B
Conv-B1 3× 3× 64

0.390M 11.94MConv-B2 3× 3× 128
Conv-B3 3× 3× 256

SubNet C
Conv-C1 1× 1× 8

0.021M 1.10MConv-C2 1× 1× 16
Conv-C3 1× 1× 32

SubNet D
Conv-D1 3× 3× 64

0.390M 43.65MConv-D2 3× 3× 128
Conv-D3 3× 3× 256

SubNet E
Conv-E1 1× 3× 64

0.165M 13.82MConv-E2 3× 1× 128
Conv-E3 1× 3× 256

3.5. Network Training

We study the performance of our proposed approach by utilizing the following data
separation: 72% of the samples of each class are assigned to the training set, 8% to the
validation set, and the remaining 20% to the test set. All of the image processing and
classification stages are implemented using MATLAB deep learning platform [53] version
r2020b. The hardware used is a Windows PC equipped with with Intel Xeon CPU E5-1630
v4 @ 3.70 GHz and 32 GB of RAM. Network training and testing are accelerated using
an NVIDIA TITAN RTX GPU. We trained the network and tuned our hyperparameters
for the proposed IMNet architecture solely on the training and validation datasets. All
of the IMNets are trained from scratch with randomly initialized weights. We choose the
Adam optimization technique [52] to accelerate the convergence time and find the global
minimum cost function for all networks. We chose an initial learning rate of 0.001 with
different mini-batch sizes for each application and a validation frequency of 50. Note that
the validation frequency details how many iterations pass before re-validating during
training. In our configurations we validate every 50 iterations. Note that the learning rate is
kept adaptive to accelerate the learning process and prevent over-fitting. The learning rate
is scheduled to decrease by a factor of 0.1 after one half of epochs are completed. We also
use a training policy called “ValidationPatience” and set this parameter to 50. This value
specifies the number of times that the validation loss can be larger than the smallest value
achieved before the training process halts. Furthermore, in order to prevent overfitting and
to improve model generalization, we apply a simple and effective regularization technique
known as L2 regularization [54] with a value of 0.0001.

3.6. Statistical Analysis

It is important to assess the efficacy of classification algorithms to aid in method com-
parisons, method selection, understanding system limitations, and to identify opportunities
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for future improvement. The metrics we use as performance and efficiency metrics are
balanced accuracy (BACC), specificity (SPEC), sensitivity (SENS), ROC curves, AUC, and
testing time. These metrics defined in [55] provide an objective quantitative picture of
the efficacy of the systems tested. We used the two-sided t-test to compare model perfor-
mances. A p < 0.05 was considered statistically significant. All statistical analyses were
performed with the statistical package of MATLAB version r2020b. In addition, to test the
reproducibility of the model, we repeated such an experiment 10 times and reported mean
and standard deviation (SD).

4. Experiment Results

In this section, we present the results obtained using our proposed approaches.
In order to demonstrate the efficacy of our proposed algorithm, we compare our IMNS
model results against those from well established and state-of-the-art CNN models includ-
ing AlexNet [56], ResNet-50 [57],Inception v3 [58], DenseNet-201 [59], and NasNet [60]. For
these large benchmark networks, we use transfer learning. The weights are imported from
MATLAB deep learning toolbox [61] version r2020b. The pre-trained weights are imported
from pre-trained networks. The pre-trained networks have been trained on a subset of
the ImageNet database [62], which is used in the ILSVRC [44]. Approximately 1.4 million
images have been used to train these networks to classify images into 1000 object classes.
Fine-tuning a pre-trained network is more efficient than training a network from scratch.
This is important with networks of these sizes. For IMNets, we use the training method-
ology described in Section 3.5. Furthermore, note that our results use publicly available
datasets, as described in Section 2, to allow for independently reproducible results. We
present the results for our IMNet in several forms to show the evolution in performance using
IMNS starting with IMNet A and going to IMNet A-E, as shown in Figure 9. To quantitatively
evaluate the results, we employ the performance metrics defined in Section 3.6.

4.1. Quantitative Results Summary

We applied the IMNS method to each of the datasets described in Section 2. In particular,
we consider the detection of malaria, DR, and TB. The results for these three experiments are,
respectively, summarized in Tables 3–5.

Table 3 shows the performance metrics for the IMNS method with various IMNets
for malaria detection using blood smear slide images. Note that here IMNet A-E had
a significantly higher BACC (97.0± 0.36) than AlexNet, ResNet-50, DenseNet-201, and
NasNet (96.2± 0.22 [p < 0.05], 96.5± 0.51 [p < 0.05], 96.2± 0.43 [p < 0.05], and 96.7± 0.12
[p < 0.05], respectively). In addition, our proposed IMNet A-E outperforms the Inception
v3 in this experiment (96.8± 0.39 [p < 0.05]). Furthermore, note that IMNet A-D took only
11.71 seconds to process 5512 samples (9× faster than Inception v3). The highest AUC in
this experiment is achieved with IMNet A-D. Note also that in this application the addition
of SubNet E lowers all of the metrics. This may suggest that the IMNS process can be halted
as further improvement is not expected with additional modules.
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Table 3. Malaria dataset results showing hold-out validation performance on the test set using our
IMNS method and benchmark methods.

Model BACC (%) SPEC (%) SENS (%) AUC Testing Time (s)

AlexNet 96.8± 0.39 96.0± 1.50 94.1± 1.05 0.985± 0.002 81.01
ResNet-50 96.5± 0.51 97.8± 0.34 95.3± 1.07 0.992± 0.003 88.08
DenseNet-201 96.2± 0.43 97.2± 0.75 95.2± 1.06 0.992± 0.002 157.43
Inception v3 96.8± 0.39 97.6± 0.74 96.0± 1.15 0.993± 0.001 104.20
NasNet 96.7± 0.12 97.6± 0.65 95.8± 0.69 0.993± 0.001 92.35
IMNet A 96.8± 0.39 96.0± 1.50 94.1± 1.05 0.985± 0.002 11.18
IMNet A, B 96.1± 0.50 97.2± 0.21 95.1± 0.89 0.991± 0.003 11.23
IMNet A-C 96.4± 0.30 97.1± 0.27 95.7± 0.55 0.993± 0.001 11.58
IMNet A-D 97.0± 0.36 97.9± 0.39 96.1± 0.63 0.995± 0.001 11.71
IMNet A-E 96.7± 0.19 97.5± 0.60 95.8± 0.55 0.994± 0.001 12.26

Table 4. Diabetic retinopathy dataset results showing hold-out validation performance on the test set
using our IMNS method and benchmark methods.

Model BACC (%) SPEC (%) SENS (%) AUC Testing Time (s)

AlexNet 97.2± 0.52 96.9± 0.82 97.4± 0.76 0.994± 0.003 48.83
ResNet-50 97.9± 0.73 97.3± 1.08 98.5± 0.94 0.997± 0.001 41.71
DenseNet-201 98.0± 0.39 98.0± 0.27 97.9± 0.82 0.996± 0.002 64.49
Inception v3 97.8± 0.41 97.2± 0.81 98.5± 0.74 0.995± 0.002 43.12
NasNet 97.0± 0.53 96.7± 0.85 97.3± 0.81 0.994± 0.001 55.41
IMNet A 92.2± 3.90 93.8± 3.26 90.6± 8.85 0.980± 0.009 6.85
IMNet A, B 96.1± 0.80 94.8± 2.18 97.4± 1.28 0.991± 0.003 7.25
IMNet A-C 97.0± 0.50 96.6± 0.82 97.4± 0.91 0.995± 0.001 7.49
IMNet A-D 97.7± 0.39 97.7± 1.01 97.7± 0.98 0.996± 0.001 7.51
IMNet A-E 97.9± 0.23 98.0± 0.65 97.7± 0.35 0.996± 0.001 7.63

Table 5. Tuberculosis dataset results showing hold-out validation performance on the test set using
our IMNS method and benchmark methods.

Model BACC (%) SPEC (%) SENS (%) AUC Testing Time (s)

AlexNet 86.1± 2.91 85.9± 3.53 86.3± 6.17 0.927± 0.017 0.775
ResNet-50 87.7± 2.46 85.5± 4.11 90.0± 3.26 0.926± 0.016 2.51
DenseNet-201 87.6± 2.30 84.7± 2.71 90.4± 3.89 0.931± 0.019 2.74
Inception v3 85.5± 3.18 81.1± 5.13 89.8± 4.66 0.910± 0.028 1.28
NasNet 84.2± 2.31 80.3± 5.62 88.1± 4.81 0.900± 0.029 1.18
IMNet A 80.2± 4.68 82.5± 12.3 78.0± 14.9 0.899± 0.044 0.234
IMNet A, B 82.8± 4.50 82.6± 9.37 83.0± 10.1 0.918± 0.041 0.249
IMNet A-C 85.9± 5.27 81.6± 12.1 90.3± 6.53 0.937± 0.034 0.258
IMNet A-D 87.8± 4.06 87.3± 5.86 88.4± 4.66 0.944± 0.025 0.285
IMNet A-E 88.6± 2.25 85.3± 3.36 89.0± 5.50 0.953± 0.018 0.301

The results summary for DR detection in retinal images are shown in Table 4. Here the
IMNet A-E achieved a higher BACC (97.92± 0.23) which is significantly better than AlexNet
and NasNet (97.20± 0.52 [p < 0.05], and 97.05± 0.53 [p < 0.05]). The BACC of IMNet
A-E is competitive with ResNet-50, DenseNet-201 and Inception v3 (97.9± 0.73 [p = 0.86],
98.0± 0.39 [p = 0.42], and 97.8± 0.41 [p = 0.66], respectively). The DenseNet-201 gives
the best BACC here and the ResNet-50 model does have a slightly higher AUC than IMNet
A-E. However, IMNet A-E processes 732 images in 7.63 s, as compared with 41.71 seconds
for ResNet-50. As can be seen by the different IMNet results in Table 4, the BACC score
rises with the addition of each SubNet during the IMNS process in this experiment.

The results summary for TB detection in chest radiographs is presented in Table 5.
The highest BACC of 88.6± 2.25 is achieved with IMNet A-E, which is significantly higher
than AlexNet, Inception v3, and NasNet (86.1 ± 2.91 [p<0.05], 85.5 ± 3.18 [p < 0.05],
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and 84.2± 2.31 [p < 0.05], respectively). The IMNet A-E produces a higher BACC than
ResNet-50 and DenseNet-201 (87.7± 2.46 [p = 0.30], and 87.6± 2.30 [p = 0.21]). The
highest AUC of 0.953± 0.018 is achieved with IMNet A-E which is significantly higher than
the best of benchmark methods, DenseNet-201, (0.931± 0.019 [p < 0.05]). Note that these
IMNets outperform the large scale models in this application with far less computational
cost and computational time. Results in Table 5 also indicate a modest but consistent boost
in the performance as we add more SubNets during the IMNS process.

Moreover, we compare our IMNets against different current state-of-the-art methods.
For malaria application, our IMNet A-D has a comparative AUC score of 0.995 compared
with the current state-of-the-art methods with lower computational complexity, including
Rajaraman et al. (0.993) [63], Rahman et al. (0.993) [28], and Rajaraman et al. (0.991) [48].
For DR application, IMNet A-D and IMNet A-E produced a comparable AUC of 0.995 and
relatively lower computational complexity with the following proposed methods, including
Gulshan et al. (0.991) [64], Chetoui et al. (0.986) [38], and Sahlsten et al. (0.987) [65]. Finally,
IMNet A-E has a comparative AUC score of 0.953 compared with the following state-of-
the-art methods, including Meraj et al. (0.920) [66], Sathitratanacheewin et al. (0.850) [67],
and Hwang et al. (0.926) [40].

Figures 10–12 show ROC curves for malaria, DR, and TB, respectively. The ROC
curves provide further insight because they illustrate classifier performance for a range of
operating points. For clarity, we only show ROC curves for the top five models in each
application. For malaria detection, the IMNet A-D obtained the best result in terms of AUC
and an area of (0.995± 0.001). However, IMNet A-E obtained a competitive AUC score for
both DR and TB with areas of (0.996± 0.001) and (0.949± 0.019), respectively.

Figure 10. Malaria dataset ROC curve for the five best performing networks.
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Figure 11. Diabetic retinopathy dataset ROC curve for the five best performing networks.

Figure 12. Tuberculosis dataset ROC curve for the five best performing networks.

4.2. Computational Complexity Comparison

In this section, we compare the computational complexity of AlexNet, ResNet-50, In-
ception v3, DenseNet-201, NasNet, and IMNets by counting the number of multiplications
and additions required to process a single image. Furthermore, we compare between all
mentioned models the total number of learnable parameters within each CNN model. We
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calculate the number of learnable parameters for each layer, and then sum up the learnable
parameters in each layer to obtain the total amount of learnable parameters in the entire
network. Figures 13 and 14 and Table 6 show the results of our computational complexity
study. In Figure 13, we show balanced accuracy on the malaria dataset versus the number
of learnable parameters. On the other hand, in Figure 13 we show balanced accuracy versus
the number of floating-point multiply–add (MAdd) operations for the same dataset. Note
that the composite MAdd operations are determined for the input images size of 112× 112
reported in Section 2.1. The diameter of each circle is proportional to the the total number
of learnable parameters for Figure 13, and the circle size is the MAdd for Figure 14. Note
that the IMNets have fewer learnable parameters, and fewer MAdd operations, as shown
in Table 6.

The numerical values for the total number of learnable parameters and MAdd counts
are listed in Table 2 for the malaria dataset networks. Note that IMNet A-E (the largest
IMNet tested here) has fewer parameters than AlexNet by a factor of approximately 64,
and by a factor of approximately 6 compared with NasNet. In terms of the MAdd count,
IMNet A-E has fewer than AlexNet by a factor of approximately 9, and fewer than NasNet
by a factor of approximately 61.

Figure 13. Balanced accuracy on the malaria dataset versus the number of learnable parameters.
The computational cost is measured based on the number of MAdd operations to process a single
example. The diameter of each circle is proportional to the total number of learnable parameters of
the network.
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Figure 14. Balanced accuracy on the malaria dataset versus the number of floating-point multiply–add
(MAdd) operations. The computational cost is measured based on the number of MAdd operations
to process a single example. The diameter of each circle is proportional to the MAdd of the network.

Table 6. Resource usage for IMNets in comparison to benchmark models for the malaria dataset networks.

Model Total Parameters MAdd

AlexNet 61.10M 0.72G
ResNet-50 25.56M 3.87G
Inception v3 27.16M 5.72G
DenseNet-201 20.01M 4.29G
NasNet 5.290M 4.93G
IMNet A 0.018M 0.0099G
IMNet A, B 0.390M 0.0218G
IMNet A-C 0.412M 0.0229G
IMNet A-D 0.790M 0.0666G
IMNet A-E 0.955M 0.0804G

4.3. Visual Explanations

Figures 15–17 show the class activation mapping (CAM) [68] outcomes for malaria, DR,
and TB, respectively. The examples are for different IMNets on test samples that had been
identified as a true positives by the medical professionals. The CAM outputs can give us more
confidence in our models’ predictions as they highlight the discriminative regions used by a
model to identify a positive class in the dataset. Our goal is to investigate and understand
which image region has contributed more to the final model prediction. The idea of the CAM
is the following: the probabilities predicted by the network are mapped back to the final
convolutional layer to highlight the discriminative regions that are specific to that class [68].
CAM is the output of the activation map after the last convolutional layer for a particular class.
CAM is the global average pooling layer applied following the last convolutional layer based
on the spatial location in order to generate the weights [68]. Therefore, it allows distinguishing
the areas within an image that differentiates the class [68].
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Figure 15. CAM visualization on malaria dataset for a test sample using various IMNets: (a) Original
sample, (b) IMNet A, (c) IMNet A, B, (d) IMNet A-C, (e) IMNet A-D, and (f) IMNet A-E.

Figure 16. CAM visualization on DR dataset for a test sample using various IMNets: (a) Original
sample, (b) IMNet A, (c) IMNet A, B, (d) IMNet A-C, (e) IMNet A-D, and (f) IMNet A-E.
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Figure 17. CAM visualization on TB dataset for a test sample using various IMNets: (a) Original
sample, (b) IMNet A, (c) IMNet A, B, (d) IMNet A-C, (e) IMNet A-D, and (f) IMNet A-E.

Consider the malaria detection CAM results in Figure 15. The original sample image is
shown in Figure 15a. The nucleic acids carry three components: parasites, white blood cells,
and platelets highlighted in a bluish-purple color [69], as shown in the original sample
image. The other images in Figure 15 are CAM results overlaid on the original image for
IMNet A through IMNet A-E. Note that the red regions in the CAM images correspond
to the spatial regions of most significance to the classifier. In the case of the CAM result
for IMNet A, shown in Figure 15b, the attention is distributed and not well focused on
the clinically significant portion of the thin smear image. On the other hand, as the IMNS
process continues and modules are added, the CAM results do show that attention becomes
more focused over the stain on the thin smear example to identify the presence of parasites.
The CAM results showing the most focus on the nucleus is IMNet A-D, and this is the best
performing IMNet as shown in Table 3.

The CAM results for DR are shown in Figure 16. The input retinal image is shown
in Figure 16a. Note that the key aspect of detecting or diagnosing DR is the presence of
retinal lesions. There are two main types of lesion defects, white lesions and red lesions.
The hard and soft exudates are collectively referred to as white lesions. The red lesions
are microaneurysms and hemorrhages [70]. The original image contains hard and soft
exudates. We can tell that IMNet A-C, IMNet A-D, and IMNet A-E, focused on these hard
and soft exudates that appear as white spots on the original image. Interestingly, these
networks also appear to be focusing attention on the optic disk, which is the bright disk in
the upper right side of the retinal image. This may be because its color and size resemble
that of the large white lesions.

Finally, the CAM for pulmonary tuberculosis is shown in Figure 17. The original CR
image with tuberculosis is shown in Figure 17a. Note that there are multiple light areas
in the mid-zone lung with fibrotic shadows of primary pulmonary TB. The CAM results
for our IMNet models show that attention is focused on these regions. As a result, our
model performs well and generally provides an accurate interpretation. Although this
example looks good, in many instances, the IMNet A and IMNet A, B CAM results show
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focus on these clinically significant regions and insignificant regions such as shoulders and
background as well. This is consistent with the relatively average classifier performance
for that network provided in Table 5. However, all of the other IMNets perform well and
tend to produce what we believe are clinically appropriate CAM results.

5. Conclusions and Discussion

In this research, we have proposed IMNS as a new method for designing and training
deep learning models. The resulting networks are referred to as IMNets. We have demon-
strated the efficacy of the proposed method in detecting three diseases using three different
imaging modalities. The best performing IMNets in our study achieved a balanced accuracy
of 97.0%, 97.9%, and 88.6% and AUC of 0.995, 0.996, and 0.949 for the detection of malaria,
DR, TB, respectively. Our modular approach starts with a single SubNet and we add one
additional SubNet at a time, either in series or in parallel with the previous network. Only
the new SubNet weights are updated at each stage of IMNS. This approach keeps the
computational complexity low and allows the network to train well with a relatively small
training set.

The performance of IMNets rivals, and in some cases exceeds, that of much larger state-
of-the-art networks where transfer learning is employed. We attribute this to the relatively
small training sets available and the limitations of transfer learning. Since the pre-trained
networks are trained for a different application, significant adaption may be required for a
new task. Large networks can be very powerful where there are sufficient data to properly
train them. However, the large networks, with a high number of learnable parameters, can
become a liability when only small training sets are available. In other words, for large
pre-trained models to be helpful, both extensive data from the same domain and large
computational resources are required. It remains the case that large truthed datasets for
medical imaging applications are often difficult to come by. This behoves us to explore
more compact networks and training strategies such as the proposed IMNS.

Monolithic deep learning with transfer learning may suffer from overfitting issues,
due to limited training data in many medical image analysis applications. In addition, the
computational cost grows with deeper and wider monolithic networks. The building-block
IMNS approach addresses these issues by employing relatively small SubNets and training
only one SubNet at a time. As we can see in the results section, our IMNS provides results
that rival or exceed many popular large-scale models in the experiments presented here.
Moreover, our IMNets trained faster, had lower memory requirements, and processed test
images more quickly than the benchmark methods tested.

From a learning perspective, we believe IMNS has several benefits over monolithic
deep learning. As with other modular approaches, complex problems are addressed using
several small SubNets, rather than one large monolithic network. We believe this helps
to mitigate the complex optimization difficulties and vanishing gradient problems that
monolithic CNN approaches face. Furthermore, our results suggest that the IMNS allows
for the effective transfer of prior knowledge from the fixed portion of the IMNet to a new
SubNet. In future work, we plan to extend the architecture of IMNets in two ways. First,
we will investigate the impact of combining these SubNets in different configurations.
Moreover, we will also examine different SubNet architectures.
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