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Abstract: A facile and novel synthesis of thirteen 2-amino-3-cyanopyridine derivatives 5(a–m) by
a one-pot multicomponent reactions (MCRs) is described for the first time, starting from aromatic
aldehydes, malononitrile, methyl ketones, or cyclohexanone and ammonium acetate in the presence
of the nanostructured diphosphate Na2CaP2O7 (DIPH) at 80 ◦C under solvent-free conditions. These
compounds were brought into existence in a short period with good to outstanding yields (84–94%).
The diphosphate Na2CaP2O7 was synthesized and characterized by different techniques (FT-IR, XRD,
SEM, and TEM) and used as an efficient, environmentally friendly, easy-to-handle, harmless, secure,
and reusable catalyst. Our study was strengthened by combining five new pyrido[2,3-d]pyrimidine
derivatives 6(b, c, g, h, j) by intermolecular cyclization of 2-amino-3-cyanopyridines 5(b, c, g, h, j)
with formamide. The synthesized products were characterized by FT-IR, 1H NMR, and 13C NMR
and by comparing measured melting points with known values reported in the literature. Gas
chromatography/mass spectrometry was used to characterize the newly synthesized products and
evaluate their purity. The operating conditions were optimized using a model reaction in which
the catalyst amount, temperature, time, and solvent effect were evaluated. Antibacterial activity
was tested against approved Gram-positive and Gram-negative strains for previously mentioned
compounds.

Keywords: catalyst; antibacterial activity; solvent-free conditions; heterogeneous catalysis; synthesis;
cyanopyridines; pyrimidines; nanostructured Na2CaP2O7; catalyst recovery

1. Introduction

Pyridine and its derivatives are known to be the essential chemical compounds in
medicinal chemistry [1–3]. They are key scaffolds in biologically active and naturally
occurring substances. Many pharmacological properties of pyridine and its derivatives
have been reported, including antimicrobial [4], anticancer [5], anti-inflammatory [6], an-
tiviral [7], antidiabetic [8], and antimalarial activities [2]. In addition, heterocyclic systems

Appl. Sci. 2022, 12, 5487. https://doi.org/10.3390/app12115487 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12115487
https://doi.org/10.3390/app12115487
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-6098-983X
https://doi.org/10.3390/app12115487
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12115487?type=check_update&version=2


Appl. Sci. 2022, 12, 5487 2 of 15

involving the β-enaminonitrile moiety represent a class of intermediates considered to
be extremely reactive and used as precursors for synthesis of brand-new heterocyclic
compounds [9–11]. The literature mentions that several different pyridine derivatives,
particularly 2-amino-2-cyanopyridines, have been prepared as target structures using sus-
tainable catalyst materials [12] coupled with environmentally benign protocols. Moreover,
it is interesting to note that multicomponent reactions (MCRs) have drawn the attention
of many researchers in the last decade due to their productivity and simplicity. MCRs are
used for the development of biologically active compounds from accessible commercial
reagents with a single step [13]. Furthermore, in our case, the combination of this process
with a solvent-free medium for the preparation of these heterocyclic derivatives makes the
use of MCRs compliant with the principles of green chemistry.

Several studies have reported the usefulness and importance of these processes, in
which they were exploited for the synthesis of 2-amino-3-cyanopyridine in the presence of
various catalysts, such as ytterbium perfluorooctanoate [Yb(PFO)3] [14], Bu4N+Br− [15],
Cu@imineZCMNPs [16], cellulose-SO3H [17], MgO [18], HBF4 [19], Fe3O4@SiO2@(CH2)Im}
C(CN)3 [20], FePO4 [21], and poly(ethylene glycol) (PEG-400) [22]. However, these pro-
cedures present several inconveniences, such as long reaction time, undesirable reaction
conditions, the need for loads of reagents, the use of organic solvents and toxic reagents,
and the non-recoverability of the catalyst. Thus, a new, efficient, and environmentally
friendly protocol for the synthesis of 2-amino-3-cyanopyridines is required. The aim of this
work is to investigate and examine Na2CaP2O7 as an alternative catalyst, as it has received
increased attention recently, mainly in the environmental field [23–25].

This work is a continuation of our investigation and according to our results obtained
in a previous study based on adopting Na2CaP2O7 as a catalyst in organic synthesis [26–28],
particularly in the synthesis of heterocyclic compounds via multicomponent reactions in
an ecofriendly medium [29,30]. Herein, we report here an efficient and rapid one-pot
synthesis of thirteen 2-amino-3-cyanopyridine derivatives by condensation of aromatic
aldehydes, malononitrile, methyl ketone, or cyclohexanone and ammonium acetate using a
nanostructured diphosphate Na2CaP2O7 as a heterogeneous catalyst under solvent-free
reaction conditions at 80 ◦C (Scheme 1). Five prepared 2-amino-3-cyanopyridine were
converted to pyrido[2,3-d]pyrimidines, and we examined the antibacterial activity of all
prepared compounds.
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Scheme 1. Synthesis of 2-amino-3-cyanopyridine derivatives catalyzed by Na2CaP2O7.

2. Results and Discussion
2.1. Synthesis and Characterization of Na2CaP2O7 Nanoparticles

Na2CaP2O7 nanoparticles were synthesized according to procedures described in the
literature [31]. Nanostructured pyrophosphate was synthesized using the dry method.
Stoichiometric amounts of sodium carbonate (Na2CO3), calcium carbonate (CaCO3), and
ammonium dihydrogen phosphate (NH4H2PO4) with a molar ratio of 1:1:2 were blended
in an agate mortar. The mixture was transferred to a porcelain crucible and heated pro-
gressively from 100 to 600 ◦C (Figure 1). Then, the obtained powder was characterized by
X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy,
and transmission electron microscopy.
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The FT-IR spectrum of Na2CaP2O7 is displayed in Figure 3. The bands at 720 cm−1 and 
888 cm−1 are defined as the symmetrical (sym) and antisymmetric (anti) vibration of P-O-
P, respectively. These bands confirm the presence of pyrophosphate P2O7 groups. Two 
fields share the associated vibrations of the PO4 groups: a symmetrical vibration field (997 
cm−1, 1031 cm−1) and the other from 1112 cm−1 to 1278 cm−1. The described bands confirm 
that Na2CaP2O7 was prepared. 

Figure 1. Schematic describing the preparation of Na2CaP2O7 nanoparticles.

2.2. Characterization of Diphosphate Na2CaP2O7

The X-ray diffraction pattern of diphosphate Na2CaP2O7 is shown in Figure 2. All
diffraction peaks are consistent with the standard data of the ICSD collection code: 89,468.
Crystals of diphosphate Na2CaP2O7 have a triclinic structure, space group P1bar and
crystal parameters a = 5.361 Å, b = 7.029 Å and c = 8.743 Å, V = 308.31 Å3, and Z = 2.
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Figure 2. X-ray powder diffraction pattern of Na2CaP2O7.

The FT-IR spectrum of Na2CaP2O7 is displayed in Figure 3. The bands at 720 cm−1

and 888 cm−1 are defined as the symmetrical (sym) and antisymmetric (anti) vibration
of P-O-P, respectively. These bands confirm the presence of pyrophosphate P2O7 groups.
Two fields share the associated vibrations of the PO4 groups: a symmetrical vibration field
(997 cm−1, 1031 cm−1) and the other from 1112 cm−1 to 1278 cm−1. The described bands
confirm that Na2CaP2O7 was prepared.
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The morphology of the Na2CaP2O7 surface was elucidated by scanning electron
microscopy (SEM, Figure 4). Na2CaP2O7 has a homogeneous microstructure that contains
layers of various sizes and forms.
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Figure 4. SEM images of Na2CaP2O7 at different magnifications.

Transmission electron microscopy (TEM) was further used to study the morphology
and microstructure of Na2CaP2O7. Figure 5 shows rod-like nanoparticles that agglomerate
to form superstructures with different grain crystal aspect ratios. The powder forms show
irregular grains with a lateral size of 90–150 nm. The specific surface of the Na2CaP2O7
areas were determined by the Brunauer–Emmett–Teller (BET) method from the adsorption–
desorption isotherm of N2 at 77 K and was identified to be 4 m2·g−1.
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2.3. Optimization of Reaction Conditions

In order to establish the optimal synthesis condition for substituted 2-amino-3-cyanopyridines,
a reaction of benzaldehyde 1a (1 mmol), malononitrile 2 (1.1 mmol), acetophenone 3a
(1 mmol), and ammonium acetate 4 (1.5 mmol) was chosen as a model and carried out
under various conditions; Na2CaP2O7 was used as a catalyst (Scheme 2).

Appl. Sci. 2022, 12, 5487 5 of 16 
 

areas were determined by the Brunauer–Emmett–Teller (BET) method from the 
adsorption–desorption isotherm of N2 at 77 K and was identified to be 4 m2·g−1. 

 
Figure 5. TEM micrographs of Na2CaP2O7 nanopowder. 

2.3. Optimization of Reaction Conditions 
In order to establish the optimal synthesis condition for substituted 2-amino-3-

cyanopyridines, a reaction of benzaldehyde 1a (1 mmol), malononitrile 2 (1.1 mmol), 
acetophenone 3a (1 mmol), and ammonium acetate 4 (1.5 mmol) was chosen as a model 
and carried out under various conditions; Na2CaP2O7 was used as a catalyst (Scheme 2). 

 
Scheme 2. Synthesis of 2-amino-3-cyanopyridine (5a). 

2.4. Influence of the Amount of the Catalyst 
To optimize the catalyst amount, the model reaction was performed with different 

quantities of the catalyst and according to obtained results (Table 1, entries 2–8). An 
amount of 0.05 g (20%) of the nanostructured diphosphate Na2CaP2O7 was chosen as the 
optimal catalyst amount; with this amount, the reaction can be performed in 30 min, 
providing a 94% yield of 5a (Figure 6). With an increased amount of Na2CaP2O7, there was 
no improvement in the product yields (Table 1, entries 7 and 8). This may be due to the 
attainment of the maximum conversion efficiency of the catalyst. No target product was 
observed without the catalyst. This result suggests that our catalyst plays an important 
role in this transformation (Table 1, entry 1). 

Scheme 2. Synthesis of 2-amino-3-cyanopyridine (5a).

2.4. Influence of the Amount of the Catalyst

To optimize the catalyst amount, the model reaction was performed with different
quantities of the catalyst and according to obtained results (Table 1, entries 2–8). An amount
of 0.05 g (20%) of the nanostructured diphosphate Na2CaP2O7 was chosen as the optimal
catalyst amount; with this amount, the reaction can be performed in 30 min, providing
a 94% yield of 5a (Figure 6). With an increased amount of Na2CaP2O7, there was no
improvement in the product yields (Table 1, entries 7 and 8). This may be due to the
attainment of the maximum conversion efficiency of the catalyst. No target product was
observed without the catalyst. This result suggests that our catalyst plays an important
role in this transformation (Table 1, entry 1).
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Table 1. Optimization of reaction conditions for the synthesis of 2-amino-3-cyanopyridine 5a.

Entry Amount of
Catalyst (g)

Temperature
(◦C)

Time
(Min.) Yield (%) [a],[b]

Absence of a catalyst 1 0 80 120 -

Influence of the amount
of the catalyst

2 0.01 80 30 20
3 0.02 80 30 40
4 0.03 80 30 60
5 0.04 80 30 84
6 0.05 80 30 94
7 0.06 80 30 94
8 0.07 80 30 94

Influence of temperature
and reaction time

9 0.05 80 20 65
10 0.05 80 15 53
11 0.05 80 40 95
12 0.05 40 30 75
13 0.05 60 30 85
14 0.05 100 30 94

[a] Isolated yields; [b] reaction conditions: benzaldehyde (1 mmol), malononitrile (1.1 mmol), acetophenone
(1 mmol), and ammonium acetate (1.5 mmol).

Appl. Sci. 2022, 12, 5487 6 of 16 
 

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
10

20

30

40

50

60

70

80

90

100

 Catalyst amount
 Time

Catalyst amount (g)

Yi
el

ds
 (%

)

0 5 10 15 20 25 30 35 40

50

60

70

80

90

100

Time (min)

 Y
ie

ld
s 

(%
)

 
Figure 6. Influence of the amount of the Na2CaP2O7 catalyst and reaction time on the synthesis of 
2-amino-3-cyanopyridine 5a. 

Table 1. Optimization of reaction conditions for the synthesis of 2-amino-3-cyanopyridine 5a. 

 Entry 
Amount of 
Catalyst (g) 

Temperature 
(°C) 

Time 
(Min.) Yield (%) [a],[b] 

Absence of a 
catalyst 

1 0 80 120 - 

Influence of the 
amount of the 

catalyst 

2 0.01 80 30 20 
3 0.02 80 30 40 
4 0.03 80 30 60 
5 0.04 80 30 84 
6 0.05 80 30 94 
7 0.06 80 30 94 
8 0.07 80 30 94 

Influence of 
temperature and 

reaction time 

9 0.05 80 20 65 
10 0.05 80 15 53 
11 0.05 80 40 95 
12 0.05 40 30 75 
13 0.05 60 30 85 
14 0.05 100 30 94 

[a] Isolated yields; [b] reaction conditions: benzaldehyde (1 mmol), malononitrile (1.1 mmol), 
acetophenone (1 mmol), and ammonium acetate (1.5 mmol). 

2.5. Influence of Reaction Time 
Temperature and time also play a significant role in reaction kinetics. In order to 

study the effect of these two parameters, a varied range of temperature (40–100 °C) was 
used to carry out the model reaction for different time periods (15–120 min) and by using 
0.05 g of Na2CaP2O7 (Table 1, entries 9–14). The first period, time ranges from 15 to 30 min, 
was characterized by significant changes in the yield of the product. During this period, 
the product yield increased by 12% after 5 min (from 15 to 20 min) and by 29% during the 
following 10 min (from 20 to 30 min). The highest yield (94%) was achieved at 80 °C after 
30 min. The yield of 5a remained unchanged even after extending the reaction time and 
increasing the temperature (Table 1, entries 11, 13, and 14). 

  

Figure 6. Influence of the amount of the Na2CaP2O7 catalyst and reaction time on the synthesis of
2-amino-3-cyanopyridine 5a.

2.5. Influence of Reaction Time

Temperature and time also play a significant role in reaction kinetics. In order to study
the effect of these two parameters, a varied range of temperature (40–100 ◦C) was used to
carry out the model reaction for different time periods (15–120 min) and by using 0.05 g
of Na2CaP2O7 (Table 1, entries 9–14). The first period, time ranges from 15 to 30 min, was
characterized by significant changes in the yield of the product. During this period, the
product yield increased by 12% after 5 min (from 15 to 20 min) and by 29% during the
following 10 min (from 20 to 30 min). The highest yield (94%) was achieved at 80 ◦C after
30 min. The yield of 5a remained unchanged even after extending the reaction time and
increasing the temperature (Table 1, entries 11, 13, and 14).
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2.6. Influence of the Solvent

The effect of the solvent on the reaction rate was also investigated by carrying out the
model reaction in the presence of 0.05 g of Na2CaP2O7 for 30 min with various solvents
(1 mL), such as water, ethanol, dichloromethane (DCM), ethyl acetate (EtOAc), n-hexane,
and acetonitrile (MeCN). Figure 2 summarizes the effects of various solvents on the per-
centage yield of 2-amino-3-cyanopyridine 5a. We observed that when solvents were used,
the yield decreased, indicating that the use of a solvent has a strong inhibitory effect on the
reaction yield. This effect can be explained by the dilution of the reaction medium, which
leads to a decrease in the interaction between the reactant and the catalyst (Na2CaP2O7).

However, the highest yield of the desired product was achieved when the reaction
was carried out under solvent-free conditions (Figure 7).
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After determining the optimal conditions for the synthesis of 2-amino-3-cyanopyridine
5a, the reactions of different aromatic aldehydes containing substituents in the aromatic
ring, such as Me, OMe, Cl, and NO2, with malononitrile 2, acetophenone derivatives,
or cyclohexanone 3 and ammonium acetate 4 were carried out under identical reaction
conditions. The thirteen desired 2-amino-3-cyanopyridine derivatives 5(a–m) were obtained
with good to excellent yields (84–94%), as shown in Table 2. The nature of aromatic ring
substituents had no noticeable effect on the yields of synthesized 2-amino-3-cyanopyridines
5. All reactions with aromatic aldehydes proceed without the formation of byproducts.
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In order to explain the formation of 2-amino-3-cyanopyridine 5, we propose a credible
mechanism, which is shown in Scheme 3.
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Scheme 3. Proposed mechanism for Na2CaP2O7-catalyzed synthesis of 2-amino-3-cyanopyridine
derivatives.

Na2CaP2O7 catalyzes the synthesis of 2-amino-3-cyanopyridine derivatives 5 by ac-
tivating the carbonyl group of aromatic aldehyde 1, making it more susceptible to nucle-
ophilic attack by malononitrile to form arylidenemalononitrile derivative 3′, which reacted
with imino derivative 2′, which was formed by the reaction between ammonium acetate
and ketone 2 via Michael addition to form adduct 4′. Intermediate 4′ cyclized to dihydropy-
ridine 4”, followed by tautomerization aromatization to afford 2-amino-3-cyanopyridine
derivative 5. The proposed mechanism presented in Scheme 3 was confirmed by another
mechanism reported in the literature [16,20].

2.7. Recyclability of Na2CaP2O7 Catalyst

To investigate the recyclability and regeneration of the catalyst, Na2CaP2O7 was
regenerated by two procedures. In the first method, the catalyst was rinsed with acetone
and dried for 1h at 100 ◦C after each experiment. The second method employed for
regeneration involved calcination at 500 ◦C for 1 h after washing with acetone and drying
at 100 ◦C. Figure 3 summarizes the reusability and regeneration research of Na2CaP2O7.
This result shows that calcination of the recovered catalyst at 500 ◦C has a positive effect on
the catalytic activity of the diphosphate Na2CaP2O7. The increase in catalytic activity upon
calcination can be explained by the rearrangement of the active sites of the catalyst [32,33].
The recycled Na2CaP2O7 revealed almost the same catalytic performance compared with
the first run (Figure 8).

The importance of the prepared 2-amino-3-cyanopyridines is apparent through their
reactions with formamide to form the corresponding pyrido[2,3-d]pyrimidines, which have
received considerable attention in recent years due to their diverse biological and pharma-
cological activities, such as antibacterial [34], antiallergic [35], anti-inflammatory [36], anti-
HIV [37], antihypertensive [38], and antitumor activity [39]. Pyrido[2,3-d] pyrimidine 6 was
synthesized by reaction of 2-amino-3-cyanopyridines 5 with formamide (Scheme 4). Our
study was focused on the synthesis of the pyrido[2,3-d]pyrimidine derivatives 6(b, c, g, h, j)
by the condensation of the 2-amino-3-cyanopyridines 5(b, c, g, h, j) with formamide.
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As mentioned below, the five pyrido[2,3-d]pyrimidine derivatives 6(b, c, g, h, j) were
obtained in moderate yields (71–81%), as shown in Table 3.

2.8. Antimicrobial Activity

Three derivatives, namely cyanopyridine (5a and 5b) and pyrimidine (6b), revealed
their effectiveness against Gram-positive and Gram-negative bacteria tested with minimum
inhibitory concentrations (MIC) and minimum bactericidal concentration (MBC) values
ranging from 64.5 to 250 µg/mL. Table 4 reports the inhibition zone diameter (IZD), MICs,
and MBC values. In general, pyrimidine (6b) was the most active in comparison with
the other components. It showed a strong effect against S. aureus and B. subtillis, with
IZD values of 21–20.5 mm. Cyanopyridine (5a and 5b) were less active against S. aureus
and slightly less active against B. subtillis, with an IZD of 18.5 and 17 mm, respectively.
Moreover, the MBC to MIC ratios calculated for the derivatives indicate that they are
bactericidal rather than bacteriostatic molecules. Hence, the derivatives possessing a
methyl group exhibited good antibacterial activity, as the methyl group is considered
an electron-donating group, which increases the electron density, makes the compounds
effective against micro-organisms, and enhances their antibacterial activity [40].
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Table 3. Synthesis of pyrido[2,3-d]pyrimidine derivative 6.

Entry 2-Amino-3-
Cyanopyridine Pyrido[2,3-d]pyrimidine [a] Yield [b] (%)
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Table 4. Determination of the inhibition zone diameter of the synthesis of cyanopyridine derivatives
(5a, 5b) and pyrimidine (6b).

Cyanopyridine 5a Cyanopyridine 5b Pyrimidine 6b

IZD
(mm)

MIC
(µL/mL)

MBC
(µL/mL) IZD (mm) MIC

(µL/mL)
MBC

(µL/mL) IZD (mm) MIC
(µL/mL)

MBC
(µL/mL)

P. aeruginosa (−) NS - - NS - - NS - -
S. aureus (+) NS - - NS - - 21 125 125

S. epidermidis (+) NS - - NS - - NS - -
K. pneumonaie (−) NS - - NS - - NS - -

B. subtillis (+) 18.5 64.5 64.5 17 64.5 125 20.5 64.5 64.5
E. coli (−) 13 125 125 12 125 250 12 125 125

E. feacalis (+) NS - - NS - - NS - -
C. albicans NS - - NS - - NS - -

NS: not susceptible; IZD: inhibition zone diameter; MIC: minimum inhibitory concentration; MBC: minimum
bactericidal concentration.
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3. Discussion

In this study, we synthesized thirteen cyanopyridines and five pyrimidines and
screened for antibacterial activity in eight strains. We found that cyanopyridine derivatives
(5a and 5b) have an antibacterial effect against E. coli and B. subtilis. However, other synthe-
sized molecules of the same family did not exhibit any antimicrobial effects against either
bacteria or fungi at the tested concentrations [41,42].

A single pyrimidine derivative (6b) showed antibacterial activity, probably due to the
nature of the heterocycle. Our results are in agreement with other scientific findings [43]
from studies on the antibacterial and antifungal effect of new pyrimidine derivatives based
on benzothiazole by testing on bacterial strains (S. aureus, E. coli, K. pneumonia, and P.
aeruginosa) and on the fungal agent C. albicans. These studies revealed that the derivatives
exert an antibacterial and antifungal effect, which varies from one molecule to another, and
some of the derivatives were found to have antibacterial effects on all the strains tested, as
well as an antifungal effect against C. albicans. This effect can be influenced by aromatic
substituents, in particular, those with electron-donating properties.

Several targets have been described for antibacterial agents, such as disruption of cell
walls, membrane permeabilization, targeting of drug efflux pumps, targeting of R plasmids,
and targeting quorum sensing, which plays an important role in regulating biofilms. Several
studies showed that antibacterial agents tend to act more strongly on Gram-positive than
on Gram-negative bacteria. This is probably due to the differences in cell wall composition
and structure, as Gram-negative bacteria possess an outer membrane [44].

4. Conclusions

Based on the results obtained in the present study, we can conclude that Na2CaP2O7
is a green and recoverable catalyst for the synthesis a series of 2-amino-3-cyanopyridine
derivatives. In this paper, we reported the synthesis of five new pyrido[2,3-d]pyrimidine
derivatives by intermolecular cyclization reaction of 2-amino-3-cyanopyridines with for-
mamide. These synthesized products have a significant antibacterial effect. The absence of a
solvent, simplicity of preparation, and the use of a green catalyst are some of the significant
advantages of this ecofriendly procedure. Therefore, we suggest that Na2CaP2O7 should
receive increased attention in the future as an alternative catalyst for the one-pot synthesis
of molecules known for their various biological and pharmacological activities.

Supplementary Materials: The following supporting information can be downloaded at: https:
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