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Featured Application: This research is based on a self-developed wearable lower limb exoskele-
ton system, which can identify a variety of motion modes and conversion modes through the
collected lower limb motion information. The significance of this research is to propose a locomo-
tion mode recognition algorithm, which can recognize the motion pattern quickly and accurately
to the benefit of the control of an exoskeleton robot.

Abstract: This paper proposes a hierarchical support vector machine recognition algorithm based
on a finite state machine (FSM-HSVM) to accurately and reliably recognize the locomotion mode
recognition of an exoskeleton robot. As input signals, this method utilizes the angle information of
the hip joint and knee joint collected by inertial sensing units (IMUs) on the thighs and shanks of the
exoskeleton and the plantar pressure information collected by force sensitive resistors (FSRs) are used
as input signals. This method establishes a framework for mode transition by combining the finite
state machine (FSM) with the common locomotion modes. The hierarchical support vector machine
(HSVM) recognition model is then tightly integrated with the mode transition framework to recognize
five typical locomotion modes and eight locomotion mode transitions in real-time. The algorithm
not only reduces the abrupt change in the recognition of locomotion mode, but also significantly
improves the recognition efficiency. To evaluate recognition performance, separate experiments are
conducted on six subjects. According to the results, the average accuracy of all motion modes is
97.106% ± 0.955%, and the average recognition delay rate is only 25.017% ± 6.074%. This method
has the benefits of a small calculation amount and high recognition efficiency, and it can be applied
extensively in the field of robotics.

Keywords: exoskeleton robot; locomotion mode recognition; finite state machine; hierarchical
support vector machine

1. Introduction

For the exoskeleton to assist human movement in the exoskeleton robot system [1],
it is necessary to precisely control the exoskeleton robot so that it follows the human’s
movements, and ultimately achieves human–machine coordinated movement. In general,
the control strategies for various locomotion modes are distinct. Incorrect application of the
control strategy may result in the robot impeding or even harming the human movement.
Therefore, accurate and real-time recognition of locomotion modes is the foundation of
exoskeleton control, which is of great significance [2–4].

In recent years, scholars domestically and internationally have conducted extensive
research on locomotion pattern recognition based on the signals measured by mechani-
cal sensors and bioelectric signals such as electromyography (EMG), which has yielded
numerous results [5–8]. Among them, EMG primarily measures the electrical signal gen-
erated by muscle cells 100 ms before muscle activity [9], which is predictive in advance.
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Deepak et al. [10] proposed that classification could be performed using the discriminant
function or if–else rule set, the learning algorithm derived from the training example, and
a priori knowledge to reduce the average classification error to 11%. According to the
non-stationary characteristics of leg EMG signals during movement, a new phase-related
EMG PR strategy was proposed to classify the user’s movement patterns; the average
classification errors in the four defined phases using ten electrodes placed over the muscles
above the knee were 12.4%, 6.0%, 7.5%, and 5.2%, respectively [11]. However, the electrode
for EMG signal acquisition had to be affixed to the skin surface of wearer, which was not
only inconvenient in practice but also disrupted by perspiration [12]. This method is simple
and straightforward to realize the benefits of low interference [13], as the mechanical sensor
is primarily on the exoskeleton machinery. Specifically, the multi-source information fusion
technology that integrates various types of sensors can obtain more information than a
single type of sensor, thereby enhancing recognition performance [14,15].

Feng et al. [16] proposed a motion patterns recognition method based on convolutional
neural network (CNN) and strain gauge signals, identifying three motion patterns of flat,
ascending terrain and descending terrains with a 92.06% overall recognition accuracy. In
the literature, Liu et al. developed a pure mechanical sensor architecture consisting of
accelerometers, gyroscopes and pressure insole sensors [17]. The Cartesian product of five
terrain types and three walking speeds defined 15 sample sets of motion intention. The
measured real-time data were used to calculate the inter-observer reliability (ICC) with the
template data and the Dempster–Shafer (D–S) data fusion theory, and the hidden Markov
model (HMM) was used to recognize the real-time motion state with an average accuracy of
95.8% based on the reference to the previous step. However, there was neither continuous
processing of motion data, nor mutual recognition of terrain pattern conversions. Long
et al. used particle swarm optimization (PSO) to optimize support vector machine (SVM)
for classification and identification based on plantar pressure signal and leg posture signal,
with a 96.00% ± 2.45% accuracy rate. Following this, the majority voting algorithm (MVA)
was utilized for post-processing, and the recognition accuracy reached 98.35% ± 1.65% [18].
The paper [19] proposed a support vector machine model based on simulated annealing
algorithm to identify three distinct motion modes. It then used a finite state machine to limit
state transition for post-processing to improve the overall performance of the system, with
recognition accuracy reaching 97.47% ± 1.16%. Wang et al. used a rule-based classification
algorithm to achieve real-time recognition of the three most common motion modes of flat
walking, stair climbing and stair descending. The average accuracy of recognition reached
98.2%, and the average delay in recognition for all conversions was slightly less than one
step [20]. Regrettably, these studies did not conduct a more in-depth examination of the
miscalculation in the stable locomotion mode and the computational efficiency.

Various algorithms, such as Latent Dirichlet Allocation (LDA), Bayesian algorithm
network, neural network, support vector machine (SVM), and so on, are commonly used
to solve classification problems. The SVM model is a two-classification model; for multi-
classification problems, additional improvements [21–24] are required. Commonly used
techniques include one to one (OVO) [21], one to rest (OVR) [22], directed acyclic graph
SVMs (DAG SVMs) [23], hierarchical support vector machines (HSVM) [24], and others.
Undoubtedly, these strategies will increase the amount of computation to varying degrees,
resulting in a decrease in algorithm efficiency. Reference [25] proposed a design method of
hierarchical support vector machine multi-class classifier based on the inter-class separabil-
ity. Experimental results indicated that this method increased the classification accuracy
and accelerated the classification speed. We propose a hierarchical support vector machine
algorithm based on finite state machines (FSM-HSVM). The algorithm combines the finite
state machine with common locomotion modes to create a mode framework, then combines
this framework with the hierarchical support vector machine recognition model. Hip angle,
knee angle and plantar pressure data collected by IMUs and FSRs are preprocessed as
a training signal input. Then, for real-time recognition, one or all sub-classifiers in the
HSVM model are invoked in the FSM framework. To validate the efficacy and precision of
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the proposed algorithm, a large number of experiments are conducted under five typical
motion modes and eight locomotion mode transitions.

The organizational structure of this paper is as follows. Section 2 first introduces
the structure, data acquisition system and data source of exoskeleton robot, then intro-
duces HSVM theory and FSM theory, as well as the process of recognition algorithm for
motion pattern recognition, and finally introduces the evaluation index of algorithm perfor-
mance. Sections 3 and 4, respectively, present the experimental results and discussion. The
conclusion is presented in Section 5.

2. Materials and Methods
2.1. Exoskeleton Structure and Data Collection

The Beijing Institute of Technology developed a new type of lower limb exoskeleton
robot powered by motor drive with a maximum load capacity of 60 kg. This exoskeleton
robot mechanism closely resembles the structure of human lower extremity. The length of
exoskeleton rods such as the thigh and lower leg can be adjusted based on the subject’s body
shape to accommodate different subjects. Instead of focusing on a ball-and-socket structure,
the BIT exoskeleton designs the three degrees of freedom at the hip joint independently
to reduce interference between the lower limb exoskeleton and human movement and to
improve wearing comfort. Additionally, the knee joint is designed as a hinged structure
hinged around the coronal axis, which is simpler and more reliable. After rigorous research
and demonstration, the structure of the lower limb exoskeleton robot of BIT can meet
the design requirements. The total mass is lighter and more flexible compared to the
hydraulic exoskeleton [26]. Key exoskeleton components incorporate elastic units and
limit devices for the comfort and safety of human wear. The mechanical system of the
exoskeleton consists of a bionic back frame, hip assist mechanism, knee assist mechanism,
and lower limb support mechanism. The back frame adopts the split design of human
bionics and conforms well to the human body, allowing it to be worn by personnel of a
specific height and body shape. The hip assist mechanism uses a direct drive motor to assist
the body in sagittal flexion, while the knee assist mechanism uses a rope wheel structure
to assist the knee joint. Not only should the lower limb support mechanism connect to
other mechanisms as a support, but it should also be responsible for transmitting gravity to
the ground.

As shown in Figure 1, the movement data of lower limbs are collected by plantar
pressure detection system and inertial measurement units. After collecting the motion
information of each component, it is transmitted via the RS485 bus to the arm main control
computer to complete the exoskeleton robot’s driving and control. The data transmission
frequency is 100 Hz, and the core chip utilizes a Samsung S5P6818 development board
(ARM Cortex-A53 architecture), 2 GB RAM, 16 GB EMMC. The plantar pressure detection
system records stress data using four force sensitive resistors (LOSON LSH-10) placed in
the sole and heel of shoes. Each force sensitive resistor (FSR) has a 200 kg measurement
limit and an overall accuracy of 0.5% full scale (FS). The inertial measurement units (IMU
JY901) are positioned in the middle of the exoskeleton’s thighs and shanks to collect
lower limb motion data. IMU JY901 could read the three-axis acceleration, three-axis
angular velocity, three-axis magnetic field and other original sensor data, then calculate the
three-axis attitude angle in real-time using the Kalman filter algorithm and the dynamic
decoupling algorithm. As human walking is parallel to the sagittal plane, only the Z-axis
rotation angle is required. The measurement range is −180~180◦, and the dynamic angle
resolution is 0.1◦. The hip joint is the angle between the vertical and the thigh directions,
whereas the angle of the knee joint is the angle between the thigh and the shank.
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Figure 1. The lower extremity exoskeleton robot of BIT.

2.2. Data Source

The following is a unified definition of the concepts related to locomotion mode to
facilitate discussion. The human body’s locomotion modes fall into two categories: stable
locomotion mode and locomotion mode transition. Stable locomotion mode refers to
continuous motion in a single locomotion mode, whereas locomotion mode transition
refers to the rapid transition from one locomotion mode to another during motion. The
transition time of the locomotion mode is defined uniformly as the moment when the
leading foot of the previous mode leaves the ground, and the cycle from this time until the
next time this foot first leaves the ground in the next mode is known as the locomotion
mode transition period.

A total of five subjects volunteered to participate in this experiment, and the height of
these subjects was 1.60~1.80 m and the weight was 60~80 kg. Before the experiment, all
participants were informed of all experimental procedures and had no diseases. Before
the experiment, the connection between each structural member and the exoskeleton’s
information acquisition system was checked to ensure that the sensor is calibrated and in a
standard state. When a subject is wearing an exoskeleton, the length of the exoskeleton
rod is adjusted based on the subject’s feelings. Then the subjects walked adaptively for
approximately one minute, after which they continued to fine-tune their gait to maximize
human comfort and flexibility. Each subject wore an exoskeleton robot and conducted two
types of experiments at a speed that was approximately constant and without load. The
initial experiment consists of a stable mode experiment with various locomotion modes.
As shown in Figure 2, the subjects walk in five modes: flat walking (FW), up the stairs (US),
down the stairs (DS), up the ramp (UR) and down the ramp (DR). The staircase is 1.5 m
wide, 40 cm deep, 15 cm tall, and slopes at about 26◦. The ramp slope is approximately
10◦, and its length is 4.5 m. Each exercise mode included five experiments for one subject,
each lasting about thirty seconds. The second experiment involves the transition between
various locomotion modes. Each experimenter walks from the flat ground to another
locomotion mode, and from other modes to the flat ground, with a total of eight conversion
modes, i.e., FW→US, US→FW, FW→DS, DS→FW, FW→UP, UP→FW, FW→DP, DP→FW.
Each transition period included five experiments on one subject lasting thirty seconds.
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Once sufficient training datasets had been obtained, the FSM-HSVM model could be
trained offline. To remove noise and interference from the data collected by the acquisition
system, a second-order Butterworth low-pass filter with a cutoff frequency of 5 Hz was
applied. Locomotion mode recognition was performed in real-time and online. Text
was used to record the recognized pattern in the processor, which was then verified and
analyzed after the experiment was completed. All experiments were approved by the
Beijing institute of technology’s Medical and Experimental Animal Ethics Committee, and
the procedures used in this study followed the specified principles.

2.3. Feature Selection and Analysis of Motion Characteristics

When people walk with a lower limb exoskeleton robot, a large number of experimen-
tal studies [17–20,27,28] indicate that the joint angle of lower limb and plantar pressure
undergo very obvious periodic changes. At the same time, the motion characteristics
and change laws of various modes and gait phases are distinct, particularly the change
amplitude, peak value, and change trend. These distinctions serve to distinguish between
various motion modes. As a result, the hip angle, knee angle, and plantar pressure are
utilized as input signals, and the resulting information combination is expressed as follows:

Data = [θLH , θLK, θRH , θRK, FLB, FLH , FRB, FRH ], (1)

where FLB, FLH , FRB, FRH are the pressure on the ball and heel of left and right legs,
and θLH , θRH , θLK, θRK are the angle of the hip and knee joints of the left and right legs.
Through a comprehensive and detailed analysis of the obtained motion signals, it is possible
to extract feature information with high discrimination, which lays the foundation for the
later research of the recognition algorithm. Figure 3 depicts the joint angle and plantar
pressure for each of the five locomotion modes.

Using walking on FW as an example, the toe off time is the beginning of a cycle. At
this point, the swinging leg is behind the body, and the hip angle of the swinging leg is
close to its minimum value. With an increase in the swing period, the angle of hip flexion
gradually increases. The maximum angle of flexion of the hip joint was reached when the
swing foot touched the ground during the support period. As the duration of support
increased, the angle of hip flexion began to gradually decrease. At the conclusion of the
support period, the hip angle reaches its minimum value. The knee joint’s change law of
knee joint is comparable to that of the hip joint, with the exception of the time and range of
extreme values. The plantar pressure clearly demonstrates that the heel contacts the bottom
first, followed by the sole and the pressure change curve is very smooth without multiple
extreme points.
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Figure 3. The lower limb information under different locomotion modes. (a) Flat Walking; (b) Up the
Stairs; (c) Down the Stairs; (d) Up the Ramp; (e) Down the Ramp.

When ascending and descending stairs and ramps, the knee angle starts to decrease
from its peak at the end of the swing period, and rebounds for a time during early and late
support, and then decreases. The change range and peak value of hip angle are greater
than those of flat walking, and the change curve of hip angle is more sinusoidal like.

In the initial phase of descent on stairs or a ramp, the knee angle reaches the maxi-
mum and then gradually decreases. At the conclusion of the swing, the angle reaches its
minimum and begins to gradually increase as the support begins. In the initial phase of
support, there is a period of decline, followed by an increase to its maximum level. The hip
joint’s change range and peak value are the smallest. The hip angle varies from 10◦ to 20◦,
especially when descending the ramp. This is because the hip joint is primarily responsible
for maintaining body balance. Upon contact with the ground, the pressure on the heel and
sole began. Specifically, there is a noticeable oscillation at the top of the stairs.
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2.4. Motion Pattern Recognition Algorithm
2.4.1. Hierarchical Support Vector Machine Classifier (HSVM)

Support vector machine (SVM) [29] is a new machine learning technique founded
on Vapink’s statistical learning theory (STL). The statistical learning theory implements
the structural risk minimization (SRM) criterion, which minimizes sample point error
and structural risk. This criterion enhances the model’s capacity for generalization, and
has no restrictions on data dimension. In linear classification, the classification surface is
taken at the point of greatest separation between the two sample types. Through kernel
function [30], nonlinear classification problems can be into linear classification problem in
high-dimensional space.

Classical SVM is limited to two classification problems, therefore, multiclassification
problems require further improvement. Currently, the multi-classification SVM is primarily
implemented by decomposing and reconstructing multiple binary SVMs [31]. Commonly
used techniques include one to one (OVO) [21], one to rest (OVR) [22], directed acyclic
graph SVMs (DAG SVMs) [23], hierarchical support vector machines (HSVM) [24], etc.
These multi-classification decomposition and reconstruction methods choose various train-
ing methods and combination strategies, which determine the training and classification
complexity of the classifier. For the K-classification problem, Table 1 compares the training
and classification complexity of the aforementioned common multi-classification SVMs.

Table 1. The comparison of the training and classification complexity of the multi-classification SVM.

Complexity OVO OVR DAG-SVM HSVM

Basic Thought One to One One to Rest One to One One to Rest

Combination
Strategy Voting Method Maximum

Output
Directed Acyclic

Graph
Classification

Tree

Number of
Trainers K(K–1)/2 K K(K–1)/2 K–1

Number of
Recognizers K(K–1)/2 K K–1 K–1

As shown in Table 1, both OVO and DAG use a one to one approach for basic SVM
training. The number of SVM sub-classifiers that must be trained is the greatest and grows
exponentially as the number of K classes increases. The basic thought of OVR and HSVM
is one to rest, and the number of trainers is significantly less than OVO and DAG. HSVM
employs a tree structure to reduce the complexity of training and requires the training of
only (K–1) SVM classifiers. OVO and OVR must traverse all trained SVMs, resulting in low
overall efficiency. DAG adopts directed acyclic graph structure, and the average number
of SVMs required for classification is (K–1), with a small number and high classification
efficiency. Although HSVM traverses all sub-classifiers, classification efficiency is also
high due to the small number of trained classifiers. To sum up, it is very clear that HSVM
requires the smallest number of sub-classifiers during training and identification due to
its unique tree structure, and this method has the least amount of training calculation
and the highest classification efficiency. Therefore, HSVM is used to classify and identify
locomotion modes in this paper. The overall structure of HSVM is comparable to that of
binary tree, in which the intermediate node implements local decisions and the leaf node
identifies the category. This method makes full use of a priori human behavior. In order
to ensure the validity of the classification, it makes the categories within the subclasses
more similar while the categories between the subclasses have clear distinctions. For
HSVM to have the best generalization performance, the divisibility between the upper
layer’s two subclasses must be as strong as possible [32]. Typically, the Euclidean distance
between various samples in the input space is used to cluster layer by layer, so as to create
a reasonable hierarchical structure. However, the Euclidean distance requires that time
series data have the same length. The distance is then calculated and summed based on
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the points on the time axis. According to the research, the cycle length of human walking
is not fixed, and the cycle length under the five different motion modes is also obviously
different, leading to the fact that the time series cannot correspond one by one, so the
Euclidean distance cannot be solved in this case. At this time, we can further analyze the
change trend and duration of the gait cycle by using the DTW algorithm [33], and deeply
analyze the similarity of data of two consecutive gait cycles based on the continuity of
time. To compare the similarity of two sets of data, the distortion of their corresponding
frames must be calculated. The smaller the distortion, the higher the similarity. Because
the total number of frames in two segments of gait cycle data is typically different, the
signal value sequence must be re-aligned in time. The algorithm for dynamic time warping
can effectively solve this data comparison problem. In other words, the data sequence of
the smaller total frame number is mapped to the data sequence of the larger total frame
number, and the degree of distortion between the newly corresponding frames is calculated
and added. Next, the complete data of one cycle under five motion modes are intercepted
separately to calculate the DTW distance, as shown in Table 2, in order to investigate the
similarity between various locomotion modes.

Table 2. The DTW distance for different locomotion modes.

Terrains FW US DS UR DR

FW 0 428.261 451.527 451.113 319.962

US 428.261 0 391.622 295.413 355.106

DS 451.527 391.622 0 462.905 302.851

UR 451.113 295.413 462.905 0 377.584

DR 319.962 355.106 302.851 377.584 0

As shown in the table above, the most recent data groups for the five terrain types
are: {FW, DR}, {US, UR}, {DS, DR}, {UR, US}, {DR, DS}. As shown in Figure 4, the five
motion modes can be subdivided according to the tree structure to establish the hierarchical
structure in HSVM.
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As shown in Figure 3, the classification procedure involves hierarchical decision-
making and gradual subdivision. First of all, five motion modes can be divided into two
major categories by first classifier SVM1 according to DTW distance. The first category
includes up stairs and up ramps, while the second category includes three modes: flat
walking, down stairs and down ramp. Then, the classifier SVM2 is used to identify up
the stairs and up the ramp, and SVM3 is used to further divide the second category into
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L and {DS, DR}. Ultimately, the forth classifier SVM4 is utilized to differentiate between
DS and DR. So far, four classifiers have been used to separate the five motion patterns.
The penalty coefficient c and the kernel function parameter σ will have a significant effect
on the accuracy of these binary classifiers. In this paper, specific values of c and σ are
screened using the grid method, which is easy to implement and does not require manual
adjustment.

2.4.2. Finite State Machine (FSM)

Finite state machine (FSM) is a mathematical model that represents a finite number of
states and the transfer and action between these states [34]. The FSM can be expressed as
the following five element function group:

M = (Q, Σ, δ, q0, F), (2)

where Q = {q0, q1, · · · , qn} represents a set of states of the finite state machine, including
five common locomotion modes. Σ = {σ1, σ2, · · · , σn} is a limited set of input information,
including plantar pressure and joint angle. At any given moment, the finite state machine
can only be in a certain state qi, the finite state machine can only receive one definite input
σj. δ : Q× Σ→ Q is the state transition function. In a certain state, the finite state machine
will enter a new state determined by the state transition function after a given input. q0 ∈ Q
is the initial state, and the finite state machine begins to receive input from this state from.
F ⊆ Q is the final state set, and the finite state machine will no longer receive input after
reaching the final state.

2.4.3. FSM-HSVM

The movement of human body is an action sequence consisting of continuous and
sequential movements along the time axis. As long as the current motion mode is known,
the following motion mode will be constrained. The human–machine movement conforms
to the same as human movement, and there will be no unreasonable mode switching. For
instance, if the current motion mode is ascending stairs, the locomotion mode can only be
ascending stairs or walking on flat ground, and it is impossible to convert directly to going
down ramp. Therefore, reasonable transformation should be taken into account when
recognizing the locomotion mode, and unreasonable transformation can be eliminated
immediately. This paper introduces a finite state machine to construct the exoskeleton
movement mode finite state machine framework, so as to make necessary restrictions on
the movement modes and their transitions.

According to actual statistics and research, there are five common motion modes: flat
walking (FW), up the stairs (US), down the stairs (DS), up the ramp (UR) and down the ramp
(DR). There are only eight corresponding locomotion mode transitions, namely FW→US,
US→FW, FW→DS, DS→FW, FW→UR, UR→FW, FW→DR, DR→FW. The transitions
between US→DS and UR→DS modes of locomotion does not exist. When the current
mode is FW, the next motion mode may be stability mode FW or four other conversion
modes, i.e., US, DS, UR and DR. When the current mode is other four motion modes, the
motion mode at the next time is either the same stable mode as the previous time or flat
mode. Other locomotion mode transitions, such as US→DS and UR→DS are unreasonable
and do not exist in the actual environment. Figure 5 depicts the specific finite-state transition
diagram of locomotion mode.
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Currently, the finite state machine in reference [19] is only used for mode switching
post-processing and is not integrated with the recognition algorithm. This paper proposes
a support vector machine algorithm based on finite state machine (FSM-HSVM). By com-
bining the finite state machine with common locomotion modes and the HSVM recognition
model, the model transformation framework is established. The algorithm can restrict
mutations in the stable locomotion, and significantly enhance recognition efficiency. It can
be divided into five rules for the FSM motion mode framework and HSVM recognition
model fusion. The specific rules are as follows:

1. If CurrentState = FW, NextState = FW, US, DS, UR, DR(HSVM)
2. If CurrentState = US, NextState = US, FW(SVM1)
3. If CurrentState = DS, NextState = DS, FW(SVM3)
4. If CurrentState = UR, NextState = UR, FW(SVM1)
5. If CurrentState = DR, NextState = DR, FW(SVM3).

According to rule 1, the next motion mode can be any of the five locomotion modes
when the locomotion mode is flat walking, and the entire HSVM model must be invoked
for recognition. According to rule 2, when the locomotion mode is ascending stairs, it can
only continue ascending stairs or transition to walking on flat ground. Currently, only
one sub-classifier SVM1 is required for recognition. Rules 3, 4 and 5 are identical to rule
2. That is, only rule 1 needs to call the whole HSVM model for recognition. Other rules
need to call one sub-classifier to meet the classification requirements. The FSM-HSVM
model has no more than (K–1), which is the smallest number among all multi-classification
SVM methods.

2.5. Performance Evaluation

In order to evaluate the performance of the algorithm, the recognition accuracy (RA)
is defined to quantify the recognition results.

RA =
Ncor

Ns
, (3)

where Ncor is the number of correct locomotion modes identified in the test set, Ns is the
total number of divided locomotion modes in the test set.
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For a more precise analysis of gait phase recognition misclassification, the confusion
matrix is constructed to quantify the error distribution.

C =


c11, c12, c13, c14, c15
c21, c22, c23, c24, c25
c31, c32, c33, c34, c35
c41, c42, c43, c44, c45
c51, c52, c53, c54, c55

, (4)

where each element of the confusion matrix is defined as:

cij =
nij

ni
× 100%, (5)

where nij is the number of events in the i-th motion mode recognized as the j-th motion
mode during classification and recognition, ni is the total number of events in the i-th
locomotion mode. Thus, the diagonal elements of the confusion matrix C represent the
number of correct recognitions at the corresponding phase stage, whereas the non-diagonal
elements represent the number of recognition errors.

In addition to the recognition accuracy, pattern recognition algorithms must typically
assess whether they were detected in time. Consequently, the recognition delay rate (RD) is
defined to quantify the degree of identification delay of the algorithm.

RD =
Ti − Tc

Tgait
× 100%. (6)

In this formula, Ti is the moment when the locomotion mode transition is correctly
recognized for the first time, Tc is the transition moment and Tgait is the total time of a gait
cycle. According to these three moments, the RD between gait mode transitions can be
obtained. It is worth noting that the defined Ti also needs to satisfy the remaining time
without error determination.

In addition, the running time t of the algorithm is also an important indicator of
the model performance. The time required for algorithm recognition can be used to
evaluate the algorithm’s complexity and the hardware resources it requires. Since the single
recognition time is extremely small and difficult to measure, the entire test set can be used
for recognition, and the cumulative recognition time can be calculated.

3. Results
3.1. Experimental Results and Analysis of Locomotion Mode Recognition

In order to confirm the efficacy of the FSM-HSVM locomotion mode recognition model,
the confusion matrix is used to evaluate the performance of the model using the same
motion dataset. Five human subjects were required to walk at a similar speed over varied
terrain. The identification motion mode label is recorded in the control software using three
distinct techniques: SVM, HSVM and FSM-HSVM. As mentioned previously, the confusion
matrix can be used to display the recognition accuracy. In order to study the stability
and statistical law of these algorithms, it is necessary to further deal with the confusion
matrix of all subjects, and the average value MEAN of each element and its corresponding
standard error SEM are calculated respectively. So, the elements of the confusion matrix
are expressed as MEAN ± SEM in Tables 3–5 below.
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Table 3. Confusion matrix (MEAN ± SEM) for experimental results of SVM (%).

Terrains FW US DS UR DR

FW 83.658 ± 1.024 1.924 ± 0.105 3.327 ± 0.077 2.955 ± 0.322 8.136 ± 1.002

US 0.598 ± 0.112 93.769 ± 2.306 1.005 ± 0.162 3.899 ± 2.074 0.729 ± 0.447

DS 2.556 ± 1.840 1.110 ± 0.783 86.661 ± 2.854 0.000 ± 0.000 9.673 ± 1.633

UR 1.553 ± 0.686 0.810 ± 0.500 0.000 ± 0.000 95.948 ± 0.453 1.689 ± 0.282

DR 2.634 ± 0.471 0.274 ± 0.274 2.969 ± 0.952 0.026 ± 0.026 94.096 ± 0.887

Table 4. Confusion matrix (MEAN ± SEM) for experimental results of HSVM (%).

Terrains FW US DS UR DR

FW 85.584 ± 1.194 1.891 ± 0.210 2.749 ± 0.138 2.413 ± 0.211 7.363 ± 0.853

US 0.714 ± 0.130 96.201 ± 0.654 0.471 ± 0.210 2.483 ± 0.643 0.131 ± 0.083

DS 0.409 ± 0.128 0.000 ± 0.000 92.747 ± 1.806 0.000 ± 0.000 6.844 ± 1.780

UR 1.843 ± 0.872 0.804 ± 0.426 0.024 ± 0.024 95.984 ± 0.530 1.346 ± 0.269

DR 1.574 ± 0.383 0.683 ± 0.418 4.155 ± 0.922 0.070 ± 0.060 93.518 ± 0.952

Table 5. Confusion matrix (MEAN ± SEM) for experimental results of FSM-SVM (%).

Terrains FW US DS UR DR

FW 93.420 ± 0.216 0.786 ± 0.278 0.936 ± 0.255 0.951 ± 0.314 3.907 ± 0.168

US 0.741 ± 0.142 98.760 ± 0.114 0.500 ± 0.220 0.000 ± 0.000 0.000 ± 0.000

DS 2.272 ± 1.987 0.000 ± 0.000 97.728 ± 1.987 0.000 ± 0.000 0.000 ± 0.000

UR 2.006 ± 0.820 0.000 ± 0.000 0.000 ± 0.000 97.288 ± 0.590 0.706 ± 0.252

DR 1.668 ± 0.388 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 98.332 ± 0.388

As shown in Table 3 above, the highest recognition accuracy occurs in down ramp
mode with a 95.948% recognition accuracy. In flat walking, the lowest recognition accuracy
is only about 83.658%. Table 4 shows the recognition accuracy for HSVM, with the highest
recognition accuracy being 96.201% when going up the stairs. The recognition accuracy
of flat walking remains the lowest. According to Table 5, the accuracy of motion pattern
recognition exceeds 93.420%. In particular, up the stair mode has a recognition rate of
98.760%. In comparison to Tables 3 and 4, the results demonstrate that FSM-HSVM has
higher recognition accuracy. Figure 6 depicts the recognition accuracy of three algorithms.
The FSM-HSVM algorithm has achieved the highest recognition accuracy across five
different locomotion modes, with an average accuracy of 97.106% ± 0.955%. In addition,
the flat walking mode has the lowest recognition accuracy of the three algorithms. Review
the Tables 3–5 reveals that walking on flat ground is easily confused with walking down
the ramp. Even with the FSM-HSVM algorithm, the probability is as high as 3.907%.

The performance index of RRD is used to evaluate the real-time performance of the
proposed recognition strategy. In this paper, Table 6 shows the RDR for the eight conversion
modes. If RRD is positive, it indicates that the correct identification time is later than the
actual transition time. If RDR is negative, the correct recognition time is in advance of the
actual transition time. According to Table 5, the RDRs for all eight transitions between
locomotion modes are positive, indicating that the correct recognition under all locomotion
modes lags behind the actual conversion time. Especially for DR→FW conversion mode,
the RRD can reach 53.733%. The following is UR→FW locomotion mode transition, and the
delay rate is 43.067%. In other words, it can be distinguished by the middle of the whole
cycle when the ramp is transitioned to flat walking. The lowest RRD is only 5.333% when
FW→DS, and it indicated that the leg is correctly recognized in the early stage of swing.
The average RRD is 25.017%± 6.074% under all locomotion mode transitions. According to
research, the swing period accounts for about 40% of the whole gait cycle, and the precise
transition occurs roughly in the middle of the swing period.
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Table 6. DRs of locomotion mode transitions.

Transition RD

FW→US 10.800% ± 2.255%
US→FW 30.400% ± 3.297%
FW→DS 5.333% ± 1.687%
DS→FW 19.333% ± 10.369%
FW→UR 31.600% ± 6.991%
UR→FW 43.067% ± 4.107%
FW→DR 5.867% ± 10.527%
DR→FW 53.733% ± 9.363%

3.2. Algorithm Efficiency and Analysis

In order to demonstrate the complexity of the algorithm, three trained algorithm
models of SVM, HSVM, and FSM-HSVM are used to identify offline the same test set
that has been previously processed, and the cumulative recognition time is calculated and
compared with each other; the results are depicted in Figure 7. Compared to SVM and
HSVM, the algorithm proposed in this paper reduces the running time t of the algorithm by
about 8 s and 3 s, respectively. In other words, the recognition efficiency of the algorithm
in this paper is improved between 60% and 36%, indicating that the overall amount of
calculation is small, thereby conserving a significant amount of exoskeleton hardware
resources.

The time required for the classification and recognition of HSVM and FSM-HSVM
models is discussed in detail below. Assume that n is the total number of identified data
samples, a is the proportion of flat walking data in the total number of samples (0 ≤ a ≤ 1),
and the number of motion mode categories is K (K ≥ 3). The recognition time of HSVM
model and FSM-HSVM are as follows.

THSVM = (K− 1)n (7)

TFSM−HSVM = anK + (1− 2a)n. (8)

If a = 1, TFSM−HSVM = (K− 1)n. In other words, the HSVM-HSVM model degener-
ates into HSVM model when all data are flat walking data. If a = 0, there are no flat data in
the dataset, TFSM−HSVM = n. At this time, the recognition time is only 1/(K− 1) of the
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recognition time of HSVM. If 0 ≤ a ≤ 1, the ratio between FSM-HSVM recognition time
and HSVM recognition time is given by:

Tratio =
TFSM−HSVM

THSVM
=

aK + (1− 2a)
K− 1

. (9)

Obviously, the range of time ratio is: 1/(K− 1) ≤ Tratio ≤ 1. In other words, the
recognition time of the FSM-HSVM model is less than or equal to that of the conventional
HSVM model. Especially when the recognition category is large or there is less flat data,
the overall time will be greatly reduced compared to HSVM model, and the recognition
efficiency will be significantly enhanced. In comparison to SVM and HSVM models,
FSM-HSVM has the highest recognition efficiency.
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4. Discussion

The experimental results show that the average recognition accuracy of FSM-HSVM
for five different motion modes is 97.106% ± 0.955%, whereas the average recognition
accuracies of SVM and HSVM algorithms are 90.826% ± 2.391% and 92.807% ± 1.927%
respectively. In comparison with the other two algorithms, the average recognition rate
increased by 6.28% and 5.036%, while the standard error decreased by 1.43% and 0.972%.
Evidently, the algorithm proposed in this paper demonstrates superior recognition effi-
ciency and recognition stability compared to SVM and HSVM. However, the results also
show that the recognition accuracy of the three kinds of flat walking is the lowest, and there
is a high likelihood that they are misidentified as walking down the ramp. The shortest
distance, according to the DTW distance table, is between the FW and DR. It demonstrates
conclusively that the similarity between the two modes is high and difficult to distinguish.
This is likely due to the slope selected in this paper being only about 10◦, making it virtually
identical to the flat ground. At present, some good progress has been made in recognition
accuracy in motion pattern recognition [18,19]. The recognition accuracy of reference [18] is
as high as 98.35% ± 1.65%. However, on the premise of higher slope and easier detection,
there are still obvious misjudgments in the process of stable motion pattern recognition, and
the stability is weaker than that of the algorithm proposed in this paper. In reference [19],
the finite state machine was used to limit the state transition for post-processing to improve
the overall performance, but it was not enough for only three kinds of terrain, the common
slope terrain in daily life should especially be considered. In conclusion, the proposed
algorithm has better stability compared to references [18,19]. In practice, the RRDs of eight
transitions between locomotion mode are extremely important. According to Table 5, we
can find that the RRD is the smallest when the flat walking is converted to descending stairs,
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with a value of 5.333%± 1.687%. This demonstrates that the characteristics of the transition
period between flat ground and down stairs change significantly, and the algorithm is
highly sensitive. The highest delay rate was 53.733% ± 9.363%, which occurred during the
period from down the ramp to flat walking, and the second highest was 43.067% ± 4.107%
when going from up the ramp to flat walking. This demonstrates that the feature change
from ramp to ground is ambiguous, and the algorithm recognizes it only in the middle of
the transition. According to that mentioned above, it is obvious that the slope gradient
is small and is not different from the flat walking. The lack of prominent data collection
characteristics during the transition period may be the primary cause of the high delay rate.
The overall recognition delay rate is 25.017% ± 6.074%, which is significantly less than one
step, indicating that the corresponding large motion mode can be recognized in the middle
of swing. The conversion between these motion modes can also be accomplished through
prior knowledge of the wearer or pre control, allowing the robot exoskeleton system to
respond in advance, thereby ensuring system stability.

In terms of the algorithm’s recognition efficiency, the experimental results indicate
that the motion time is reduced by approximately 8s and 3s compared to SVM and HSVM,
respectively. Through theoretical calculation and analysis, it is also determined that the
FSM-HSVM algorithm is significantly less effective than the HSVM algorithm when using
SVM to solve multiclassification problems. In addition, Table 2 demonstrates that HSVM’s
recognition efficiency is superior to that of other multi-classification SVM algorithms.
Among the multi-classification SVM algorithms discussed in this paper, FSM-HSVM has
the highest recognition efficiency. Clearly, this will significantly conserve the computing re-
sources of exoskeleton hardware and make collaborative control of subsequent exoskeletons
more feasible.

Nonetheless, there is still room for future improvement and optimization. On the
one hand, walking on flat ground has a high likelihood of being interpreted as walking
down the ramp, and the conversion delay rate between ramp and flat ground exceeds
40%. It is very likely to result in the miscalculation and control lag of the exoskeleton,
which will affect the coordination between man and machine. In order to improve the
performance of the algorithm, we will concentrate on the internal differences between the
two locomotion modes, and extract higher distinguishing features for classification and
recognition, thereby increasing the recognition rate and decreasing the delay rate. On the
other hand, the influence of speed change under different motion modes is not taken into
account, so additional research on speed adaptability is required.

5. Conclusions

In this paper, we propose a method for exoskeleton robot locomotion mode recognition
in real-time. This method calculates the hip angle and knee angle using four IMUs installed
on the exoskeleton as well as four plantar pressure sensors located on the sole and heel. The
information is then used as input signals and imported for training into the FSM-HSVM
classification algorithm model. During recognition, only one or multiple classifiers under
the HSVM recognition model are required. Experiments identify five typical motion modes
and eight motion mode conversions in real-time, and SVM and HSVM algorithms are
used to simultaneously obtain the same input signal for training and recognition as a
reference group. The experimental results indicate that that the proposed algorithm can
be improved by 6.28% and 5.036% relative to SVM and HSVM, respectively, while its
recognition efficiency is enhanced by approximately 60% and 36%. All transitions have an
average recognition delay of less than one step. This method can be effectively applied
to the recognition and control of exoskeleton intentions due to its low complexity, small
amount of calculations, and high practicability.
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