
Citation: Lawande, S.R.; Jasmine, G.;

Anbarasi, J.; Izhar, L.I. A Systematic

Review and Analysis of

Intelligence-Based Pathfinding

Algorithms in the Field of Video

Games. Appl. Sci. 2022, 12, 5499.

https://doi.org/10.3390/app12115499

Academic Editor: Giancarlo Mauri

Received: 25 March 2022

Accepted: 24 May 2022

Published: 28 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Systematic Review

A Systematic Review and Analysis of Intelligence-Based
Pathfinding Algorithms in the Field of Video Games
Sharmad Rajnish Lawande 1 , Graceline Jasmine 1,*, Jani Anbarasi 1 and Lila Iznita Izhar 2,*

1 School of Computer Science and Engineering, Vellore Institute of Technology, Chennai 600127, India;
sharmad123.lawande@gmail.com (S.R.L.); janianbarasi.l@vit.ac.in (J.A.)

2 Department of Electrical and Electronics Engineering, Universiti Teknologi Petronas,
Seri Iskandar 32610, Malaysia

* Correspondence: graceline.jasmine@vit.ac.in (G.J.); lila.izhar@utp.edu.my (L.I.I.)

Abstract: This paper provides a performance comparison of different pathfinding Algorithms used
in video games. The Algorithms have been classified into three categories: informed, uninformed,
and metaheuristic. Both a practical and a theoretical approach have been adopted in this paper. The
practical approach involved the implementation of specific Algorithms such as Dijkstra’s, A-star,
Breadth First Search, and Greedy Best First. The comparison of these Algorithms is based on different
criteria including execution time, total number of iterations, shortest path length, and grid size. For
the theoretical approach, information was collected from various papers to compare other Algorithms
with the implemented ones. The Unity game engine was used in implementing the Algorithms. The
environment used was a two-dimensional grid system.

Keywords: pathfinding; Breadth First Search; A-star; Dijkstra’s; Greedy Best First; Unity

1. Introduction

The gaming industry continues to grow at a rapid pace due to the advancements in
technologies, mainly in the field of artificial intelligence (AI). Currently, AI is the latest
technological trend that is being used in these games for various enemy characters as well
as other characters and actions. The main objective of using an AI system is to provide
a challenging experience to the player in terms of decision-making or devising different
strategies by enemy characters as well as helping the player to overcome the different
hurdles present in the game. Enemy game-objects may use AI for developing a mechanism
to outsmart the player and win the game. Special characters may use AI for providing
support to the player in order to win the game.

Pathfinding refers to the concept of finding the optimal path from source node to
destination node in the least time. Several Algorithms have been devised to the shortest
path from source to destination by trying to avoid all the obstacles on the way. They may
also use AI for pathfinding. These special character components used in games are called
NPCs or non-player characters [1]. Even though significant progress has been made in
the past few years towards pathfinding, there are many problems which constantly attract
attention from researchers. One such problem is the demand for the high performance that
these Algorithms need to satisfy in games. Moreover, since often they need to compute
paths for multiple components and the resources allocated to these Algorithms are limited,
there is a demand for Algorithms with high performance in less execution time. This
paper summarizes the pathfinding Algorithms based on the performance so that a suitable
Algorithm can be chosen for better optimization.

Pathfinding may be categorized into two groups: static and dynamic. Static refers
to discovering the route globally in a static environment. Dynamic pathfinding on the
other hand refers to finding the route locally in dynamic surroundings [2]. NPCs may use
pathfinding AI Algorithms to reach a particular target from a start node by finding the

Appl. Sci. 2022, 12, 5499. https://doi.org/10.3390/app12115499 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12115499
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-4420-2531
https://orcid.org/0000-0002-8904-2236
https://doi.org/10.3390/app12115499
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12115499?type=check_update&version=3

Appl. Sci. 2022, 12, 5499 2 of 30

most feasible solution. Some of these pathfinding Algorithms may take various obstacles
into consideration and some may not. These pathfinding Algorithms require high memory
and processing power to find the most optimal solution by avoiding all obstacles in order
to reach the destination node [3]. Therefore, a benchmark comparison was performed to
analyze the performance of the pathfinding Algorithms by implementing them in an AI
environment and monitoring their performance in Unity Software.

2. Path Planning

In order to develop an efficient path from the start to the end node, a proper in-depth
analysis has to be performed so that all the collisions or obstacles can be safely avoided
while determining the least cost path in least time [4]. Considering factors such as collision
avoidance, performance optimization, and static and dynamic constraints, several types of
Algorithms have been developed to find an efficient path between two points [5]. Graph
pathfinding Algorithms were created with the goal of discovering the shortest path between
two vertices for a connect graph [6]. The main objective of these Algorithms was to only
get the least distance within a graph without taking into consideration the performance
optimization to reduce execution time and avoid obstacles [7]. These Algorithms were
mostly used in networking the field particularly for developing routing protocols [8].

Search Algorithms are another class of Algorithms that are mostly used in video games
as well as in robotics to reach a particular target from the beginning [9]. These Algorithms
cover the whole map of a given area and try to search for all the possible paths from
source to destination and out of those, they select the shortest path. There are two types
of search Algorithms, uninformed and informed search Algorithms. In the uninformed
search Algorithms, which are also known as blind search, there is no information regarding
the number of steps or the costs of path from current state to the goal. Some examples
include the Breadth First Search and Depth First Search Algorithms. Another example of
uninformed Algorithms is the Dijkstra’s Algorithm which can be also used in graphs to find
the shortest path but only for positive costs [10]. An improved version of the Algorithm was
developed later on called the Bellman–Ford Algorithm which was for both positive as well
as negative costs and is an uninformed Algorithm [11]. Another uninformed Algorithm is
the Floyd–Warshall Algorithm which was inspired from these two to find the minimum
path for positive and negative costs but the number of nodes to be visited was reduced in
comparison with Dijkstra’s Algorithm [12].

Informed search Algorithms are better optimized as compared to uninformed search
Algorithms. The unique feature of these Algorithms is that they make use of a heuristic
function to calculate the efficient path [13]. A search method or a heuristic function is
informed if it uses additional information about nodes that have not yet been explored to
decide which nodes to examine yet [14]. Heuristic function tries to search for a solution
that is most near to the best solution in the shortest time [15]. The entire area does not
have to be checked by limiting the Algorithm to a specific area, thereby saving significant
amount of time. Some examples include A*, D*, HPA*, etc. [16].

Deterministic, non-deterministic, and procedural generation are the various forms of
game AI. This paper focuses on the various deterministic AI-based gaming Algorithms.
This deterministic AI can be implemented using several tools like Behavior Tree, Decision
Tree, etc. Based on stationary or in motion obstacles, it can be further divided into two
categories, static and dynamic pathfinding. Static pathfinding can be categorized into
uninformed search, informed search, and metaheuristic Algorithm. Various pathfinding
Algorithms that have been analyzed and evaluated are shown in Figure 1. This work
extensively makes use of the pathfinding-based Algorithms to analyze the efficiency of the
model for the game play grid environment with and without obstacles.

Appl. Sci. 2022, 12, 5499 3 of 30

Appl. Sci. 2022, 12, x FOR PEER REVIEW 3 of 31

Figure 1. Classification of intelligence-based pathfinding Algorithms in gaming.

Figure 1. Classification of intelligence-based pathfinding Algorithms in gaming.

Appl. Sci. 2022, 12, 5499 4 of 30

2.1. Pathfinding Using Grids

A grid is a connection or a network of vertices or points through edges in order to
form a graph (Figure 2). The performance of the pathfinding Algorithms is determined by
attributes of the graph that is formed by the grid. The grids can be regular or irregular in
pattern. Regular patterns can be of triangular, hexagonal, square, or cubic falling under 2D
or 3D categories. Waypoints, mesh navigation, and visibility graph come under irregular
patterns of grid system. In this paper, pathfinding Algorithms in gaming have been
experimented and analyzed on a 2D Square Grid (Octile) system.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 4 of 31

2.1. Pathfinding Using Grids
A grid is a connection or a network of vertices or points through edges in order to

form a graph (Figure 2). The performance of the pathfinding Algorithms is determined by
attributes of the graph that is formed by the grid. The grids can be regular or irregular in
pattern. Regular patterns can be of triangular, hexagonal, square, or cubic falling under
2D or 3D categories. Waypoints, mesh navigation, and visibility graph come under irreg-
ular patterns of grid system. In this paper, pathfinding Algorithms in gaming have been
experimented and analyzed on a 2D Square Grid (Octile) system.

Figure 2. Hierarchical classification for pathfinding using grids.

2.1.1. Regular Grids
Regular grids are most extensively used in the field of pathfinding by developers

since they provide uniformity to the environment. These are usually represented in 2-
dimenional or 3-dimensional Euclidean space in the form of a tessellation. Every smallest
unit of these grids have a definite uniform shape of equal sides such as a triangle, square,
hexagon, or a cube. On the basis of these shapes, regular grids are further classified into
triangular, octile, hexagonal, and cubic as shown in Figure 3.
1. 2D triangular grid: These grids are the least popular when it comes to pathfinding in

games. As compared to hexagonal and octile grids, their usage is less, but these grids
have some desirable properties. Here, the smallest unit is an equilateral triangle con-
nected using one side and vertices. Figure 3a shows a 2D triangular grid with three
obstacles. The gray triangles represent the border area of the grid whereas the blue

Figure 2. Hierarchical classification for pathfinding using grids.

2.1.1. Regular Grids

Regular grids are most extensively used in the field of pathfinding by developers since
they provide uniformity to the environment. These are usually represented in 2-dimenional
or 3-dimensional Euclidean space in the form of a tessellation. Every smallest unit of these
grids have a definite uniform shape of equal sides such as a triangle, square, hexagon, or a
cube. On the basis of these shapes, regular grids are further classified into triangular, octile,
hexagonal, and cubic as shown in Figure 3.

Appl. Sci. 2022, 12, 5499 5 of 30

Appl. Sci. 2022, 12, x FOR PEER REVIEW 5 of 31

triangles are the ones with no obstacles present. The area covered with black triangles
shows the region covered by the yellow obstacles.

2. 2D square (octile) grid: These are the most widely used grids to represent graphs in
the gaming industry particularly for pathfinding as well as in the field of robotics.
This grid system is the most researched system for pathfinding as several pathfinding
Algorithms have been proposed and tested using this grid system. Figure 3b shows
a 2D octile grid with three obstacles. The gray squares represent the border area of
the grid whereas the blue squares are the ones with no obstacles present. The area
covered with black squares shows the region covered by the red obstacles.

3. 2D hexagonal grid: Some of the properties of these grids are similar to the 2D square
grids. The graphs formed using this grid system requires less search time and
memory complexities as compared to those formed from the octile system. Figure 3c
shows a 2D hexagonal grid with three obstacles. The gray hexagons represent the
border area of the grid whereas the blue hexagons are the ones with no obstacles
present. The area covered with black hexagons shows the region covered by the green
obstacles [17].

4. 3D cubic grid: Apart from the other grid systems which used the 2D environment,
the 3D Cubic grid shown in Figure 3d is based on a continuous 3-dimensional envi-
ronment. Not much study has been done on this grid system for pathfinding, but it
can be applied in other fields such as image processing and computer graphics [18].

Figure 3. (a) Top left: 2D triangular grid with obstacles, (b) top right: 2D square (octile) grid with
obstacles, (c) bottom left: 2D hexagonal grid with obstacles, (d) bottom right: 3D cubic grid without
obstacles.

Figure 3. (a) Top left: 2D triangular grid with obstacles, (b) top right: 2D square (octile) grid
with obstacles, (c) bottom left: 2D hexagonal grid with obstacles, (d) bottom right: 3D cubic grid
without obstacles.

1. 2D triangular grid: These grids are the least popular when it comes to pathfinding
in games. As compared to hexagonal and octile grids, their usage is less, but these
grids have some desirable properties. Here, the smallest unit is an equilateral triangle
connected using one side and vertices. Figure 3a shows a 2D triangular grid with
three obstacles. The gray triangles represent the border area of the grid whereas the
blue triangles are the ones with no obstacles present. The area covered with black
triangles shows the region covered by the yellow obstacles.

2. 2D square (octile) grid: These are the most widely used grids to represent graphs in
the gaming industry particularly for pathfinding as well as in the field of robotics.
This grid system is the most researched system for pathfinding as several pathfinding
Algorithms have been proposed and tested using this grid system. Figure 3b shows
a 2D octile grid with three obstacles. The gray squares represent the border area of
the grid whereas the blue squares are the ones with no obstacles present. The area
covered with black squares shows the region covered by the red obstacles.

3. 2D hexagonal grid: Some of the properties of these grids are similar to the 2D square
grids. The graphs formed using this grid system requires less search time and memory
complexities as compared to those formed from the octile system. Figure 3c shows a
2D hexagonal grid with three obstacles. The gray hexagons represent the border area
of the grid whereas the blue hexagons are the ones with no obstacles present. The area
covered with black hexagons shows the region covered by the green obstacles [17].

4. 3D cubic grid: Apart from the other grid systems which used the 2D environment, the
3D Cubic grid shown in Figure 3d is based on a continuous 3-dimensional environ-

Appl. Sci. 2022, 12, 5499 6 of 30

ment. Not much study has been done on this grid system for pathfinding, but it can
be applied in other fields such as image processing and computer graphics [18].

2.1.2. Irregular Grids

Irregular grids are not formed from the smallest unit shape unlike the regular grids.
On the basis of its pattern, it is classified into waypoints, visibility graphs, and mesh
navigation as shown in Figure 4. They also have a number of applications in the fields of
pathfinding and robotics. They are of three types, as follows.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 6 of 31

2.1.2. Irregular Grids
Irregular grids are not formed from the smallest unit shape unlike the regular grids.

On the basis of its pattern, it is classified into waypoints, visibility graphs, and mesh nav-
igation as shown in Figure 4. They also have a number of applications in the fields of
pathfinding and robotics. They are of three types, as follows.
1. Waypoints: Waypoints have a number of applications mainly in robotics as well as

pathfinding. As the name suggests, waypoints are navigation guides or markers that
direct the Algorithm to move in a particular direction of shortest path.

2. Visibility graphs: In the fields of computational geometry and graph theory, visibility
graphs are fundamental structures. They have applications in several other fields and
in recent times have been applied to Euclidean distance calculations for shortest
paths when obstacles are present [17].

3. Mesh navigation: A mesh can be formed from different shapes, commonly triangles
and other polygons. Mesh graphs are somewhat identical to the visibility graphs in
terms of looks. However, the complexity of visibility graphs is greater than the mesh
graphs. Most of the applications of this graph are present in games [18].

Figure 4. (a) Top left: waypoints, (b) top right: visibility graph, (c) bottom: navigation mesh.

The different types and its categories of grid along with its smallest unit such as equi-
lateral triangle, square, regular hexagon, cube, navigation marker, graph node, and edge
and its applications are detailed in Table 1.

Figure 4. (a) Top left: waypoints, (b) top right: visibility graph, (c) bottom: navigation mesh.

1. Waypoints: Waypoints have a number of applications mainly in robotics as well as
pathfinding. As the name suggests, waypoints are navigation guides or markers that
direct the Algorithm to move in a particular direction of shortest path.

2. Visibility graphs: In the fields of computational geometry and graph theory, visibility
graphs are fundamental structures. They have applications in several other fields and
in recent times have been applied to Euclidean distance calculations for shortest paths
when obstacles are present [17].

3. Mesh navigation: A mesh can be formed from different shapes, commonly triangles
and other polygons. Mesh graphs are somewhat identical to the visibility graphs in
terms of looks. However, the complexity of visibility graphs is greater than the mesh
graphs. Most of the applications of this graph are present in games [18].

The different types and its categories of grid along with its smallest unit such as
equilateral triangle, square, regular hexagon, cube, navigation marker, graph node, and
edge and its applications are detailed in Table 1.

Appl. Sci. 2022, 12, 5499 7 of 30

Table 1. Grid classification based on grid type, grid dimension, smallest unit, and applications.

Grid Grid Type Grid
Dimension Smallest Unit Applications Ref. Year

Triangular Regular 2D Equilateral
Triangle

Computer Graphics,
Image Processing [18] 2015

Square Regular 2D Square Video Games, Robotics [5,9] 2013, 2015

Hexagonal Regular 2D Regular
Hexagon Video Games, Robotics [17,18] 2015, 2018

Cubic Regular 3D Cube
Computer Graphics,

Image Processing,
Robotics

[18] 2015

Waypoint Irregular - Navigation
Marker Video Games, Robotics [9,17] 2015, 2018

Visibility Graph Irregular - Graph Node Games, Computational
Geometry [5,18] 2013, 2015

Mesh Navigation Irregular - Edge Video Games [18,19] 2016, 2015

3. Existing Pathfinding Techniques

Graph pathfinding Algorithms were created with the goal of discovering the shortest
path between two vertices for a connected graph. The main objective of these Algorithms
was to only get the least distance within a graph without taking into consideration the
performance optimization to reduce execution time and avoid obstacles. These Algorithms
were mostly used in networking fields, particularly for developing routing protocols.

3.1. Uninformed Search Algorithms

None of the Algorithms present in this category possess any extra information related
to the destination node apart from the one provided though problem definition. All the
Algorithms present in this category work on the concept of blind search, i.e., they try to
reach the goal using brute force by not knowing anything about the search space.

3.1.1. Breadth First Search Algorithm (BFS)

BFS was first published in 1959 by Edward Moore and is one of the fundamental
Algorithms used in games for pathfinding [20]. A popular use of this Algorithm is to find
the shortest path in a grid or a maze [21]. Some of the real-world uses of this Algorithm
include GPS tracking, analysis in networks and graphs, and search engines [22]. In BFS, the
cells are visited one at a time. Therefore, the cells which are only a single step away from
the start cell are visited first, then again, all cells which are two steps away from the start
cell are visited, and this continues until all cells are visited [23]. Through BFS, we can find
the shortest path from start cell to end cell with minimum number of steps traversed as
shown in Figure 5. The main advantage this Algorithm has is that the solution will always
be found, no matter the type of problem. If there are multiple solutions, all the solutions
will be found by the BFS Algorithm and the minimum cost solution will be selected from
all these solutions by the Algorithm. The disadvantage this Algorithm has is its relation
to memory usage. All the nodes are stored in the tree by this Algorithm and every node
will be tested on level ‘n’ to get a solution to level ‘n + 1’ [24]. The time T(n) and space S(n)
complexity of the search Algorithm is given in Equations (1) and (2) where s refers to the
depth of shallowest solution and ni refers to the number of nodes in level ‘i’.

T(n) = 1 + n2 + n3 + + ns = O(ns) (1)

S(n) = O(ns) (2)

Appl. Sci. 2022, 12, 5499 8 of 30Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 31

Figure 5. Breadth first search traversal.

In Figure 5, the BFS Algorithm will traverse the vertices in breadth-wise fashion from
the top node in the graph. First, vertex 1 will be visited since it is at the top and put in
queue. Next, the child nodes of vertex 1, which are vertices 2 and 3, will be visited as
marked in red and put in the queue. The Algorithm 1 will then visit vertex 4 since there
are no child nodes in vertex 3 and finally vertex 5.

Algorithm 1 Breadth First Search Algorithm.
Input: Set of all vertices.
Output: Search Path sequence vertices S_BFS[]

Step 1: Set s as the source vertex, Stack, BF[] = Ø and S_BFS[] = Ø
where S_BFS[] is an array having all the visited vertices and BF[] is a queue to store the vertices for processing
Step 2: Push the vertex s in Queue BF[]
Step 3: Until BF[] is empty, iterate the steps 4 to 7
Step 4: q = Pop BF[]
Step 5: Mark the vertex q as visited and place it in the array S_BFS[]
Step 6: If q is the goal, then finish the searching process
Step 7: Else push one adjacent vertex of q in BF[]
Step 8: Repeat steps 3 to 6 until all the vertices are in S_BFS[]

3.1.2. Depth First Search Algorithm (DFS)
This search strategy explores the deepest node first, then backtracks to explore other

nodes. It uses LIFO (Last In First Out) order, which is based on the stack, in order to ex-
pand the unexpanded nodes in the search tree. The search proceeds to the deepest level
of the tree where it has no successors. This search expands nodes till infinity, i.e., the depth
of the tree [25]. One of the few advantages of this Algorithm is that much less memory is
required since only the path from root to current node has to be kept inside the stack. As
compared to BFS it requires less time in order to reach its destination as shown in Figure
6. One disadvantage is that not all solutions will be found in case of multiple solutions
unlike the BFS Algorithm. In addition, as the Algorithm traverses in depth-wise fashion,
there is a possibility of an infinite loop. If the nodes that are visited in DFS are not marked
while traversing, the same nodes will be visited more than once, thereby ending up in an

Figure 5. Breadth first search traversal.

In Figure 5, the BFS Algorithm will traverse the vertices in breadth-wise fashion from
the top node in the graph. First, vertex 1 will be visited since it is at the top and put in
queue. Next, the child nodes of vertex 1, which are vertices 2 and 3, will be visited as
marked in red and put in the queue. The Algorithm 1 will then visit vertex 4 since there are
no child nodes in vertex 3 and finally vertex 5.

Algorithm 1 Breadth First Search Algorithm.

Input: Set of all vertices.
Output: Search Path sequence vertices S_BFS[]

Step 1: Set s as the source vertex, Stack, BF[] = Ø and S_BFS[] = Ø
where S_BFS[] is an array having all the visited vertices and BF[] is a queue to store the vertices for processing
Step 2: Push the vertex s in Queue BF[]
Step 3: Until BF[] is empty, iterate the steps 4 to 7
Step 4: q = Pop BF[]
Step 5: Mark the vertex q as visited and place it in the array S_BFS[]
Step 6: If q is the goal, then finish the searching process
Step 7: Else push one adjacent vertex of q in BF[]
Step 8: Repeat steps 3 to 6 until all the vertices are in S_BFS[]

3.1.2. Depth First Search Algorithm (DFS)

This search strategy explores the deepest node first, then backtracks to explore other
nodes. It uses LIFO (Last In First Out) order, which is based on the stack, in order to expand
the unexpanded nodes in the search tree. The search proceeds to the deepest level of the
tree where it has no successors. This search expands nodes till infinity, i.e., the depth of
the tree [25]. One of the few advantages of this Algorithm is that much less memory is
required since only the path from root to current node has to be kept inside the stack. As
compared to BFS it requires less time in order to reach its destination as shown in Figure 6.
One disadvantage is that not all solutions will be found in case of multiple solutions unlike
the BFS Algorithm. In addition, as the Algorithm traverses in depth-wise fashion, there is
a possibility of an infinite loop. If the nodes that are visited in DFS are not marked while
traversing, the same nodes will be visited more than once, thereby ending up in an infinite

Appl. Sci. 2022, 12, 5499 9 of 30

loop. The time T(n) and space S(n) complexity is given in Equations (3) and (4) where d
refers to the depth of the search tree and ni refers to number of nodes in level i.

T(n) = 1 + n2 + n3 + + nd = O(nd) (3)

S(n) = O(n × d) (4)

Appl. Sci. 2022, 12, x FOR PEER REVIEW 9 of 31

infinite loop. The time T(n) and space S(n) complexity is given in Equations (3) and (4)
where d refers to the depth of the search tree and ni refers to number of nodes in level i.

T(n) = 1 + n2 + n3 + ……+ nd = O(nd) (3)

S(n) = O(n × d) (4)

In Figure 6, the DFS Algorithm will traverse the vertices in depth-wise fashion from
the top node in the graph. First, vertex 1 will be visited since it is at the top and put in
stack. Next, the first child node of vertex 1, which is vertex 2 will be visited as marked in
red and put in stack respectively. The Algorithm will then visit vertex 4 since the left most
node is visited first in DFS. Then, vertex 5 will be visited which is the remaining node of
vertex 2. Finally, vertex 3 will be visited, since it is the remaining node of vertex 1. The
path is returned once all vertex elements are popped out of the stack.

Figure 6. Depth first search traversal.

3.1.3. Dijkstra’s Algorithm
First introduced in 1956 by Edsger Dijkstra and published three years later, this con-

ventional Algorithm is used to find the shortest distance between start node and end node
in a graph [26]. It is used in a variety of applications such as digital mapping services such
as Google Maps, telephone networks, IP routing for finding Open Shortest Path First, ro-
botics, designate file server, etc. [27]. It was also used in traffic information systems in
order to track source and destinations from another specific source and destinations [28].
This Algorithm was preferred earlier in video games for finding the optimum path until
the A-star Algorithm which could find the solution more quickly [29]. There is no heuristic
function used in this Algorithm, but it is extended to the A-star Algorithm by making use
of the heuristic function [30]. This Algorithm requires a lot of memory usage as all nodes
are expanded in order to find the destination node unlike the case of A-star which im-
proves its functionality [31]. One of the drawbacks of this Algorithm is that it cannot be
used for negative value costs, thereby leading to acyclic graphs and therefore the correct
shortest path cannot be found [32,33]. For each node in a graph, a label is assigned which
is used to determine the minimal length from the start point to all the other nodes of the
graph [34]. After each step, the value of the label of the graph nodes decreases; that is, the
Algorithm runs sequentially [35].

Figure 6. Depth first search traversal.

In Figure 6, the DFS Algorithm will traverse the vertices in depth-wise fashion from
the top node in the graph. First, vertex 1 will be visited since it is at the top and put in stack.
Next, the first child node of vertex 1, which is vertex 2 will be visited as marked in red and
put in stack respectively. The Algorithm will then visit vertex 4 since the left most node is
visited first in DFS. Then, vertex 5 will be visited which is the remaining node of vertex
2. Finally, vertex 3 will be visited, since it is the remaining node of vertex 1. The path is
returned once all vertex elements are popped out of the stack.

3.1.3. Dijkstra’s Algorithm

First introduced in 1956 by Edsger Dijkstra and published three years later, this
conventional Algorithm is used to find the shortest distance between start node and end
node in a graph [26]. It is used in a variety of applications such as digital mapping services
such as Google Maps, telephone networks, IP routing for finding Open Shortest Path First,
robotics, designate file server, etc. [27]. It was also used in traffic information systems in
order to track source and destinations from another specific source and destinations [28].
This Algorithm was preferred earlier in video games for finding the optimum path until
the A-star Algorithm which could find the solution more quickly [29]. There is no heuristic
function used in this Algorithm, but it is extended to the A-star Algorithm by making use
of the heuristic function [30]. This Algorithm requires a lot of memory usage as all nodes
are expanded in order to find the destination node unlike the case of A-star which improves
its functionality [31]. One of the drawbacks of this Algorithm is that it cannot be used for
negative value costs, thereby leading to acyclic graphs and therefore the correct shortest
path cannot be found [32,33]. For each node in a graph, a label is assigned which is used to
determine the minimal length from the start point to all the other nodes of the graph [34].
After each step, the value of the label of the graph nodes decreases; that is, the Algorithm
runs sequentially [35].

Appl. Sci. 2022, 12, 5499 10 of 30

For Dijkstra’s Algorithm, G(n) which is the cost required to move from start node
to present node ‘n’, and heuristic value H(n), which is the acceptable cost to move from
present node to target node, are assigned to 0 for Dijkstra’s Algorithm 2. It cannot be
overestimated and is given in Equation (5). The total cost required to reach the target
node is:

F(n) = H(n) + G(n) (5)

therefore, resulting in F(n) = G(n).
In Figure 7, the start vertex is taken as A. Vertices D and B are connected to vertex A

but minimum distance is from vertex D which is 1. From vertex D, B and E are connected
but total distance from A to D to E is 2 which is less than from A to D to B which is 3.
Therefore, vertex E is visited. From E, only B or C can be chosen since D is already visited,
but total distance from A to D to E to C is 7 which is less than one from A to D to E to B to
C which is 9. Therefore, the shortest path will be A to D to E to C with minimum cost of 7.

Algorithm 2 Dijkstra’s Algorithm.

Input: Set of all vertices.
Output: Search Path sequence vertices S_DJK[]

Step 1: Set d[s] = 0, S_DJK[] = φØ, where s is the source vertex and S_DJK[] is an array having all the visited vertices
Step 2: For all vertices v except s, set d[v]= ∞

Step 3: Find q not in S_DJK[] such that d[q] is minimum
Step 4: Add q to S_DJK[], such that S_DJK[] has now been visited
Step 5: Update d[r] = min(dist[r], dist[q] + cost[q][r]), for all r adjacent to q such that r is not in S_DJK[]
Step 6: Repeat Steps 3 to 5 until all the nodes are in S_DJK[]
Step 7: Retrieve the array S_DJK[], having shortest path from the source vertex s to all other vertices

Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 31

For Dijkstra’s Algorithm, G(n) which is the cost required to move from start node to
present node ‘n’, and heuristic value H(n), which is the acceptable cost to move from pre-
sent node to target node, are assigned to 0 for Dijkstra’s Algorithm 2. It cannot be overes-
timated and is given in Equation (5). The total cost required to reach the target node is:

F(n) = H(n) + G(n) (5)

therefore, resulting in F(n) = G(n).
In Figure 7, the start vertex is taken as A. Vertices D and B are connected to vertex A but

minimum distance is from vertex D which is 1. From vertex D, B and E are connected but total
distance from A to D to E is 2 which is less than from A to D to B which is 3. Therefore, vertex
E is visited. From E, only B or C can be chosen since D is already visited, but total distance
from A to D to E to C is 7 which is less than one from A to D to E to B to C which is 9. Therefore,
the shortest path will be A to D to E to C with minimum cost of 7.

Figure 7. Shortest path using Dijkstra’s Algorithm.

Algorithm 2 Dijkstra’s Algorithm.
Input: Set of all vertices.
Output: Search Path sequence vertices S_DJK[]

Step 1: Set d[s] = 0, S_DJK[] = ϕØ, where s is the source vertex and S_DJK[] is an array having all the visited verti-
ces
Step 2: For all vertices v except s, set d[v]= ∞
Step 3: Find q not in S_DJK[] such that d[q] is minimum
Step 4: Add q to S_DJK[], such that S_DJK[] has now been visited
Step 5: Update d[r] = min(dist[r], dist[q] + cost[q][r]), for all r adjacent to q such that r is not in S_DJK[]
Step 6: Repeat Steps 3 to 5 until all the nodes are in S_DJK[]
Step 7: Retrieve the array S_DJK[], having shortest path from the source vertex s to all other vertices

3.2. Informed Search or Heuristic Approach Algorithms
Heuristic Algorithms are basically optimized techniques that are used to find the so-

lution to a particular problem more speedily and efficiently as compared to the basic con-
ventional Algorithms [36]. Time is the main focus of these Algorithms. Parameters such
as accuracy and cost may be compromised in order to find the solution in the least time
[37]. These Algorithms basically make use of a heuristic function which is used to predict
the closeness of the final destination with respect to the current position [38]. A heuristic
function helps in reducing the memory usage by searching for only the promising node
and leaving all other nodes that are not required [39]. The way a heuristic function works
is that it computes the cost from a specific node to destination node and if this cost is close
to the actual cost value, then that node is selected for further expansion while others are

Figure 7. Shortest path using Dijkstra’s Algorithm.

3.2. Informed Search or Heuristic Approach Algorithms

Heuristic Algorithms are basically optimized techniques that are used to find the
solution to a particular problem more speedily and efficiently as compared to the basic
conventional Algorithms [36]. Time is the main focus of these Algorithms. Parameters
such as accuracy and cost may be compromised in order to find the solution in the least
time [37]. These Algorithms basically make use of a heuristic function which is used to
predict the closeness of the final destination with respect to the current position [38]. A
heuristic function helps in reducing the memory usage by searching for only the promising
node and leaving all other nodes that are not required [39]. The way a heuristic function
works is that it computes the cost from a specific node to destination node and if this cost
is close to the actual cost value, then that node is selected for further expansion while
others are not expanded [40]. This heuristic functionality helps in improving the speed and
efficiency of finding the path [41]. While using a heuristic approach, when the actual cost is

Appl. Sci. 2022, 12, 5499 11 of 30

a bit overestimated, the most promising and optimal path is found by the Algorithm in less
time [42].

3.2.1. A-Star Algorithm

This is one of the most famous Algorithms used in the gaming industry due to its
simplicity [43]. Published in 1986 by Hart, Nilsson, and Raphael, the main objective of this
Algorithm is to search for the most efficient solution from start node to the end node [44].
Video games belonging to various categories, such as racing, real-time strategy, RPG (role-
playing game), etc., generally make use of this Algorithm due to its accuracy and high
efficiency [45]. This Algorithm is an advanced version of Dijkstra’s Algorithm since it
makes use of the heuristic function to predict the shortest path [46]. In the case of Dijkstra’s
Algorithm, the value of the heuristic function is zero thereby providing an assurance of
finding the shortest route [47]. The Algorithm basically makes use of three parameters to
determine the best possible route to reach the destination where G(n) is the cost required
to move from start node to present node ‘n’ and H(n) is the heuristic value which is the
acceptable cost to move from present node to target node. It cannot be overestimated. The
cost required to reach the target node is given in Equation (6).

F(n) = H(n) + G(n) (6)

Figure 8 shows a sample grid in which A* Algorithm 3 avoids the obstacles and
reached the destination (marked in red) in the shortest possible path from the source
(marked in blue). The Algorithm first begins at (8,8) and reaches (4,2). Next, it chooses (3,3)
instead of (4,3) since it is shorter. Similarly, at (3,3) it takes (2,2) instead of (2,3) and finally
reaches the destination of (1,1).

Appl. Sci. 2022, 12, x FOR PEER REVIEW 11 of 31

not expanded [40]. This heuristic functionality helps in improving the speed and efficiency of
finding the path [41]. While using a heuristic approach, when the actual cost is a bit overesti-
mated, the most promising and optimal path is found by the Algorithm in less time [42].

3.2.1. A-Star Algorithm
This is one of the most famous Algorithms used in the gaming industry due to its

simplicity [43]. Published in 1986 by Hart, Nilsson, and Raphael, the main objective of this
Algorithm is to search for the most efficient solution from start node to the end node [44].
Video games belonging to various categories, such as racing, real-time strategy, RPG (role-
playing game), etc., generally make use of this Algorithm due to its accuracy and high
efficiency [45]. This Algorithm is an advanced version of Dijkstra’s Algorithm since it
makes use of the heuristic function to predict the shortest path [46]. In the case of Dijkstra’s
Algorithm, the value of the heuristic function is zero thereby providing an assurance of
finding the shortest route [47]. The Algorithm basically makes use of three parameters to
determine the best possible route to reach the destination where G(n) is the cost required
to move from start node to present node ‘n’ and H(n) is the heuristic value which is the
acceptable cost to move from present node to target node. It cannot be overestimated. The
cost required to reach the target node is given in Equation (6).

F(n) = H(n) + G(n) (6)

Figure 8 shows a sample grid in which A* Algorithm 3 avoids the obstacles and
reached the destination (marked in red) in the shortest possible path from the source
(marked in blue). The Algorithm first begins at (8,8) and reaches (4,2). Next, it chooses
(3,3) instead of (4,3) since it is shorter. Similarly, at (3,3) it takes (2,2) instead of (2,3) and
finally reaches the destination of (1,1).

Figure 8. A* Algorithm goes from (4,2) to (3,3) and not (4,3) and similarly from (3,3) to (2,2) and
not (2,3).

Figure 8. A* Algorithm goes from (4,2) to (3,3) and not (4,3) and similarly from (3,3) to (2,2) and
not (2,3).

Appl. Sci. 2022, 12, 5499 12 of 30

Algorithm 3 A* Algorithm.

Input: Set of all vertices.
Output: Search Path sequence vertices S_ASR[]

Step 1: Set d[s] = 0, S_ASR[] = φ, where s is the source vertex and S_ASR[] is an array having all the visited
vertices
Step 2: For all vertices v except s, set d[v] = ∞

Step 3: Find q not in S_ASR[] such that d[q] is minimum; where d[q] is determined by cost function f(q) as
follows:
f(q) = g(q) + h(q), for all q adjacent to s
where g(q) is the actual cost from node q to the initial node, and h(q) is the cost of the optimal path from the target
node to q.
Step 4: If vertex q is a goal point, return success and exit.
Step 5: If any adjacent vertices of q is the goal point, then return success & retrieve the arrived shortest path
Step 6: Repeat Steps 3 to 5 until all the vertices are in S_ASR

3.2.2. Greedy Best First Algorithm

The Greedy Best First Search is another popular heuristic Algorithm that always has
a track of a border in order to find the goal node. As the name suggests, the Algorithm 4
will always try to pick the best track at that particular moment. This Algorithm makes use
of the concepts of both breadth first search and depth first search Algorithms in order to
achieve more efficiency [48]. Using this concept, the most promising node can be chosen.
The node which is nearest to the destination node can then be expanded and an estimate
cost is made using the heuristic function [49]. For Greedy Best First Search: G(n) = 0 and the
total cost required to reach the target node is: F(n) = H(n) + G(n) resulting in F(n) = H(n).
Considering the Search Path Sequence vertices to be S_GBF[], the Algorithm is same as
above A* Algorithm with g(q) = 0.

Algorithm 4 Greedy Best First Search Algorithm.

Step 1: Place the starting node into the OPEN list.
Step 2: If the OPEN list is empty, Stop and return failure.
Step 3: Remove the node n, from the OPEN list which has the lowest value of h(n), and places it in the CLOSED
list
Step 4: Expand the node n, and generate the successors of node n.
Step 5: Check each successor of node n, and find whether any node is a goal node or not. If any successor node
is goal node, then return success and terminate the search, else proceed to Step 6.
Step 6: For each successor node, Algorithm checks for evaluation function f(n), and then check if the node has
Been in either OPEN or CLOSED list. If the node has not been in both list, then add it to the OPEN list.
Step 7: Return to Step 2

3.2.3. D-Star Lite Algorithm (Dynamic A*)

Found in 1994 by Anthony Stenz, the D* or “Dynamic A*” Algorithm is an incremental
heuristic search Algorithm that can be used for finding the shortest path in situations where
the environment maybe unknown or partially unknown. Earlier, most of the pathfinding
Algorithms were developed in ways where the environment model was considered to be
accurate and complete [50]. However, in the real world, there exists many situations where
the environment would change suddenly without any warnings or there exists information
which may be incomplete or even non-existent [51].

Machines which are automated that have the ability to operate in unknown or partially
unknown environment, for example, planetary exploration robot or character in video
games, require a method that has the capability of fast and efficient re-planning helping
them to move more intelligently in a time of critical situations or difficult terrains [52].
Similar to the A* Algorithm, the D* Algorithm 5 creates a list of nodes for evaluation termed
“OPEN list”. There are several different states of nodes such as NEW, RAISE, LOWER,
OPEN, and CLOSED [53]. The NEW state refers to the fact that the current node was never
kept in the open list. OPEN state means that the node is in the open list [54]. The CLOSED

Appl. Sci. 2022, 12, 5499 13 of 30

state means it is no longer kept in the open list [55]. The RAISE state refers to the fact that
the cost of the node was higher than the previous time it was kept on the open list [56].
Similarly, LOWER state means that the cost of the node was lower than the previous time it
was kept on the open list [57].

Algorithm 5 D* Algorithm.

Input: Set of all vertices.
Output: Search Path sequence vertices S_DSR[]

Step 1: Set d[s] = 0, S_DSR[] = φ, where s is the source vertex and S_DSR is an array having all the visited vertices
Step 2: For all vertices v except s, set d[v] = ∞

Step 3: Find q not in S_DSR such that d[q] is minimum; where d[q] is determined by function f(q) as follows:

f (q) =

0

minq′∈Pred(q)(g(q′) + c(q′, q))
i f q = s

otherwise

where f(q) determines the next move based on the g-values.
Step 4: Check if its g-value is equal to its f(q) value then it is locally consistent, otherwise it is locally inconsistent.
Step 5: The g-values of all vertices are equal to their start distances⇐⇒ all vertices are locally consistent
Step 6: To estimate the distance to the goal, heuristic function, h(q,q_goal) is computed.
The heuristic estimate h(q,q_goal) of the distance between vertices q and q_goal must satisfy

h
(

q, qgoal

){ = 0
≤ c(q, q′) + h()

i f q = qgoal
otherwise

for all vertices q ∈ Q and qˆ’ ∈ Succ(q)
Step 7: Repeat Steps 3 to 6 until all the vertices are in S_DSR

3.2.4. Hierarchical Pathfinding A* (HPA*)

HPA* was first designed in 2004 by Adi Botea and his colleagues [58]. The Algorithm
makes use of the concept of divide and conquer approach in order to reduce the memory
usage and complexity [59]. The search problem is divided into multiple smaller prob-
lems [60] using the principle of HPA* and the results are cached for every path segment [61].
When the Algorithm is executed, the game level is broken down into grids having the
same size [62]. Each element of the grid is inspected in order to check whether the closest
neighboring element can be fitted with the current element [63]. The second stage involves
splitting the entire grid into grid elements of smaller size [64]. The Abstract Problem Graph
is then formed and while declaring the two elements through which the edge is connected,
the transition is made [65]. Different or same grid may contain these elements [66]. In the
abstract graph, the location of source and the destination is added [3]. The A-star Algorithm
is used to find the shortest path from source to destination element [67]. In this way, the
HPA* Algorithm divides the main problem into many small problems [68] and solves them
separately thereby reducing memory and increasing the speed [69].

3.2.5. Jump Point Search Algorithm (JPS)

The Algorithm expands by choosing (pruning) certain nodes in the grid map (called
Jump Points) while the intermediate nodes are not expanded (skipping the exploration
of a lot of nodes). The technique used by JPS is based on avoiding useless searches of
symmetrical paths that A* searches, saving lots of time with the same memory load. Moving
from a Jump Point to another is done by travelling in a concrete direction while recursively
applying two neighbor pruning rules (one for horizontal and vertical steps and the other
for diagonal ones) until reaching a dead-end, a non-walkable area, or the next Jump Point.
To keep going with JPS, it is important to understand the concept of “pruning”, which is
the elimination of nodes to expand. That is to say the way in which the Algorithm decides
which nodes to explore. After the pruning of nodes, the ones that remain in the tree are
called “natural neighbors”, which are the only ones that we want to consider. However,

Appl. Sci. 2022, 12, 5499 14 of 30

sometimes we need to consider one or two nodes that are not natural. Those are called
“forced neighbors” [70]. In Jump Point Search, our objective is to avoid symmetric paths by
“jumping” all nodes that can be optimally reached by a path that does not visit the current
node. This means that we chose a Jump Point if the optimal path must, obligatorily, pass
through that node. Once it has reached an obstacle or another Jump Point, the recursion
stops. So, a Jump Point y with a neighbor z will be a successor of a Jump Point x only if to
reach z we need to visit x and y. To make it real, we need to consider two pruning rules,
one for straight moves (horizontal and vertical) and another one for diagonal moves.

In Figure 9 (Left), from a Jump Point x (with parent p(x)), we recursively go straight
until y and set it as a successor Jump Point of x because z cannot be reached (optimally) if
we do not pass through x and y. The nodes in the middle are not evaluated or explored.
In Figure 9 (Right), from a Jump Point x (with parent p(x)), we recursively go diagonally
until y and set it as an x Jump Point Successor (the same than left). In this case, after each
diagonal step, we do a straight recursion (marked with discontinue lines) and only if the
two straight recursions fail, we keep going diagonally [71]. Also in the image, the node w
is shown, which is a forced neighbor of x because of being in a place in which, to reach it
optimally from the coming direction (p(x)), we need to pass through x [72].

Appl. Sci. 2022, 12, x FOR PEER REVIEW 14 of 31

the elimination of nodes to expand. That is to say the way in which the Algorithm decides
which nodes to explore. After the pruning of nodes, the ones that remain in the tree are
called “natural neighbors”, which are the only ones that we want to consider. However,
sometimes we need to consider one or two nodes that are not natural. Those are called
“forced neighbors” [70]. In Jump Point Search, our objective is to avoid symmetric paths
by “jumping” all nodes that can be optimally reached by a path that does not visit the
current node. This means that we chose a Jump Point if the optimal path must, obligato-
rily, pass through that node. Once it has reached an obstacle or another Jump Point, the
recursion stops. So, a Jump Point y with a neighbor z will be a successor of a Jump Point
x only if to reach z we need to visit x and y. To make it real, we need to consider two
pruning rules, one for straight moves (horizontal and vertical) and another one for diag-
onal moves.

In Figure 9 (Left), from a Jump Point x (with parent p(x)), we recursively go straight
until y and set it as a successor Jump Point of x because z cannot be reached (optimally) if
we do not pass through x and y. The nodes in the middle are not evaluated or explored.
In Figure 9 (Right), from a Jump Point x (with parent p(x)), we recursively go diagonally
until y and set it as an x Jump Point Successor (the same than left). In this case, after each
diagonal step, we do a straight recursion (marked with discontinue lines) and only if the
two straight recursions fail, we keep going diagonally [71]. Also in the image, the node w
is shown, which is a forced neighbor of x because of being in a place in which, to reach it
optimally from the coming direction (p(x)), we need to pass through x [72].

Figure 9. Left: from a jump point x (with parent p(x)), the Algorithm recursively goes straight until
y and sets it as a successor jump point of x. Right: from a Jump Point x (with parent p(x)), the Algo-
rithm recursively goes diagonally until y and set it as an x Jump Point Successor.

The heuristic function, time, and space complexities of pathfinding Algorithms are
detailed in Table 2.

Figure 9. Left: from a jump point x (with parent p(x)), the Algorithm recursively goes straight until
y and sets it as a successor jump point of x. Right: from a Jump Point x (with parent p(x)), the
Algorithm recursively goes diagonally until y and set it as an x Jump Point Successor.

The heuristic function, time, and space complexities of pathfinding Algorithms are
detailed in Table 2.

Table 2. Heuristic function, time and space complexities of pathfinding Algorithms.

Sr. No Algorithm Heuristic Function H(n) Time Complexity T(n) Space Complexity S(n)

1. BFS - T(n) = 1 + n2 + n3 + + ns = O(ns) S(n) = O(ns)

2. DFS - T(n) = 1 + n2 + n3 + + nd = O(nd) S(n) = O(n*d)

3. Dijkstra’s H(n) = 0
F(n) = G(n) T(n) = O(N2) -

4. A-star F(n) = H(n) + G(n) T(n) = O(bd) S(n) = O(bd)

5. Greedy Best First G(n) = 0
F(n) = H(n) T(n) = O(bm) S(n) = O(bm)

3.3. Metaheuristic Approach Algorithms

The word metaheuristic come from two words, meta and heuristic. Meta means
“beyond” and heuristic means “to discover”. Meta-heuristics are problem-independent

Appl. Sci. 2022, 12, 5499 15 of 30

techniques. Unlike the heuristic Algorithms, they do not take advantage of any specificity
of the problem. In general, they are not greedy. In fact, they may even accept a temporary
deterioration of the solution (example, the simulated-annealing technique), which allows
them to explore more thoroughly the solution space and thus to hopefully get a better
solution (that sometimes will coincide with the global optimum) [73]. Their main objective
is to make use of the search space as much as possible to discover a nearly good solution to
an optimization problem. Unlike the heuristic Algorithms, they are much better in terms of
performance and do not focus on a particular problem [74].

3.3.1. Genetic Algorithm (GA)

This is a very popular Algorithm belonging to the metaheuristic category of Algo-
rithms based on the concept of natural selection. Introduced first in 1960 by John Holland,
the Algorithm has numerous applications in the fields of climatology for monitoring
changes in global temperatures, neural networks, robotics, natural language processing,
etc. In the world of video games, this Algorithm is used for finding the route with least
cost. The search space for this Algorithm is termed as population [75]. In this population,
there are several elements called chromosomes. From this population, the Algorithm
generates randomly a set of chromosomes or a suitable set of solutions called the initial
solution. Every element of this initial solution is inspected by a function that decides which
acceptable set of chromosomes will remain until the end. This function is termed as the
fitness function. The larger the value of this function, the greater the chances of survival of
the move towards the next generation [76]. Figure 10 shows the six different steps involved
in the Algorithm.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 15 of 31

Table 2. Heuristic function, time and space complexities of pathfinding Algorithms.

Sr. No Algorithm Heuristic Function H(n) Time Complexity T(n) Space Complexity S(n)
1. BFS - T(n) = 1 + n2 + n3 + ……+ ns = O(ns) S(n) = O(ns)
2. DFS - T(n) = 1 + n2 + n3 + ……+ nd = O(nd) S(n) = O(n*d)

3. Dijkstra’s
H(n) = 0

F(n) = G(n)
T(n) = O(N2) -

4. A-star F(n) = H(n) + G(n) T(n) = O(bd) S(n) = O(bd)

5. Greedy Best First
G(n) = 0

F(n) = H(n)
T(n) = O(bm) S(n) = O(bm)

3.3. Metaheuristic Approach Algorithms
The word metaheuristic come from two words, meta and heuristic. Meta means “be-

yond” and heuristic means “to discover”. Meta-heuristics are problem-independent tech-
niques. Unlike the heuristic Algorithms, they do not take advantage of any specificity of
the problem. In general, they are not greedy. In fact, they may even accept a temporary
deterioration of the solution (example, the simulated-annealing technique), which allows
them to explore more thoroughly the solution space and thus to hopefully get a better
solution (that sometimes will coincide with the global optimum) [73]. Their main objective
is to make use of the search space as much as possible to discover a nearly good solution
to an optimization problem. Unlike the heuristic Algorithms, they are much better in
terms of performance and do not focus on a particular problem [74].

3.3.1. Genetic Algorithm (GA)
This is a very popular Algorithm belonging to the metaheuristic category of Algo-

rithms based on the concept of natural selection. Introduced first in 1960 by John Holland,
the Algorithm has numerous applications in the fields of climatology for monitoring
changes in global temperatures, neural networks, robotics, natural language processing,
etc. In the world of video games, this Algorithm is used for finding the route with least
cost. The search space for this Algorithm is termed as population [75]. In this population,
there are several elements called chromosomes. From this population, the Algorithm gen-
erates randomly a set of chromosomes or a suitable set of solutions called the initial solu-
tion. Every element of this initial solution is inspected by a function that decides which
acceptable set of chromosomes will remain until the end. This function is termed as the
fitness function. The larger the value of this function, the greater the chances of survival
of the move towards the next generation [76]. Figure 10 shows the six different steps in-
volved in the Algorithm.

Figure 10. Process flow of genetic Algorithm. Figure 10. Process flow of genetic Algorithm.

1. Initial Population: The Algorithm begins with a set of individuals called a Population.
Each individual is a solution to the problem you want to solve. An individual is
characterized by a set of parameters (variables) known as Genes. Genes are joined
into a string to form a Chromosome (solution). In a genetic Algorithm, the set of
genes of an individual is represented using a string, in terms of an alphabet. Usually,
binary values are used (string of 1 s and 0 s). We say that we encode the genes
in a chromosome. The distinction between a gene, chromosome and population is
represented in Figure 11 [77].

Appl. Sci. 2022, 12, 5499 16 of 30

Appl. Sci. 2022, 12, x FOR PEER REVIEW 16 of 31

1. Initial Population: The Algorithm begins with a set of individuals called a Popula-
tion. Each individual is a solution to the problem you want to solve. An individual is
characterized by a set of parameters (variables) known as Genes. Genes are joined
into a string to form a Chromosome (solution). In a genetic Algorithm, the set of
genes of an individual is represented using a string, in terms of an alphabet. Usually,
binary values are used (string of 1 s and 0 s). We say that we encode the genes in a
chromosome. The distinction between a gene, chromosome and population is repre-
sented in Figure 11 [77].

Figure 11. Distinction between population, chromosome, and gene.

2. Fitness Function: The fitness function determines how fit an individual is (the ability
of an individual to compete with other individuals). It gives a fitness score to each
individual. The probability that an individual will be selected for reproduction is
based on its fitness score.

3. Selection: The idea of selection phase is to select the fittest individuals and let them
pass their genes to the next generation. Two pairs of individuals (parents) are selected
based on their fitness scores. Individuals with high fitness have more chance to be
selected for reproduction.

4. Crossover: Crossover is the most significant phase in a genetic Algorithm. For each
pair of parents to be mated, a crossover point is chosen at random from within the
genes. Offspring are created by exchanging the genes of parents among themselves
until the crossover point is reached. The new offspring are added to the population
as shown in Figure 12 [78].

5. Mutation: In certain new offspring formed, some of their genes can be subjected to a
mutation with a low random probability. This implies that some of the bits in the bit
string can be flipped. Mutation occurs to maintain diversity within the population
and prevent premature convergence. The Algorithm terminates if the population has
converged (does not produce offspring which are significantly different from the pre-
vious generation). Then, it is said that the genetic Algorithm has provided a set of
solutions to our problem as shown in Figure 13 [79].

Figure 11. Distinction between population, chromosome, and gene.

2. Fitness Function: The fitness function determines how fit an individual is (the ability
of an individual to compete with other individuals). It gives a fitness score to each
individual. The probability that an individual will be selected for reproduction is
based on its fitness score.

3. Selection: The idea of selection phase is to select the fittest individuals and let them
pass their genes to the next generation. Two pairs of individuals (parents) are selected
based on their fitness scores. Individuals with high fitness have more chance to be
selected for reproduction.

4. Crossover: Crossover is the most significant phase in a genetic Algorithm. For each
pair of parents to be mated, a crossover point is chosen at random from within the
genes. Offspring are created by exchanging the genes of parents among themselves
until the crossover point is reached. The new offspring are added to the population as
shown in Figure 12 [78].

5. Mutation: In certain new offspring formed, some of their genes can be subjected to a
mutation with a low random probability. This implies that some of the bits in the bit
string can be flipped. Mutation occurs to maintain diversity within the population
and prevent premature convergence. The Algorithm terminates if the population
has converged (does not produce offspring which are significantly different from the
previous generation). Then, it is said that the genetic Algorithm has provided a set of
solutions to our problem as shown in Figure 13 [79].

Appl. Sci. 2022, 12, 5499 17 of 30Appl. Sci. 2022, 12, x FOR PEER REVIEW 17 of 31

Figure 12. Top left: crossover point, top right: exchanging genes among parents, bottom: new off-
spring.

Figure 13. Mutation: before and after.

3.3.2. Ant Colony Optimization (ACO)
Ant Colony Optimization was first introduced in 1992 by Marco Dorigo [80]. As the

name suggests, this Algorithm is based on the way of communication between ants in a
colony [81]. These colony ants make use of chemical signals called pheromones, helping
them to communicate trails from their nest to a food source [82].

Figure 14 represents the general flowchart for ACO. In the first stage, the trail of
pheromone is initialized. The second stage involves iteration in which, through probabil-
istic state transition rule, a complete solution is constructed by every ant to the problem
[83]. The pheromone state determines the state transition rule. Once a solution is gener-
ated by the ants, another rule of global pheromone is applied. It involves two phases:
1. Evaporation phase wherein a pheromone fraction is evaporated.

Figure 12. Top left: crossover point, top right: exchanging genes among parents, bottom: new
offspring.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 17 of 31

Figure 12. Top left: crossover point, top right: exchanging genes among parents, bottom: new off-
spring.

Figure 13. Mutation: before and after.

3.3.2. Ant Colony Optimization (ACO)
Ant Colony Optimization was first introduced in 1992 by Marco Dorigo [80]. As the

name suggests, this Algorithm is based on the way of communication between ants in a
colony [81]. These colony ants make use of chemical signals called pheromones, helping
them to communicate trails from their nest to a food source [82].

Figure 14 represents the general flowchart for ACO. In the first stage, the trail of
pheromone is initialized. The second stage involves iteration in which, through probabil-
istic state transition rule, a complete solution is constructed by every ant to the problem
[83]. The pheromone state determines the state transition rule. Once a solution is gener-
ated by the ants, another rule of global pheromone is applied. It involves two phases:
1. Evaporation phase wherein a pheromone fraction is evaporated.

Figure 13. Mutation: before and after.

3.3.2. Ant Colony Optimization (ACO)

Ant Colony Optimization was first introduced in 1992 by Marco Dorigo [80]. As the
name suggests, this Algorithm is based on the way of communication between ants in a
colony [81]. These colony ants make use of chemical signals called pheromones, helping
them to communicate trails from their nest to a food source [82].

Figure 14 represents the general flowchart for ACO. In the first stage, the trail of
pheromone is initialized. The second stage involves iteration in which, through probabilistic
state transition rule, a complete solution is constructed by every ant to the problem [83].
The pheromone state determines the state transition rule. Once a solution is generated by
the ants, another rule of global pheromone is applied. It involves two phases:

1. Evaporation phase wherein a pheromone fraction is evaporated.

Appl. Sci. 2022, 12, 5499 18 of 30

2. Reinforcement phase wherein an amount of pheromone is deposited by every ant
which is proportional to the fitness of solution. The process is repeated until halting
criteria is achieved.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 18 of 31

2. Reinforcement phase wherein an amount of pheromone is deposited by every ant
which is proportional to the fitness of solution. The process is repeated until halting
criteria is achieved.

Figure 14. General flow chart for Ant Colony Optimization Algorithm.

Even if we place obstacles across their path, the pheromone will help them in discov-
ering a minimum cost path which takes less time. Similarly, based on this concept of nat-
ural behavior, this popular Algorithm can be applied for pathfinding applications in video
games [84].

4. Proposed Algorithm
This paper analyzes the performances of different pathfinding Algorithms so that

game developers can make a suitable choice from these Algorithms for development of
games involving pathfinding. The Algorithms have been appropriately classified based
on different parameters and graphical representations so that a clear distinction is made
among the Algorithms in terms of performance. Currently, in video games, various types
of pathfinding Algorithms are used to reach from the source to destination. Some of these
Algorithms are designed to avoid stationary obstacles or enemies along the path whereas
some Algorithms are developed specifically for dynamic obstacles while some are for
both.

However, we do not know how these Algorithms might perform in terms of hard-
ware usage or speed or even finding the shortest path given different environmental sce-
narios. The proposed work involved the formation of grids of various sizes, 4 × 4, 8 × 8, 16
× 16, and 32 × 32. The grids were generated with and without obstacles identifying the
performance of the Algorithms in different scenarios. The number of iterations to be exe-
cuted is initialized as ‘k’. Fixing the cell to start the computation is performed based on
the player’s preference. The next cell movement is computed for each Algorithm; Dijks-
tra’s Algorithm 6 𝑫𝒊𝒋, A-star 𝑨∗ , Breadth First Search 𝑩𝑭𝑺 , and Greedy Best First 𝑮𝑩𝑭.

Figure 14. General flow chart for Ant Colony Optimization Algorithm.

Even if we place obstacles across their path, the pheromone will help them in dis-
covering a minimum cost path which takes less time. Similarly, based on this concept of
natural behavior, this popular Algorithm can be applied for pathfinding applications in
video games [84].

4. Proposed Algorithm

This paper analyzes the performances of different pathfinding Algorithms so that
game developers can make a suitable choice from these Algorithms for development of
games involving pathfinding. The Algorithms have been appropriately classified based
on different parameters and graphical representations so that a clear distinction is made
among the Algorithms in terms of performance. Currently, in video games, various types
of pathfinding Algorithms are used to reach from the source to destination. Some of these
Algorithms are designed to avoid stationary obstacles or enemies along the path whereas
some Algorithms are developed specifically for dynamic obstacles while some are for both.

However, we do not know how these Algorithms might perform in terms of hardware
usage or speed or even finding the shortest path given different environmental scenar-
ios. The proposed work involved the formation of grids of various sizes, 4 × 4, 8 × 8,
16 × 16, and 32 × 32. The grids were generated with and without obstacles identifying
the performance of the Algorithms in different scenarios. The number of iterations to be
executed is initialized as ‘k’. Fixing the cell to start the computation is performed based on
the player’s preference. The next cell movement is computed for each Algorithm; Dijkstra’s
Algorithm 6 Dij, A-star A∗ , Breadth First Search BFS, and Greedy Best First GBF. Compute
each and every visited cell for each Algorithm to compute the best move to determine the
shortest path length for the game played. The shortest path length L and execution time t
show that GRIN_PF outperforms the existing path finding approaches.

Appl. Sci. 2022, 12, 5499 19 of 30

Algorithm 6 Proposed GRIN_PF.

Input: Grid Gi where i ∈ 4× 4, 8× 8, 16× 16, 32× 32. Number of iterations k.
Output: Shortest Path Length L, Visited Blocks V, Execution Time t.

Step 1: Formation of regular Grid of equal size cell with obstacles Gio and without obstacles Gino
Step 2: Initialize the iteration count c = 0
Step 3: Based on the position of the player the starting cell can be fixed.
Step 4: Identify the next move using Algorithm

(a) Breadth First Search BFS = S_BFS
(b) Dijkstra’s Algorithm Dij = S_DJK
(c) A-star A∗ = S_ASR
(d) Greedy Best First GBF = S_GBF

Step 5: Compute the visited block Vj where j ∈ BFS, Dij, A∗, GBF
Step 6: c = c + 1
Step7: Repeat the steps for the given Iteration k, Go to Step 3.
Step 8: Compute the best move for each Algorithm.
Step 9: Determine the Shortest Path Length Lz where z ∈ BFS, Dij, A∗, GBF
Step 10: Execution time tz where z ∈ Dij, A∗, BFS, GBF

5. Performance Comparison of Some Heuristic Pathfinding Algorithms

Tables 3 and 4 show the performance analysis of implemented heuristic pathfinding
Algorithms without and with obstacles respectively. The parameters taken were grid size,
total iteration blocks, total computed blocks without shortest path length, execution time
in milliseconds, and shortest path length. Grid size is the size of the grid environment
used for implementing the Algorithm. The Algorithms are implemented on 4 × 4, 8 × 8,
16 × 16, and 32 × 32 grid systems. Total iteration blocks refer to the total number of blocks
the Algorithm has traversed in order to reach destination node. Total computed blocks
without SPL refers to the total blocks traversed by Algorithm excluding the shortest path
length blocks. Execution time is the time required by Algorithm to reach the goal node
from start node. It is measured in milliseconds. Finally, the shortest path length is the
minimum number of blocks taken by the Algorithm to reach the destination node.

Table 3. Performance analysis of pathfinding Algorithms without obstacles.

Grid Size Grid Model Algorithm Total Iterations
(Blocks)

Total Computed
Blocks without SPL

Execution
Time (ms)

Shortest Path
Length (Blocks)

4 × 4

Appl. Sci. 2022, 12, x FOR PEER REVIEW 19 of 31

Compute each and every visited cell for each Algorithm to compute the best move to de-
termine the shortest path length for the game played. The shortest path length L and exe-
cution time t show that GRIN_PF outperforms the existing path finding approaches.

Algorithm 6 Proposed GRIN_PF.

Input: Grid 𝑮𝒊 where 𝒊 ∈ 𝟒 × 𝟒, 𝟖 × 𝟖, 𝟏𝟔 × 𝟏𝟔, 𝟑𝟐 × 𝟑𝟐. Number of iterations k.
Output: Shortest Path Length L, Visited Blocks V, Execution Time t.

Step 1: Formation of regular Grid of equal size cell with obstacles 𝑮𝒊𝒐 and without obstacles 𝑮𝒊𝒏𝒐
Step 2: Initialize the iteration count c = 0
Step 3: Based on the position of the player the starting cell can be fixed.
Step 4: Identify the next move using Algorithm

(a) Breadth First Search 𝑩𝑭𝑺 = S_BFS
(b) Dijkstra’s Algorithm 𝑫𝒊𝒋 = S_DJK
(c) A-star 𝑨∗ = S_ASR
(d) Greedy Best First 𝑮𝑩𝑭 = S_GBF

Step 5: Compute the visited block 𝑽𝒋 𝑤ℎ𝑒𝑟𝑒 𝒋 ∈ 𝑩𝑭𝑺, 𝑫𝒊𝒋, 𝑨∗, 𝑮𝑩𝑭
Step 6: c = c + 1
Step7: Repeat the steps for the given Iteration k, Go to Step 3.
Step 8: Compute the best move for each Algorithm.
Step 9: Determine the Shortest Path Length 𝑳𝒛 𝒘𝒉𝒆𝒓𝒆 𝒛 ∈ 𝑩𝑭𝑺, 𝑫𝒊𝒋, 𝑨∗, 𝑮𝑩𝑭
Step 10: Execution time 𝒕𝒛 𝒘𝒉𝒆𝒓𝒆 𝒛 ∈ 𝑫𝒊𝒋, 𝑨∗, 𝑩𝑭𝑺, 𝑮𝑩𝑭

5. Performance Comparison of Some Heuristic Pathfinding Algorithms
Tables 3 and 4 show the performance analysis of implemented heuristic pathfinding

Algorithms without and with obstacles respectively. The parameters taken were grid size,
total iteration blocks, total computed blocks without shortest path length, execution time
in milliseconds, and shortest path length. Grid size is the size of the grid environment
used for implementing the Algorithm. The Algorithms are implemented on 4 × 4, 8 × 8, 16
× 16, and 32 × 32 grid systems. Total iteration blocks refer to the total number of blocks the
Algorithm has traversed in order to reach destination node. Total computed blocks with-
out SPL refers to the total blocks traversed by Algorithm excluding the shortest path
length blocks. Execution time is the time required by Algorithm to reach the goal node
from start node. It is measured in milliseconds. Finally, the shortest path length is the
minimum number of blocks taken by the Algorithm to reach the destination node.

Table 3. Performance analysis of pathfinding Algorithms without obstacles.

Grid
Size

Grid Model Algorithm
Total Iterations

(Blocks)
Total Computed

Blocks without SPL
Execution
Time (ms)

Shortest Path
Length (Blocks)

4 × 4

1

Dijkstra’s 14 9 39.70 5

Dijkstra’s 14 9 39.70 5

Appl. Sci. 2022, 12, x FOR PEER REVIEW 20 of 31

2

A-star 10 5 27.95 5

3

Breadth
First Search

14 9 33.76 5

4

Greedy Best
First

6 1 14.38 5

8 × 8

5

Dijkstra’s 62 49 177.08 13

6

A-star 50 37 140.5 13

7

Breadth
First Search

62 49 164.49 13

8

Greedy Best
First

14 1 36.01 13

A-star 10 5 27.95 5

Appl. Sci. 2022, 12, x FOR PEER REVIEW 20 of 31

2

A-star 10 5 27.95 5

3

Breadth
First Search

14 9 33.76 5

4

Greedy Best
First

6 1 14.38 5

8 × 8

5

Dijkstra’s 62 49 177.08 13

6

A-star 50 37 140.5 13

7

Breadth
First Search

62 49 164.49 13

8

Greedy Best
First

14 1 36.01 13

Breadth First
Search 14 9 33.76 5

Appl. Sci. 2022, 12, x FOR PEER REVIEW 20 of 31

2

A-star 10 5 27.95 5

3

Breadth
First Search

14 9 33.76 5

4

Greedy Best
First

6 1 14.38 5

8 × 8

5

Dijkstra’s 62 49 177.08 13

6

A-star 50 37 140.5 13

7

Breadth
First Search

62 49 164.49 13

8

Greedy Best
First

14 1 36.01 13

Greedy Best First 6 1 14.38 5

Appl. Sci. 2022, 12, 5499 20 of 30

Table 3. Cont.

Grid Size Grid Model Algorithm Total Iterations
(Blocks)

Total Computed
Blocks without SPL

Execution
Time (ms)

Shortest Path
Length (Blocks)

8 × 8

Appl. Sci. 2022, 12, x FOR PEER REVIEW 20 of 31

2

A-star 10 5 27.95 5

3

Breadth
First Search

14 9 33.76 5

4

Greedy Best
First

6 1 14.38 5

8 × 8

5

Dijkstra’s 62 49 177.08 13

6

A-star 50 37 140.5 13

7

Breadth
First Search

62 49 164.49 13

8

Greedy Best
First

14 1 36.01 13

Dijkstra’s 62 49 177.08 13

Appl. Sci. 2022, 12, x FOR PEER REVIEW 20 of 31

2

A-star 10 5 27.95 5

3

Breadth
First Search

14 9 33.76 5

4

Greedy Best
First

6 1 14.38 5

8 × 8

5

Dijkstra’s 62 49 177.08 13

6

A-star 50 37 140.5 13

7

Breadth
First Search

62 49 164.49 13

8

Greedy Best
First

14 1 36.01 13

A-star 50 37 140.5 13

Appl. Sci. 2022, 12, x FOR PEER REVIEW 20 of 31

2

A-star 10 5 27.95 5

3

Breadth
First Search

14 9 33.76 5

4

Greedy Best
First

6 1 14.38 5

8 × 8

5

Dijkstra’s 62 49 177.08 13

6

A-star 50 37 140.5 13

7

Breadth
First Search

62 49 164.49 13

8

Greedy Best
First

14 1 36.01 13

Breadth First
Search 62 49 164.49 13

Appl. Sci. 2022, 12, x FOR PEER REVIEW 20 of 31

2

A-star 10 5 27.95 5

3

Breadth
First Search

14 9 33.76 5

4

Greedy Best
First

6 1 14.38 5

8 × 8

5

Dijkstra’s 62 49 177.08 13

6

A-star 50 37 140.5 13

7

Breadth
First Search

62 49 164.49 13

8

Greedy Best
First

14 1 36.01 13

Greedy Best First 14 1 36.01 13

16 × 16

Appl. Sci. 2022, 12, x FOR PEER REVIEW 21 of 31

16 × 16

9

Dijkstra’s 254 225 899.27 29

10

A-star 226 197 787.43 29

11

Breadth
First Search

254 225 868.56 29

12

Greedy Best
First

30 1 97.90 29

32 × 32

13

Dijkstra’s 1022 961 7500.14 61

14

A-star 962 901 6757.75 61

15

Breadth
First Search

1022 961 7449.17 61

16

Greedy Best
First

62 1 346.60 61

Dijkstra’s 254 225 899.27 29

Appl. Sci. 2022, 12, x FOR PEER REVIEW 21 of 31

16 × 16

9

Dijkstra’s 254 225 899.27 29

10

A-star 226 197 787.43 29

11

Breadth
First Search

254 225 868.56 29

12

Greedy Best
First

30 1 97.90 29

32 × 32

13

Dijkstra’s 1022 961 7500.14 61

14

A-star 962 901 6757.75 61

15

Breadth
First Search

1022 961 7449.17 61

16

Greedy Best
First

62 1 346.60 61

A-star 226 197 787.43 29

Appl. Sci. 2022, 12, x FOR PEER REVIEW 21 of 31

16 × 16

9

Dijkstra’s 254 225 899.27 29

10

A-star 226 197 787.43 29

11

Breadth
First Search

254 225 868.56 29

12

Greedy Best
First

30 1 97.90 29

32 × 32

13

Dijkstra’s 1022 961 7500.14 61

14

A-star 962 901 6757.75 61

15

Breadth
First Search

1022 961 7449.17 61

16

Greedy Best
First

62 1 346.60 61

Breadth First
Search 254 225 868.56 29

Appl. Sci. 2022, 12, x FOR PEER REVIEW 21 of 31

16 × 16

9

Dijkstra’s 254 225 899.27 29

10

A-star 226 197 787.43 29

11

Breadth
First Search

254 225 868.56 29

12

Greedy Best
First

30 1 97.90 29

32 × 32

13

Dijkstra’s 1022 961 7500.14 61

14

A-star 962 901 6757.75 61

15

Breadth
First Search

1022 961 7449.17 61

16

Greedy Best
First

62 1 346.60 61

Greedy Best First 30 1 97.90 29

Appl. Sci. 2022, 12, 5499 21 of 30

Table 3. Cont.

Grid Size Grid Model Algorithm Total Iterations
(Blocks)

Total Computed
Blocks without SPL

Execution
Time (ms)

Shortest Path
Length (Blocks)

32 × 32

Appl. Sci. 2022, 12, x FOR PEER REVIEW 21 of 31

16 × 16

9

Dijkstra’s 254 225 899.27 29

10

A-star 226 197 787.43 29

11

Breadth
First Search

254 225 868.56 29

12

Greedy Best
First

30 1 97.90 29

32 × 32

13

Dijkstra’s 1022 961 7500.14 61

14

A-star 962 901 6757.75 61

15

Breadth
First Search

1022 961 7449.17 61

16

Greedy Best
First

62 1 346.60 61

Dijkstra’s 1022 961 7500.14 61

Appl. Sci. 2022, 12, x FOR PEER REVIEW 21 of 31

16 × 16

9

Dijkstra’s 254 225 899.27 29

10

A-star 226 197 787.43 29

11

Breadth
First Search

254 225 868.56 29

12

Greedy Best
First

30 1 97.90 29

32 × 32

13

Dijkstra’s 1022 961 7500.14 61

14

A-star 962 901 6757.75 61

15

Breadth
First Search

1022 961 7449.17 61

16

Greedy Best
First

62 1 346.60 61

A-star 962 901 6757.75 61

Appl. Sci. 2022, 12, x FOR PEER REVIEW 21 of 31

16 × 16

9

Dijkstra’s 254 225 899.27 29

10

A-star 226 197 787.43 29

11

Breadth
First Search

254 225 868.56 29

12

Greedy Best
First

30 1 97.90 29

32 × 32

13

Dijkstra’s 1022 961 7500.14 61

14

A-star 962 901 6757.75 61

15

Breadth
First Search

1022 961 7449.17 61

16

Greedy Best
First

62 1 346.60 61

Breadth First
Search 1022 961 7449.17 61

Appl. Sci. 2022, 12, x FOR PEER REVIEW 21 of 31

16 × 16

9

Dijkstra’s 254 225 899.27 29

10

A-star 226 197 787.43 29

11

Breadth
First Search

254 225 868.56 29

12

Greedy Best
First

30 1 97.90 29

32 × 32

13

Dijkstra’s 1022 961 7500.14 61

14

A-star 962 901 6757.75 61

15

Breadth
First Search

1022 961 7449.17 61

16

Greedy Best
First

62 1 346.60 61

Greedy Best First 62 1 346.60 61

Table 4. Performance analysis of pathfinding Algorithms with obstacles.

Grid Size Grid Model Algorithm Total Iterations
(Blocks)

Total Computed
Blocks without SPL

Execution
Time (ms)

Shortest Path
Length (Blocks)

4 × 4

Appl. Sci. 2022, 12, x FOR PEER REVIEW 22 of 31

Table 4. Performance analysis of pathfinding Algorithms with obstacles.

Grid
Size

Grid Model Algorithm
Total Iterations

(Blocks)
Total Computed

Blocks without SPL
Execution
Time (ms)

Shortest Path
Length (Blocks)

4 × 4

17

Dijkstra’s 6 1 15.17 5

18

A-star 6 1 12.92 5

19

Breadth
First Search

6 1 13.90 5

20

Greedy Best
First

6 1 14.25 5

8 × 8

21

Dijkstra’s 30 15 102.60 15

22

A-star 32 17 91.35 15

23

Breadth
First Search

42 27 120.54 15

24

Greedy Best
First

14 1 40.19 13

Dijkstra’s 6 1 15.17 5

Appl. Sci. 2022, 12, x FOR PEER REVIEW 22 of 31

Table 4. Performance analysis of pathfinding Algorithms with obstacles.

Grid
Size

Grid Model Algorithm
Total Iterations

(Blocks)
Total Computed

Blocks without SPL
Execution
Time (ms)

Shortest Path
Length (Blocks)

4 × 4

17

Dijkstra’s 6 1 15.17 5

18

A-star 6 1 12.92 5

19

Breadth
First Search

6 1 13.90 5

20

Greedy Best
First

6 1 14.25 5

8 × 8

21

Dijkstra’s 30 15 102.60 15

22

A-star 32 17 91.35 15

23

Breadth
First Search

42 27 120.54 15

24

Greedy Best
First

14 1 40.19 13

A-star 6 1 12.92 5

Appl. Sci. 2022, 12, x FOR PEER REVIEW 22 of 31

Table 4. Performance analysis of pathfinding Algorithms with obstacles.

Grid
Size

Grid Model Algorithm
Total Iterations

(Blocks)
Total Computed

Blocks without SPL
Execution
Time (ms)

Shortest Path
Length (Blocks)

4 × 4

17

Dijkstra’s 6 1 15.17 5

18

A-star 6 1 12.92 5

19

Breadth
First Search

6 1 13.90 5

20

Greedy Best
First

6 1 14.25 5

8 × 8

21

Dijkstra’s 30 15 102.60 15

22

A-star 32 17 91.35 15

23

Breadth
First Search

42 27 120.54 15

24

Greedy Best
First

14 1 40.19 13

Breadth First
Search 6 1 13.90 5

Appl. Sci. 2022, 12, x FOR PEER REVIEW 22 of 31

Table 4. Performance analysis of pathfinding Algorithms with obstacles.

Grid
Size

Grid Model Algorithm
Total Iterations

(Blocks)
Total Computed

Blocks without SPL
Execution
Time (ms)

Shortest Path
Length (Blocks)

4 × 4

17

Dijkstra’s 6 1 15.17 5

18

A-star 6 1 12.92 5

19

Breadth
First Search

6 1 13.90 5

20

Greedy Best
First

6 1 14.25 5

8 × 8

21

Dijkstra’s 30 15 102.60 15

22

A-star 32 17 91.35 15

23

Breadth
First Search

42 27 120.54 15

24

Greedy Best
First

14 1 40.19 13

Greedy Best
First 6 1 14.25 5

Appl. Sci. 2022, 12, 5499 22 of 30

Table 4. Cont.

Grid Size Grid Model Algorithm Total Iterations
(Blocks)

Total Computed
Blocks without SPL

Execution
Time (ms)

Shortest Path
Length (Blocks)

8 × 8

Appl. Sci. 2022, 12, x FOR PEER REVIEW 22 of 31

Table 4. Performance analysis of pathfinding Algorithms with obstacles.

Grid
Size

Grid Model Algorithm
Total Iterations

(Blocks)
Total Computed

Blocks without SPL
Execution
Time (ms)

Shortest Path
Length (Blocks)

4 × 4

17

Dijkstra’s 6 1 15.17 5

18

A-star 6 1 12.92 5

19

Breadth
First Search

6 1 13.90 5

20

Greedy Best
First

6 1 14.25 5

8 × 8

21

Dijkstra’s 30 15 102.60 15

22

A-star 32 17 91.35 15

23

Breadth
First Search

42 27 120.54 15

24

Greedy Best
First

14 1 40.19 13

Dijkstra’s 30 15 102.60 15

Appl. Sci. 2022, 12, x FOR PEER REVIEW 22 of 31

Table 4. Performance analysis of pathfinding Algorithms with obstacles.

Grid
Size

Grid Model Algorithm
Total Iterations

(Blocks)
Total Computed

Blocks without SPL
Execution
Time (ms)

Shortest Path
Length (Blocks)

4 × 4

17

Dijkstra’s 6 1 15.17 5

18

A-star 6 1 12.92 5

19

Breadth
First Search

6 1 13.90 5

20

Greedy Best
First

6 1 14.25 5

8 × 8

21

Dijkstra’s 30 15 102.60 15

22

A-star 32 17 91.35 15

23

Breadth
First Search

42 27 120.54 15

24

Greedy Best
First

14 1 40.19 13

A-star 32 17 91.35 15

Appl. Sci. 2022, 12, x FOR PEER REVIEW 22 of 31

Table 4. Performance analysis of pathfinding Algorithms with obstacles.

Grid
Size

Grid Model Algorithm
Total Iterations

(Blocks)
Total Computed

Blocks without SPL
Execution
Time (ms)

Shortest Path
Length (Blocks)

4 × 4

17

Dijkstra’s 6 1 15.17 5

18

A-star 6 1 12.92 5

19

Breadth
First Search

6 1 13.90 5

20

Greedy Best
First

6 1 14.25 5

8 × 8

21

Dijkstra’s 30 15 102.60 15

22

A-star 32 17 91.35 15

23

Breadth
First Search

42 27 120.54 15

24

Greedy Best
First

14 1 40.19 13

Breadth First
Search 42 27 120.54 15

Appl. Sci. 2022, 12, x FOR PEER REVIEW 22 of 31

Table 4. Performance analysis of pathfinding Algorithms with obstacles.

Grid
Size

Grid Model Algorithm
Total Iterations

(Blocks)
Total Computed

Blocks without SPL
Execution
Time (ms)

Shortest Path
Length (Blocks)

4 × 4

17

Dijkstra’s 6 1 15.17 5

18

A-star 6 1 12.92 5

19

Breadth
First Search

6 1 13.90 5

20

Greedy Best
First

6 1 14.25 5

8 × 8

21

Dijkstra’s 30 15 102.60 15

22

A-star 32 17 91.35 15

23

Breadth
First Search

42 27 120.54 15

24

Greedy Best
First

14 1 40.19 13 Greedy Best
First 14 1 40.19 13

16 × 16

Appl. Sci. 2022, 12, x FOR PEER REVIEW 23 of 31

16 × 16

25

Dijkstra’s 177 146 743.47 31

26

A-star 140 109 512.45 31

27

Breadth
First Search

178 147 663.76 31

28

Greedy Best
First

85 48 298.61 37

32 × 32

29

Dijkstra’s 754 679 5678.25 75

30

A-star 587 512 3975.34 75

31

Breadth
First Search

752 677 5316.65 75

32

Greedy Best
First

224 143 1396.73 81

Dijkstra’s 177 146 743.47 31

Appl. Sci. 2022, 12, x FOR PEER REVIEW 23 of 31

16 × 16

25

Dijkstra’s 177 146 743.47 31

26

A-star 140 109 512.45 31

27

Breadth
First Search

178 147 663.76 31

28

Greedy Best
First

85 48 298.61 37

32 × 32

29

Dijkstra’s 754 679 5678.25 75

30

A-star 587 512 3975.34 75

31

Breadth
First Search

752 677 5316.65 75

32

Greedy Best
First

224 143 1396.73 81

A-star 140 109 512.45 31

Appl. Sci. 2022, 12, x FOR PEER REVIEW 23 of 31

16 × 16

25

Dijkstra’s 177 146 743.47 31

26

A-star 140 109 512.45 31

27

Breadth
First Search

178 147 663.76 31

28

Greedy Best
First

85 48 298.61 37

32 × 32

29

Dijkstra’s 754 679 5678.25 75

30

A-star 587 512 3975.34 75

31

Breadth
First Search

752 677 5316.65 75

32

Greedy Best
First

224 143 1396.73 81

Breadth First
Search 178 147 663.76 31

Appl. Sci. 2022, 12, x FOR PEER REVIEW 23 of 31

16 × 16

25

Dijkstra’s 177 146 743.47 31

26

A-star 140 109 512.45 31

27

Breadth
First Search

178 147 663.76 31

28

Greedy Best
First

85 48 298.61 37

32 × 32

29

Dijkstra’s 754 679 5678.25 75

30

A-star 587 512 3975.34 75

31

Breadth
First Search

752 677 5316.65 75

32

Greedy Best
First

224 143 1396.73 81

Greedy Best
First 85 48 298.61 37

Appl. Sci. 2022, 12, 5499 23 of 30

Table 4. Cont.

Grid Size Grid Model Algorithm Total Iterations
(Blocks)

Total Computed
Blocks without SPL

Execution
Time (ms)

Shortest Path
Length (Blocks)

32 × 32

Appl. Sci. 2022, 12, x FOR PEER REVIEW 23 of 31

16 × 16

25

Dijkstra’s 177 146 743.47 31

26

A-star 140 109 512.45 31

27

Breadth
First Search

178 147 663.76 31

28

Greedy Best
First

85 48 298.61 37

32 × 32

29

Dijkstra’s 754 679 5678.25 75

30

A-star 587 512 3975.34 75

31

Breadth
First Search

752 677 5316.65 75

32

Greedy Best
First

224 143 1396.73 81

Dijkstra’s 754 679 5678.25 75

Appl. Sci. 2022, 12, x FOR PEER REVIEW 23 of 31

16 × 16

25

Dijkstra’s 177 146 743.47 31

26

A-star 140 109 512.45 31

27

Breadth
First Search

178 147 663.76 31

28

Greedy Best
First

85 48 298.61 37

32 × 32

29

Dijkstra’s 754 679 5678.25 75

30

A-star 587 512 3975.34 75

31

Breadth
First Search

752 677 5316.65 75

32

Greedy Best
First

224 143 1396.73 81

A-star 587 512 3975.34 75

Appl. Sci. 2022, 12, x FOR PEER REVIEW 23 of 31

16 × 16

25

Dijkstra’s 177 146 743.47 31

26

A-star 140 109 512.45 31

27

Breadth
First Search

178 147 663.76 31

28

Greedy Best
First

85 48 298.61 37

32 × 32

29

Dijkstra’s 754 679 5678.25 75

30

A-star 587 512 3975.34 75

31

Breadth
First Search

752 677 5316.65 75

32

Greedy Best
First

224 143 1396.73 81

Breadth First
Search 752 677 5316.65 75

Appl. Sci. 2022, 12, x FOR PEER REVIEW 23 of 31

16 × 16

25

Dijkstra’s 177 146 743.47 31

26

A-star 140 109 512.45 31

27

Breadth
First Search

178 147 663.76 31

28

Greedy Best
First

85 48 298.61 37

32 × 32

29

Dijkstra’s 754 679 5678.25 75

30

A-star 587 512 3975.34 75

31

Breadth
First Search

752 677 5316.65 75

32

Greedy Best
First

224 143 1396.73 81 Greedy Best
First 224 143 1396.73 81

6. Graphical Representation of Implemented Pathfinding Algorithms

Figure 15 shows a graph that compares the performances of the four implemented
Algorithms without taking the obstacles into consideration. The execution time is taken as
a parameter for comparing the performances of the Algorithms. The x-axis represents the
Algorithm names and the y-axis depicts the execution time in milliseconds. The Algorithms
compared are Dijkstra’s, A-star, BFS, and Greedy Best First Search.

The 4 × 4 grid system without obstacles shows that the execution time for Dijkstra’s is
39.7 ms, for A-star is 27.95 ms, for BFS is 33.76 ms, and Greedy BFS is 14.38 ms. From this,
we can see that in the case of the 4 × 4 system, the Greedy BFS Algorithm performed the
best among all Algorithms. The worst performing was Dijkstra’s. A-star was the second
best and BFS was third best in performance.

For the 8 × 8 grid system without obstacles, it is shown that the execution time for
Dijkstra’s is 177.08 ms, for A-star is 140.5 ms, for BFS is 164.49 ms, and Greedy BFS is 36.01
ms. From this, we can see that in case of the 8 × 8 system, the Greedy BFS Algorithm again
performed the best among all Algorithms. Once again, Dijkstra’s Algorithm performed the
worst. A-star was the second best and BFS was third best in performance. In addition, the
performance of BFS and Dijkstra’s was almost similar for the 8 × 8 system as there was
very little difference in execution times.

The 16 × 16 grid system without obstacles shows that the execution time for Dijkstra’s
is 899.27 ms, for A-star is 787.43 ms, for BFS is 868.56 ms, and Greedy BFS is 97.9 ms. From
this, we can see that in the case of the 16 × 16 system, the Greedy BFS Algorithm again
performed the best among all Algorithms. Once again, Dijkstra’s Algorithm performed
the worst. A-star was the second best and BFS was third best in performance. Moreover,
the performance of BFS and Dijkstra’s was again almost similar for the 16 × 16 system as
there was very less difference in execution times. In this system, the A-star Algorithm’s
performance was also close to Dijkstra’s and BFS.

Appl. Sci. 2022, 12, 5499 24 of 30

Appl. Sci. 2022, 12, x FOR PEER REVIEW 24 of 31

6. Graphical Representation of Implemented Pathfinding Algorithms
Figure 15 shows a graph that compares the performances of the four implemented

Algorithms without taking the obstacles into consideration. The execution time is taken
as a parameter for comparing the performances of the Algorithms. The x-axis represents
the Algorithm names and the y-axis depicts the execution time in milliseconds. The Algo-
rithms compared are Dijkstra’s, A-star, BFS, and Greedy Best First Search.

Figure 15. Graphical representation of pathfinding Algorithms without obstacles.

The 4 × 4 grid system without obstacles shows that the execution time for Dijkstra’s
is 39.7 ms, for A-star is 27.95 ms, for BFS is 33.76 ms, and Greedy BFS is 14.38 ms. From
this, we can see that in the case of the 4 × 4 system, the Greedy BFS Algorithm performed
the best among all Algorithms. The worst performing was Dijkstra’s. A-star was the sec-
ond best and BFS was third best in performance.

For the 8 × 8 grid system without obstacles, it is shown that the execution time for
Dijkstra’s is 177.08 ms, for A-star is 140.5 ms, for BFS is 164.49 ms, and Greedy BFS is 36.01
ms. From this, we can see that in case of the 8 × 8 system, the Greedy BFS Algorithm again
performed the best among all Algorithms. Once again, Dijkstra’s Algorithm performed
the worst. A-star was the second best and BFS was third best in performance. In addition,
the performance of BFS and Dijkstra’s was almost similar for the 8 × 8 system as there was
very little difference in execution times.

The 16 × 16 grid system without obstacles shows that the execution time for Dijkstra’s
is 899.27 ms, for A-star is 787.43 ms, for BFS is 868.56 ms, and Greedy BFS is 97.9 ms. From
this, we can see that in the case of the 16 × 16 system, the Greedy BFS Algorithm again
performed the best among all Algorithms. Once again, Dijkstra’s Algorithm performed
the worst. A-star was the second best and BFS was third best in performance. Moreover,

0

1000

2000

3000

4000

5000

6000

7000

8000

4 × 4 8 × 8 1 6 × 1 6 3 2 × 3 2

Ex
ec

ut
io

n
TI

m
e

(m
s)

Grid Size

Dijktra's A-star BFS Greedy Best First

Figure 15. Graphical representation of pathfinding Algorithms without obstacles.

The 32 × 32 grid system without obstacles concludes that the execution time for
Dijkstra’s is 7500.14 ms, for A-star is 6757.75 ms, for BFS is 7449.17 ms, and Greedy BFS
is 346.6 ms. From this, we can see that in the case of the 32 × 32 system, the Greedy
BFS Algorithm again performed the best among all Algorithms. Once again, Dijkstra’s
Algorithm performed the worst. A-star was the second best and BFS was third best in
performance again. Moreover, the performance of BFS and Dijkstra’s was again almost
similar for 32 × 32 system as there was very little difference in execution times. In this
system, the A-star Algorithm’s performance was also close to Dijkstra’s and BFS again.

From the above graph, we can conclude that the best pathfinding Algorithm for
without obstacles, which required the least memory and least execution time, was Greedy
Best First Search. However, this Algorithm is not optimal. The worst Algorithm for
without obstacles requiring most memory usage was Dijkstra’s Algorithm. The second-best
Algorithm was found to be A-star, followed by Breadth First Search. In addition, it can be
seen that as the grid size increases, the difference in the execution times of Greedy BFS and
others increases significantly.

Figure 16 shows a graph that compares the performances of the four implemented
Algorithms by taking the obstacles into consideration. The 4 × 4 grid system with obstacles
shows that the execution time for Dijkstra’s is 15.17 ms, for A-star is 12.92 ms, for BFS is
13.9 ms, and Greedy BFS is 14.25 ms. From this, we can see that in the 4 × 4 system alone
with obstacles, the A-star Algorithm performed the best among all Algorithms. The worst
performing was Dijkstra’s. BFS was the second best and Greedy BFS was third best in
performance. Only for the 4 × 4 system, the performances of all Algorithms were very
similar since execution time differences were small.

Appl. Sci. 2022, 12, 5499 25 of 30Appl. Sci. 2022, 12, x FOR PEER REVIEW 26 of 31

Figure 16. Graphical representation of pathfinding Algorithms with obstacles.

From Figure 16, we can conclude that on average, the overall fastest pathfinding Al-
gorithm for with obstacles, which required the least average memory and least average
execution time, was Greedy Best First Search. However, the Greedy Best First is not opti-
mal. The worst Algorithm on average for without obstacles requiring most memory usage
was Dijkstra’s Algorithm. The second-best Algorithm was found to be A-star, followed by
Breadth First Search. Moreover, it can be seen that as the grid size increases, the difference
in the execution times of Greedy BFS and others increases significantly. Pre-processing is
one of the main problems in pathfinding, thereby making complex pathfinding in real-
time difficult [85]. Most of the pathfinding engines are unable to handle worlds in dy-
namic environments and have difficulty in producing movements which look realistic
[86]. The main reason this happens is because of the pre-processing stages where the
nodes for the pathfinder are produced to travel based on the representation of maps in a
static environment. However, if a node is covered along the predetermined path by a dy-
namic obstacle, the agent will think it can walk where the object is located [87,88]. The
second problem encountered is when an agent goes along the nodes in a path along a
straight line, unrealistic movement occurs [89]. This is mainly due to the fact that there is
some trade-off between the speed and realistic movement. This problem is being im-
proved in different games through the application of splines in between different nodes
in order to smooth out the path [90,91].

7. Summary of Pathfinding Algorithms
Table 5 represents the final summary of the Algorithms. Two Algorithms are taken

and compared in each row. The category of Algorithm, execution time, memory usage as
well as the final statement about which Algorithm is better, has been mentioned.

0

1000

2000

3000

4000

5000

6000

4 × 4 8 × 8 1 6 × 1 6 3 2 × 3 2

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Grid Size

Dijktra's A-star BFS Greedy Best First

Figure 16. Graphical representation of pathfinding Algorithms with obstacles.

The 8 × 8 grid system with obstacles shows that the execution time for Dijkstra’s is
102.6 ms, for A-star is 91.35 ms, for BFS is 120.54 ms, and Greedy BFS is 40.19 ms. From
this, we can see that in the 8 × 8 system alone with obstacles, the BFS Algorithm was the
worst in terms of performance. The Greedy BFS Algorithm performed the best among all
Algorithms. A-star was the second best and Dijkstra’s was third best in performance. In
addition, the performance of A-star and Dijkstra’s was almost similar for 8 × 8 system as
there was very little difference in execution times.

The 16 × 16 grid system with obstacles shows that the execution time for Dijkstra’s is
743.47 ms, for A-star is 512.45 ms, for BFS is 663.76 ms, and Greedy BFS is 298.61 ms. From
this, we can see that for the 16 × 16 system, the Greedy BFS Algorithm again performed
the best among all Algorithms. Dijkstra’s Algorithm performed the worst. A-star was the
second best and BFS was third best in performance.

The 32 × 32 grid system with obstacles shows that the execution time for Dijkstra’s is
5678.25 ms, for A-star is 3975.34 ms, for BFS is 5316.65 ms, and Greedy BFS is 1396.73 ms.
From this, we can see that in the 32× 32 system, the Greedy BFS Algorithm again performed
the best among all Algorithms. Once again, Dijkstra’s Algorithm performed the worst.
A-star was the second best and BFS was third best in performance again. It can be seen
that as the grid size increases, the difference in the execution times of Greedy BFS and
others increases significantly. Furthermore, the performance of BFS and Dijkstra’s was
again almost similar for the 32 × 32 system as there was very little difference in execution
times. In this system, the A-star Algorithm’s performance was also close to Dijkstra’s and
BFS again.

From Figure 16, we can conclude that on average, the overall fastest pathfinding
Algorithm for with obstacles, which required the least average memory and least average
execution time, was Greedy Best First Search. However, the Greedy Best First is not optimal.

Appl. Sci. 2022, 12, 5499 26 of 30

The worst Algorithm on average for without obstacles requiring most memory usage was
Dijkstra’s Algorithm. The second-best Algorithm was found to be A-star, followed by
Breadth First Search. Moreover, it can be seen that as the grid size increases, the difference
in the execution times of Greedy BFS and others increases significantly. Pre-processing is
one of the main problems in pathfinding, thereby making complex pathfinding in real-time
difficult [85]. Most of the pathfinding engines are unable to handle worlds in dynamic
environments and have difficulty in producing movements which look realistic [86]. The
main reason this happens is because of the pre-processing stages where the nodes for
the pathfinder are produced to travel based on the representation of maps in a static
environment. However, if a node is covered along the predetermined path by a dynamic
obstacle, the agent will think it can walk where the object is located [87,88]. The second
problem encountered is when an agent goes along the nodes in a path along a straight line,
unrealistic movement occurs [89]. This is mainly due to the fact that there is some trade-off
between the speed and realistic movement. This problem is being improved in different
games through the application of splines in between different nodes in order to smooth out
the path [90,91].

7. Summary of Pathfinding Algorithms

Table 5 represents the final summary of the Algorithms. Two Algorithms are taken
and compared in each row. The category of Algorithm, execution time, memory usage as
well as the final statement about which Algorithm is better, has been mentioned.

Table 5. Final summary of pathfinding Algorithms.

Compared
Algorithms Algorithm Category Execution Time Memory Usage Implemented Author Year Better Algorithm

1. BFS
2. DFS

1. Uninformed
2. Uninformed

1 > 2
(if DFS traverses

in right path)
1 < 2

(if DFS runs in
infinite loop)

BFS requires more
memory than DFS

1. Yes
2. No [90] 2019

Guarantees optimal
solution, more

memory
required—BFS

Does not guarantee
optimal solution, less

memory
required—DFS

1. Dijkstra’s
2. BFS

1. Uninformed
2. Uninformed 1 < 2

BFS requires more
memory than

Dijkstra’s

1. Yes
2. Yes [92] 2015 Dijkstra’s

1. Dijkstra’s
2. A*

1. Uninformed
2. Informed 1 > 2

Dijkstra’s requires
more memory than

A*

1. Yes
2. Yes [4,6] 2015, 2016 A*

1. A*
2. Greedy

Best First

1. Informed
2. Informed 1 > 2

A* requires more
memory than Greedy

Best First

1. Yes
2. Yes [92] 2015

A*
(since Greedy Best
First is not optimal)

1. A*
2. D* Lite

1. Informed
2. Informed

1 < 2
(Restricted

environment)
1 > 2

(Open
environment)

D* Lite requires less
memory in restricted

environment and
more memory in

open environment
than A*

1. Yes
2. Yes [93] 2009

Restricted
environment—D* Lite

Open
environment—A*

1. A*
2. HPA*

1. Informed
2. Informed 1 > 2 A* requires more

memory than HPA*
1. Yes
2. No [4,92] 2015, 2015 HPA*

1. JPS
2. A*

1. Informed
2. Informed 1 < 2 A* requires more

memory than JPS
1. No
2. Yes [92] 2015 JPS

Appl. Sci. 2022, 12, 5499 27 of 30

Table 5. Cont.

Compared
Algorithms Algorithm Category Execution Time Memory Usage Implemented Author Year Better Algorithm

1. HPA*
2. JPS

1. Informed
2. Informed 1 < 2 JPS requires more

memory than HPA*
1. No
2. No [92] 2015 HPA*

1. Dijkstra’s
2. GA

1. Informed
2. Metaheuristic 1 > 2

Dijkstra’s requires
more memory than

GA

1. Yes
2. No [91] 2008 GA

1. A*
2. GA

1. Informed
2. Metaheuristic 1 < 2 GA requires more

memory than A*
1. Yes
2. No [94,95] 2016, 2017 A*

1. GA
2. ACO

1. Metaheuristic
2. Metaheuristic 1 > 2 GA requires more

memory than ACO
1. No
2. No [88,89] 2010, 2016 ACO

8. Conclusions

In this work, we presented GRIN_PF, a pathfinding approach for computing the
performance of different pathfinding Algorithms so that game developers can make a
suitable choice from these Algorithms for the development of games involving pathfinding.
The Algorithms have been appropriately classified based on different parameters and
graphical representations so that a clear distinction can be made among the Algorithms in
terms of performance.

Our experimental evaluation was performed on various grids of different sizes. Four
different path finding Algorithms were analyzed for a same set of inputs and its results
were examined. Based on the results, the game developer can choose the most suitable one.

Performance analysis was done using two different scenarios. The first one was
examining the pathfinding Algorithms on various grids without obstacles and the second
one was about examining the same set of Algorithms with obstacles. Finally, the shortest
path length was calculated based on the minimum number of blocks taken by the Algorithm
to reach the destination node. In case of dynamic objects introduced in the path, much
effort might be required to improve the reactive abilities of the AI agent. A solution may be
to make the agent to be aware of its surroundings. This can be done by fitting the agent
with sensors so that its pathfinder can guide it but cannot control it. However, based on
the results of our proposed Algorithm, the agent can use a better solution of utilizing the
appropriate Algorithm during runtime.

Author Contributions: Conceptualization, S.R.L. and G.J.; methodology, S.R.L.; software, S.R.L.;
validation, S.R.L., G.J. and J.A.; formal analysis, S.R.L.; investigation, S.R.L. and G.J.; resources,
S.R.L.; data curation, S.R.L.; writing—original draft preparation, S.R.L.; writing—review and editing,
S.R.L. and G.J.; visualization, S.R.L. and G.J.; supervision, G.J. and J.A.; project administration, S.R.L.
and G.J.; funding acquisition, L.I.I. All authors have read and agreed to the published version of
the manuscript.

Funding: This study was supported by the Yayasan Universiti Teknologi PETRONAS (YUTP),
Malaysia, under Grant 015LC0-134.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Rafiq, A.; Kadir, T.A.; Ihsan, S.N. Pathfinding Algorithms in game development. In IOP Conference Series: Materials Science and

Engineering; IOP Publishing: Pahang, Malaysia, 2020; Volume 769, p. 012021. [CrossRef]
2. Sazaki, Y.; Primanita, A.; Syahroyni, M. Pathfinding car racing game using dynamic pathfinding Algorithm and Algorithm A*. In

Proceedings of the 2017 3rd International Conference on Wireless and Telematics (ICWT), Palembang, Indonesia, 27–28 July 2017;
pp. 164–169. [CrossRef]

3. Zarembo, I.; Kodors, S. Pathfinding Algorithm efficiency analysis in 2D grid. Environment. Technologies. Resources. In
Proceedings of the International Scientific and Practical Conference, Rēzekne, Latvia, 20–22 June 2013; Volume 2, pp. 46–50.
[CrossRef]

http://doi.org/10.1088/1757-899X/769/1/012021
http://doi.org/10.1109/ICWT.2017.8284160
http://doi.org/10.17770/etr2013vol2.868

Appl. Sci. 2022, 12, 5499 28 of 30

4. Foudil, C.; Noureddine, D.; Sanza, C.; Duthen, Y. Path finding and collision avoidance in crowd simulation. J. Comput. Inf. Technol.
2009, 17, 217–228. [CrossRef]

5. Anbuselvi, R.; Phil, M. Path finding solutions for grid based graph. Adv. Comput. Int. J. 2013, 4, 51–60. [CrossRef]
6. Panda, M.; Mishra, A. A survey of shortest-path Algorithms. Int. J. Appl. Eng. Res. 2018, 13, 6817–6820.
7. Graham, R.; McCabe, H.; Sheridan, S. Pathfinding in computer games. ITB J. 2003, 8, 57–81. [CrossRef]
8. Zafar, A.; Agrawal, K. Novel optimization using hierarchical Path finding A* (HPA*) Algorithm for strategic gaming setup. Int. J.

Eng. Technol. 2018, 7, 54. [CrossRef]
9. Mathew, G.E. Direction based heuristic for pathfinding in video games. Procedia Comput. Sci. 2015, 47, 262–271. [CrossRef]
10. Gregory, J. Engine Support Systems. In Game Engine Architecture; AK Peters/CRC Press: Boca Raton, FL, USA, 2009; pp. 217–280.

[CrossRef]
11. Lim, K.L.; Seng, K.P.; Yeong, L.S.; Ang, L.M.; Ch’ng, S.I. Uninformed pathfinding: A new approach. Expert Syst. Appl. 2015, 42,

2722–2730. [CrossRef]
12. Khantanapoka, K.; Chinnasarn, K. Pathfinding of 2D & 3D game real-time strategy with depth direction A* Algorithm for

multi-layer. In Proceedings of the 2009 Eighth International Symposium on Natural Language Processing, Bangkok, Thailand,
20–22 October 2009; pp. 184–188. [CrossRef]

13. Amit’s, T. Map Representations on Pathfinding. Available online: http://theory.stanford.edu/~amitp/GameProgramming/
MapRepresentations.html (accessed on 24 February 2021).

14. Coppin, B. Artificial Intelligence Illuminated; Jones & Bartlett Learning: Burlington, MA, USA, 2004.
15. Available online: https://www.baeldung.com/cs/greedy-vs-heuristic-Algorithm (accessed on 11 January 2021).
16. Kapi, A.Y.; Sunar, M.S.; Zamri, M.N. A review on informed search Algorithms for video games pathfinding. Int. J. 2020, 9,

2756–2764. [CrossRef]
17. Available online: https://vgc.poly.edu/~{}csilva/papers/phd96.pdf (accessed on 17 January 2021).
18. Abd Algfoor, Z.; Sunar, M.S.; Kolivand, H. A comprehensive study on pathfinding techniques for robotics and video games. Int. J.

Comput. Games Technol. 2015, 2015, 736138. [CrossRef]
19. Available online: https://www.gamedev.net/tutorials/programming/artificial-intelligence/navigation-meshes-and-

pathfinding-r4880 (accessed on 3 February 2021).
20. García, L.L.; Arellano, A.G.; Cruz-Santos, W. A parallel path-following phase unwrapping Algorithm based on a top-down

breadth-first search approach. Opt. Lasers Eng. 2020, 124, 105827. [CrossRef]
21. Zhou, R.; Hansen, E.A. Breadth-first heuristic search. Artif. Intell. 2006, 170, 385–408. [CrossRef]
22. Rahim, R.; Abdullah, D.; Nurarif, S.; Ramadhan, M.; Anwar, B.; Dahria, M.; Nasution, S.D.; Diansyah, T.M.; Khairani, M. Breadth

first search approach for shortest path solution in Cartesian area. J. Phys. Conf. Ser. 2018, 1019, 012036. [CrossRef]
23. Zhou, Y.; Wang, W.; He, D.; Wang, Z. A fewest-turn-and-shortest path Algorithm based on breadth-first search. Geo-Spat. Inf. Sci.

2014, 17, 201–207. [CrossRef]
24. Ajwani, D.; Dementiev, R.; Meyer, U.; Osipov, V. Breadth first search on massive graphs. In 9th Implementation Challenge of

DIMACS; The Center for Discrete Mathematics and Theoretical Computer Science, Rutgers University: Piscataway, NJ, USA, 22
March 2006.

25. Putri, S.; Tulus, T.; Napitupulu, N. Implementation and Analysis of Depth-First Search (DFS) Algorithm for Finding The Longest
Path. In Proceedings of the International Seminar on Operational Research (InteriOR), Medan, Indonesia, 27–28 July 2011.
[CrossRef]

26. Anita Neeraj, V.; Abhishek, B. A Review Paper On Examination Of Dijkstra’s And A* Algorith To Find The Shortest Path. Int. J.
Creat. Res. Thoughts (IJCRT) 2018, 6, 635–641.

27. Jadeel, J. Understanding Dijkstra Algorithm. SSRN Electron. J. 2013, 10, 1–27. [CrossRef]
28. Kadry, S.; Abdallah, A.; Joumaa, C. On the optimization of Dijkstra’s Algorithm. In Informatics in Control, Automation and Robotics;

Springer: Berlin/Heidelberg, Germany, 2011; pp. 393–397.
29. Zhou, M.; Gao, N. Research on Optimal Path based on Dijkstra Algorithms. In Proceedings of the 3rd International Conference on

Mechatronics Engineering and Information Technology (ICMEIT 2019), Dalian, China, 29 March 2019; Atlantis Press: Dordrecht,
The Netherlands, 2019. [CrossRef]

30. Nagamani, S. Survey—Application of A* Algorithm in Dynamic Ambulance Routing Problem and other Strategies & Methods.
Int. J. Adv. Sci. Technol. 2020, 29, 406–413.

31. Van Den Berg, J.P.; Overmars, M.H. Roadmap-based motion planning in dynamic environments. IEEE Trans. Robot. 2005, 21,
885–897. [CrossRef]

32. Dijkstra, E.W. A note on two problems in connexion with graphs. Numer. Math. 1959, 1, 269–271. [CrossRef]
33. Pathak, M.J.; Patel, R.L.; Rami, S.P. Comparative analysis of search Algorithms. Int. J. Comput. Appl. 2018, 179, 40–43.
34. Harabor, D.; Grastien, A. Online graph pruning for pathfinding on grid maps. In Proceedings of the AAAI Conference on

Artificial Intelligence, San Francisco, CA, USA, 4 August 2011; Volume 25, pp. 1114–1119.
35. Ahmed, D.T.; Shirmohammadi, S. Ïntelligent path finding for avatars in Massively Multiplayer Online Games. In Proceedings of

the 2009 IEEE Workshop on Computational Intelligence in Virtual Environments, Nashville, TN, USA, 30 March–2 April 2009;
pp. 61–65. [CrossRef]

36. Gregory, J. Game Engine Architecture; AK Peters/CRC Press: Boca Raton, FL, USA, 2018. [CrossRef]

http://doi.org/10.2498/cit.1000873
http://doi.org/10.5121/acij.2013.4205
http://doi.org/10.21427/D7ZQ9J
http://doi.org/10.14419/ijet.v7i2.6.10067
http://doi.org/10.1016/j.procs.2015.03.206
http://doi.org/10.1201/b10681
http://doi.org/10.1016/j.eswa.2014.10.046
http://doi.org/10.1109/SNLP.2009.5340922
http://theory.stanford.edu/~amitp/GameProgramming/MapRepresentations.html
http://theory.stanford.edu/~amitp/GameProgramming/MapRepresentations.html
https://www.baeldung.com/cs/greedy-vs-heuristic-Algorithm
http://doi.org/10.30534/ijatcse/2020/42932020
https://vgc.poly.edu/~{}csilva/papers/phd96.pdf
http://doi.org/10.1155/2015/736138
https://www.gamedev.net/tutorials/programming/artificial-intelligence/navigation-meshes-and-pathfinding-r4880
https://www.gamedev.net/tutorials/programming/artificial-intelligence/navigation-meshes-and-pathfinding-r4880
http://doi.org/10.1016/j.optlaseng.2019.105827
http://doi.org/10.1016/j.artint.2005.12.002
http://doi.org/10.1088/1742-6596/1019/1/012036
http://doi.org/10.1080/10095020.2014.988198
http://doi.org/10.13140/2.1.2878.2721
http://doi.org/10.2139/ssrn.2340905
http://doi.org/10.2991/icmeit-19.2019.141
http://doi.org/10.1109/TRO.2005.851378
http://doi.org/10.1007/BF01386390
http://doi.org/10.1109/CIVE.2009.4926319
http://doi.org/10.1201/9781315267845

Appl. Sci. 2022, 12, 5499 29 of 30

37. Neukart, F.; Morar, S.A. Operations on quantum physical artificial neural structures. Procedia Eng. 2014, 69, 1509–1517. [CrossRef]
38. Hart, P.E.; Nilsson, N.J.; Raphael, B. A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci.

Cybern. 1968, 4, 100–107. [CrossRef]
39. Sharma, C.K. Shortest Path Searching for Road Network using A* Algorithm. Int. J. Comput. Sci. Mob. Comput. 2015, 4, 513–522.
40. Latuconsina, R.; Purboyo, T.W. Shortest Path Algorithms: State of the Art. Int. J. Appl. Eng. Res. 2017, 12, 13610–13617.
41. Andrias, R.M.; Sunar, M.S. User/player type in gamification. Int. J. Adv. Trends Comput. Sci. Eng. 2019, 8, 89–94. [CrossRef]
42. Mueller, S.T.; Perelman, B.S.; Simpkins, B.G. Pathfinding in the cognitive map: Network models of mechanisms for search and

planning. Biol. Inspired Cogn. Archit. 2013, 5, 94–111. [CrossRef]
43. Cui, X.; Shi, H. A*-based pathfinding in modern computer games. Int. J. Comput. Sci. Netw. Secur. 2011, 11, 125–130.
44. Permana, S.H.; Bintoro, K.Y.; Arifitama, B.; Syahputra, A. Comparative analysis of pathfinding Algorithms a*, dijkstra, and bfs on

maze runner game. IJISTECH Int. J. Inf. Syst. Technol. 2018, 1, 1. [CrossRef]
45. Zikky, M. Review of A*(A star) navigation mesh pathfinding as the alternative of artificial intelligent for ghosts agent on the

Pacman game. EMITTER Int. J. Eng. Technol. 2016, 4, 141–149. [CrossRef]
46. Smołka, J.; Miszta, K.; Skublewska-Paszkowska, M.; Łukasik, E. A* pathfinding Algorithm modification for a 3D engine. In

Proceedings of the MATEC Web of Conferences, Lublin, Poland, 1 January 2019; EDP Sciences, Les Ulis, France, 2019; Volume 252,
p. 03007. [CrossRef]

47. Wang, X.Z. The comparison of three Algorithms in shortest path issue. J. Phys. Conf. Ser. 2018, 1087, 022011. [CrossRef]
48. Samal, A.; Saxena, A.; Ray, D. Comparative Study of Algorithms in Artificial Intelligence: Best First Search, Greedy Best First

Search and Iterative Deepening. Int. J. Softw. Hardw. Res. Eng. 2018, 6, 6–11.
49. Samara, G.; Aljaidi, M. Aware-routing protocol using best first search Algorithm in wireless sensor. Int. Arab J. Inf. Technol. 2018,

15, 592–598.
50. Stentz, A. Optimal and efficient path planning for partially known environments. In Intelligent Unmanned Ground Vehicles;

Springer: Boston, MA, USA, 1997; pp. 203–220.
51. Sazaki, Y.; Satria, H.; Syahroyni, M. Comparison of A∗ and dynamic pathfinding Algorithm with dynamic pathfinding Algorithm

for NPC on car racing game. In Proceedings of the 2017 11th International Conference on Telecommunication Systems Services
and Applications (TSSA), Lombok, Indonesia, 26–27 October 2017; pp. 1–6. [CrossRef]

52. Available online: https://informatika.stei.itb.ac.id/~{}rinaldi.munir/Stmik/2017-2018/Makalah/Makalah-IF2211-2018-134
(accessed on 23 March 2021).

53. Stentz, A. The focussed dˆ* Algorithm for real-time replanning. In Proceedings of the 14th International Joint Conference on
Artificial Intelligence, Montreal, QC, Canada, 20–25 August 1995; pp. 1652–1659.

54. Available online: https://bth.diva-portal.org/smash/get/diva2:1474900/FULLTEXT02.pdf (accessed on 4 April 2021).
55. Ramalingam, G.; Reps, T. An incremental Algorithm for a generalization of the shortest-path problem. J. Algorithms 1996, 21,

267–305. [CrossRef]
56. Mathew, K.; Tabassum, M.; Ramakrishnan, M. Experimental comparison of uninformed and heuristic AI Algorithms for N puzzle

solution. In Proceedings of the International Journal of Digital Information and Wireless Communications, Hongkong, China, 12
November 2013; pp. 12–14.

57. Koenig, S.; Likhachev, M. Fast replanning for navigation in unknown terrain. IEEE Trans. Robot. 2005, 21, 354–363. [CrossRef]
58. Uwe, K. Applying Graph Partitioning to Hierarchical Pathfinding in Computer Games; Institut f¨ur Mathematik und Informatik,

Universit: Leipzig, Germany, 2011.
59. Jansen, M.; Buro, M. HPA* enhancements. In Proceedings of the AAAI Conference on Artificial Intelligence and Interactive

Digital Entertainment, Palo Alto, CA, USA, 6–8 June 2007; Volume 3, pp. 84–87.
60. Sturtevant, N.; Buro, M. Partial pathfinding using map abstraction and refinement. In Proceedings of the Twentieth National

Conference on Artificial Intelligence and the Seventeenth Innovative Applications of Artificial Intelligence Conference, Pittsburgh,
PA, USA, 9–13 July 2005; Volume 5, pp. 1392–1397.

61. Yiu, Y.F.; Du, J.; Mahapatra, R. Evolutionary heuristic a* search: Pathfinding Algorithm with self-designed and optimized heuristic
function. Int. J. Semant. Comput. 2019, 13, 5–23. [CrossRef]

62. Chattopadhyay, I.; Mallapragada, G.; Ray, A. ν

Appl. Sci. 2022, 12, x FOR PEER REVIEW 28 of 29

54. Available online: https://bth.diva-portal.org/smash/get/diva2:1474900/FULLTEXT02.pdf (accessed on 4 April 2021)
55. Ramalingam, G.; Reps, T. An incremental Algorithm for a generalization of the shortest-path problem. J. Algorithms 1996, 21,

267–305.
56. Mathew, K.; Tabassum, M.; Ramakrishnan, M. Experimental comparison of uninformed and heuristic AI Algorithms for N

puzzle solution. International Journal of Digital Information and Wireless Communications, Hongkong, China, 12 November
2013; pp. 12–14.

57. Koenig, S.; Likhachev, M. Fast replanning for navigation in unknown terrain. IEEE Trans. Robot. 2005, 21, 354–363.
https://doi.org/10.1109/TRO.2004.838026.

58. Uwe, K. Applying Graph Partitioning to Hierarchical Pathfinding in Computer Games; Institut f¨ur Mathematik und Informatik,
Universit, Leipzig, Germany, 2011.

59. Jansen, M.; Buro, M. HPA* enhancements. In Proceedings of the AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment, Palo Alto, California USA, 6-8 June 2007, Volume 3, pp. 84–87.

60. Sturtevant, N.; Buro, M. Partial pathfinding using map abstraction and refinement. AAAI 2005, 5, 1392–1397.
61. Yiu, Y.F.; Du, J.; Mahapatra, R. Evolutionary heuristic a* search: Pathfinding Algorithm with self-designed and optimized heu-

ristic function. Int. J. Semant. Comput. 2019, 13, 5–23.
62. Chattopadhyay, I.; Mallapragada, G.; Ray, A. ν☆: A robot path planning Algorithm based on renormalised measure of proba-

bilistic regular languages. Int. J. Control 2009, 82, 849–867. https://doi.org/10.1080/00207170802343196.
63. Bagheri, S.M.; Taghaddos, H.; Mousaei, A.; Shahnavaz, F.; Hermann, U. An A-Star Algorithm for semi-optimization of crane

location and configuration in modular construction. Autom. Constr. 2021, 121, 103447.
https://doi.org/10.1016/j.autcon.2020.103447.

64. Yiu, Y.F.; Du, J.; Mahapatra, R. Evolutionary heuristic a* search: Heuristic function optimization via genetic Algorithm. In Pro-
ceedings of the 2018 IEEE First International Conference on Artificial Intelligence and Knowledge Engineering (AIKE), Laguna
Hills, CA, USA, 26–28 September 2018; pp. 25–32. https://doi.org/10.1109/AIKE.2018.00012.

65. Holte, R.C.; Perez, M.B.; Zimmer, R.M.; MacDonald, A.J. Hierarchical A*: Searching abstraction hierarchies efficiently.
AAAI/IAAI 1996, 1, 530–535.

66. Yao, J.; Zhang, B.; Zhou, Q. The optimization of A* Algorithm in the practical path finding application. In Proceedings of the
2009 WRI World Congress on Software Engineering, Xiamen, China, 19–21 May 2009; Volume 2, pp. 514–518.
https://doi.org/10.1109/WCSE.2009.412.

67. Foead, D.; Ghifari, A.; Kusuma, M.B.; Hanafiah, N.; Gunawan, E. A systematic literature review of A* pathfinding. Procedia
Comput. Sci. 2021, 179, 507–514. https://doi.org/10.1016/j.procs.2021.01.034.

68. Zhou, R.; Hansen, E. Multiple sequence alignment using Anytime A*. In Proceedings of the 18th National Conference on Arti-
ficial Intelligence (AAAI), Edmonton, Alberta, Canada, 28 July – 1 August 2002, Vol. 2002, 975-976.

69. Botea, A.; Müller, M.; Schaeffer, J. Near optimal hierarchical path-finding. J. Game Dev. 2004, 1, 1–30.
70. Min, J.G.; Ruy, W.S.; Park, C.S. Faster pipe auto-routing using improved jump point search. Int. J. Nav. Archit. Ocean. Eng. 2020,

12, 596–604. https://doi.org/10.1016/j.ijnaoe.2020.07.004.
71. Tanner, B. Jump Point Search Analysis; Florida State University. fsu. edu., Tallahassee, Florida, USA, 2014.
72. Available online: https://harablog.wordpress.com/2011/09/07/jump-point-search (accessed on 21 April 2022).
73. Gunantara, N.; Nurweda Putra, I. The characteristics of metaheuristic method in selection of path pairs on multicriteria ad hoc

networks. J. Comput. Netw. Commun. 2019, 1-6. https://doi.org/10.1155/2019/7983583.
74. Available online: https://analyticsindiamag.com/understanding-metaheuristics-Algorithm-in-800-words (accessed on 9 July

2021).
75. Kumar, R.; Kumar, M. Exploring genetic Algorithm for shortest path optimization in data networks. Glob. J. Comput. Sci. Technol.

2010, 10, 8-12.
76. Leigh, R.; Louis, S.J.; Miles, C. Using a genetic Algorithm to explore A*-like pathfinding Algorithms. In Proceedings of the 2007

IEEE Symposium on Computational Intelligence and Games, Honolulu, HI, USA, 1–5 April 2007; pp. 72–79.
https://doi.org/10.1109/CIG.2007.368081.

77. Hasan, B.S.; Khamees, M.A.; Mahmoud, A.S. A heuristic genetic Algorithm for the single source shortest path problem. In
Proceedings of the 2007 IEEE/ACS International Conference on Computer Systems and Applications, Amman, Jordan, 13–16
May 2007; pp. 187–194. https://doi.org/10.1109/AICCSA.2007.370882.

78. Ito, T. A genetic Algorithm approach to piping route path planning. J. Intell. Manuf. 1999, 10, 103–114.
https://doi.org/10.1023/a:1008924832167.

79. Available online: https://towardsdatascience.com/introduction-to-genetic-Algorithms-including-example-code-e396e98d8bf3
(accessed on 21 April 2021).

80. Mugal, N.G.; Dhadse, R.; Solanke, P.A.; Chandekar, R.; Jaiswal, P. An Overview of Minimum Shortest Path Finding System
Using Ant Colony Algorithm. Int. J. Eng. Res. Technol. 2014, 3, 564-568.

81. Gómez, O.; Barán, B. Omicron ACO.A New Ant Colony Optimization Algorithm. CLEI Electron. J. 2005, 8, 1–8.
https://doi.org/10.19153/cleiej.8.1.5.

82. Blum, C.; Dorigo, M. Deception in ant colony optimization. In International Workshop on Ant Colony Optimization and Swarm
Intelligence; Springer: Berlin/Heidelberg, Germany, 2004; pp. 118–129. https://doi.org/10.1007/978-3-540-28646-2_11.

: A robot path planning Algorithm based on renormalised measure of probabilistic
regular languages. Int. J. Control 2009, 82, 849–867. [CrossRef]

63. Bagheri, S.M.; Taghaddos, H.; Mousaei, A.; Shahnavaz, F.; Hermann, U. An A-Star Algorithm for semi-optimization of crane
location and configuration in modular construction. Autom. Constr. 2021, 121, 103447. [CrossRef]

64. Yiu, Y.F.; Du, J.; Mahapatra, R. Evolutionary heuristic a* search: Heuristic function optimization via genetic Algorithm. In
Proceedings of the 2018 IEEE First International Conference on Artificial Intelligence and Knowledge Engineering (AIKE), Laguna
Hills, CA, USA, 26–28 September 2018; pp. 25–32. [CrossRef]

65. Holte, R.C.; Perez, M.B.; Zimmer, R.M.; MacDonald, A.J. Hierarchical A*: Searching abstraction hierarchies efficiently. In
Proceedings of the Thirteenth National Conference on Artificial Intelligence and Eighth Innovative Applications of Artificial
Intelligence Conference, Portland, OR, USA, 4–8 August 1996; Volume 1, pp. 530–535.

66. Yao, J.; Zhang, B.; Zhou, Q. The optimization of A* Algorithm in the practical path finding application. In Proceedings of the 2009
WRI World Congress on Software Engineering, Xiamen, China, 19–21 May 2009; Volume 2, pp. 514–518. [CrossRef]

http://doi.org/10.1016/j.proeng.2014.03.148
http://doi.org/10.1109/TSSC.1968.300136
http://doi.org/10.30534/ijatcse/2019/1481.62019
http://doi.org/10.1016/j.bica.2013.05.002
http://doi.org/10.30645/ijistech.v1i2.7
http://doi.org/10.24003/emitter.v4i1.117
http://doi.org/10.1051/matecconf/201925203007
http://doi.org/10.1088/1742-6596/1087/2/022011
http://doi.org/10.1109/TSSA.2017.8272918
https://informatika.stei.itb.ac.id/~{}rinaldi.munir/Stmik/2017-2018/Makalah/Makalah-IF2211-2018-134
https://bth.diva-portal.org/smash/get/diva2:1474900/FULLTEXT02.pdf
http://doi.org/10.1006/jagm.1996.0046
http://doi.org/10.1109/TRO.2004.838026
http://doi.org/10.1142/S1793351X19400014
http://doi.org/10.1080/00207170802343196
http://doi.org/10.1016/j.autcon.2020.103447
http://doi.org/10.1109/AIKE.2018.00012
http://doi.org/10.1109/WCSE.2009.412

Appl. Sci. 2022, 12, 5499 30 of 30

67. Foead, D.; Ghifari, A.; Kusuma, M.B.; Hanafiah, N.; Gunawan, E. A systematic literature review of A* pathfinding. Procedia
Comput. Sci. 2021, 179, 507–514. [CrossRef]

68. Zhou, R.; Hansen, E. Multiple sequence alignment using Anytime A*. In Proceedings of the 18th National Conference on Artificial
Intelligence (AAAI), Edmonton, AB, Canada, 28 July–1 August 2002; Volume 2002, pp. 975–976.

69. Botea, A.; Müller, M.; Schaeffer, J. Near optimal hierarchical path-finding. J. Game Dev. 2004, 1, 1–30.
70. Min, J.G.; Ruy, W.S.; Park, C.S. Faster pipe auto-routing using improved jump point search. Int. J. Nav. Archit. Ocean. Eng. 2020,

12, 596–604. [CrossRef]
71. Tanner, B. Jump Point Search Analysis; Florida State University. fsu. edu.: Tallahassee, FL, USA, 2014.
72. Available online: https://harablog.wordpress.com/2011/09/07/jump-point-search (accessed on 21 April 2022).
73. Gunantara, N.; Nurweda Putra, I. The characteristics of metaheuristic method in selection of path pairs on multicriteria ad hoc

networks. J. Comput. Netw. Commun. 2019, 2019, 7983583. [CrossRef]
74. Available online: https://analyticsindiamag.com/understanding-metaheuristics-Algorithm-in-800-words (accessed on 9

July 2021).
75. Kumar, R.; Kumar, M. Exploring genetic Algorithm for shortest path optimization in data networks. Glob. J. Comput. Sci. Technol.

2010, 10, 8–12.
76. Leigh, R.; Louis, S.J.; Miles, C. Using a genetic Algorithm to explore A*-like pathfinding Algorithms. In Proceedings of the 2007

IEEE Symposium on Computational Intelligence and Games, Honolulu, HI, USA, 1–5 April 2007; pp. 72–79. [CrossRef]
77. Hasan, B.S.; Khamees, M.A.; Mahmoud, A.S. A heuristic genetic Algorithm for the single source shortest path problem. In

Proceedings of the 2007 IEEE/ACS International Conference on Computer Systems and Applications, Amman, Jordan, 13–16
May 2007; pp. 187–194. [CrossRef]

78. Ito, T. A genetic Algorithm approach to piping route path planning. J. Intell. Manuf. 1999, 10, 103–114. [CrossRef]
79. Available online: https://towardsdatascience.com/introduction-to-genetic-Algorithms-including-example-code-e396e98d8bf3

(accessed on 21 April 2021).
80. Mugal, N.G.; Dhadse, R.; Solanke, P.A.; Chandekar, R.; Jaiswal, P. An Overview of Minimum Shortest Path Finding System Using

Ant Colony Algorithm. Int. J. Eng. Res. Technol. 2014, 3, 564–568.
81. Gómez, O.; Barán, B. Omicron ACO.A New Ant Colony Optimization Algorithm. CLEI Electron. J. 2005, 8, 1–8. [CrossRef]
82. Blum, C.; Dorigo, M. Deception in ant colony optimization. In International Workshop on Ant Colony Optimization and Swarm

Intelligence; Springer: Berlin/Heidelberg, Germany, 2004; pp. 118–129. [CrossRef]
83. Ma, G.; Duan, H.; Liu, S. Improved ant colony Algorithm for global optimal trajectory planning of UAV under complex

environment. Int. J. Comput. Sci. Appl. 2007, 4, 57–68.
84. Duan, H.B.; Ma, G.J.; Wang, D.B.; Yu, X.F. An improved ant colony Algorithm for solving continuous space optimization problems.

J. Syst. Simul. 2007, 19, 974–977.
85. Li, T.; Qi, L.; Ruan, D. An efficient Algorithm for the single-source shortest path problem in graph theory. In Proceedings of the

2008 3rd International Conference on Intelligent System and Knowledge Engineering, Xiamen, China, 17–19 November 2008;
Volume 1, pp. 152–157. [CrossRef]

86. Panahi, S.; Delavar, M.R. A GIS-based dynamic shortest path determination in emergency vehicles. World Appl. Sci. J. 2008, 3,
88–94.

87. Cordeau, J.F.; Gendreau, M.; Hertz, A.; Laporte, G.; Sormany, J.S. New heuristics for the vehicle routing problem. Logist. Syst. Des.
Optim. 2005, 9, 279–297. [CrossRef]

88. Ryan, M.R. Exploiting subgraph structure in multi-robot path planning. J. Artif. Intell. Res. 2008, 31, 497–542. [CrossRef]
89. Yu, H.; Chi, C.J.; Su, T.; Bi, Q. Hybrid evolutionary motion planning using follow boundary repair for mobile robots. J. Syst.

Archit. 2001, 47, 635–647. [CrossRef]
90. Hassan, A.; Shahid, M.; Hayat, F.; Arshad, J.; Jaffery, M.H.; Rehman, A.U.; Ullah, K.; Hussen, S.; Hamam, H. Improving the

Survival Time of Multiagents in Social Dilemmas through Neurotransmitter-Based Deep Q-Learning Model of Emotions. J.
Healthc. Eng. 2022, 2022, 3449433. [CrossRef]

91. Khalid, A.; Jaffery, M.H.; Javed, M.Y.; Yousaf, A.; Arshad, J.; Ur Rehman, A.; Haider, A.; Althobaiti, M.M.; Shafiq, M.; Hamam, H.
Performance Analysis of Mars-Powered Descent-based Landing in a Constrained Optimization Control Framework. Energies
2021, 14, 8493. [CrossRef]

92. Haider, S.K.; Jiang, A.; Almogren, A.; Rehman, A.U.; Ahmed, A.; Khan, W.U.; Hamam, H. Energy Efficient UAV Flight Path
Model for Cluster Head Selection in Next-Generation Wireless Sensor Networks. Sensors 2021, 21, 8445. [CrossRef]

93. Tlili, T.; Harzi, M.; Krichen, S. Swarm-based approach for solving the ambulance routing problem. Procedia Comput. Sci. 2017, 112,
350–357. [CrossRef]

94. Kim, S.M.; Peña, M.I.; Moll, M.; Bennett, G.M.; Kavraki, L.E. A review of parameters and heuristics for guiding metabolic
pathfinding. J. Cheminform. 2017, 9, 51. [CrossRef]

95. Ballesteros, S.; Pedro, P.; Escobar, Z.; Antonio, H. Description of the classification of publications and the models used in solving
of the vehicle routing problem with pickup and delivery. Rev. Ing. Univ. Medellín 2016, 15, 287–306. [CrossRef]

http://doi.org/10.1016/j.procs.2021.01.034
http://doi.org/10.1016/j.ijnaoe.2020.07.004
https://harablog.wordpress.com/2011/09/07/jump-point-search
http://doi.org/10.1155/2019/7983583
https://analyticsindiamag.com/understanding-metaheuristics-Algorithm-in-800-words
http://doi.org/10.1109/CIG.2007.368081
http://doi.org/10.1109/AICCSA.2007.370882
http://doi.org/10.1023/A:1008924832167
https://towardsdatascience.com/introduction-to-genetic-Algorithms-including-example-code-e396e98d8bf3
http://doi.org/10.19153/cleiej.8.1.5
http://doi.org/10.1007/978-3-540-28646-2_11
http://doi.org/10.1109/ISKE.2008.4730916
http://doi.org/10.1007/0-387-24977-X_9
http://doi.org/10.1613/jair.2408
http://doi.org/10.1016/S1383-7621(01)00020-0
http://doi.org/10.1155/2022/3449433
http://doi.org/10.3390/en14248493
http://doi.org/10.3390/s21248445
http://doi.org/10.1016/j.procs.2017.08.012
http://doi.org/10.1186/s13321-017-0239-6
http://doi.org/10.22395/rium.v15n28a14

	Introduction
	Path Planning
	Pathfinding Using Grids
	Regular Grids
	Irregular Grids

	Existing Pathfinding Techniques
	Uninformed Search Algorithms
	Breadth First Search Algorithm (BFS)
	Depth First Search Algorithm (DFS)
	Dijkstra’s Algorithm

	Informed Search or Heuristic Approach Algorithms
	A-Star Algorithm
	Greedy Best First Algorithm
	D-Star Lite Algorithm (Dynamic A*)
	Hierarchical Pathfinding A* (HPA*)
	Jump Point Search Algorithm (JPS)

	Metaheuristic Approach Algorithms
	Genetic Algorithm (GA)
	Ant Colony Optimization (ACO)

	Proposed Algorithm
	Performance Comparison of Some Heuristic Pathfinding Algorithms
	Graphical Representation of Implemented Pathfinding Algorithms
	Summary of Pathfinding Algorithms
	Conclusions
	References

