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Featured Application: The proposed safety-oriented system hardware architecture exploration
can be applied to achieve an ISO-26262-compliant hardware architecture for the safety-critical
automotive system.

Abstract: Safety-critical intelligent automotive systems require stringent dependability while the
systems are in operation. Therefore, safety and reliability issues must be addressed in the development
of such safety-critical systems. Nevertheless, the incorporation of safety/reliability requirements
into the system will raise the design complexity considerably. Furthermore, the international safety
standards only provide guidelines and lack concrete design methodology and flow. Therefore,
developing an effective safety process to assist system engineers in tackling the complexity of system
design and verification, while also satisfying the requirements of international safety standards, has
become an important and valuable research topic. In this study, we propose a safety-oriented system
hardware architecture exploration framework, which incorporates fault tree-based vulnerability
analysis with safety-oriented system hardware architecture exploration to rapidly discover an efficient
solution that complies with the ISO-26262 safety requirements and hardware overhead constraint.
A failure mode, effect, and diagnostic analysis (FMEDA) report is generated after performing the
exploration framework. The proposed framework can facilitate the system engineers in designing,
assessing, and enhancing the safety/robustness of a system in a cost-effective manner.

Keywords: functional safety; ISO-26262; system hardware architecture; safety mechanism

1. Introduction

Safety-critical intelligent automotive systems such as autonomous driving systems,
advanced driver assistant systems, and driver-by-wire systems require stringent depend-
ability while the systems are in operation. Therefore, safety and reliability issues must be
addressed in the development of safety-critical systems. When the vehicle control functions
are implemented by electronic control systems, functional safety issues become so critical
that such systems should be developed with strict safety requirements. Furthermore, safety
issues should be considered with the highest priority during the whole lifecycle of a safety-
critical system. To carry out such safety-oriented system development, the functional safety
standard, ISO-26262, was established [1].

ISO-26262 was first published in 2011, specific to the application sector of electrical
and/or electronic (E/E) systems within road vehicles. The primary purpose of this stan-
dard is to conduct a safety life cycle for electronic systems. ISO-26262 has been accepted
worldwide as the technical “state-of-the-art” for safety-critical automotive systems [2]. In
ISO-26262, a safety life cycle includes the concept phase, product development phase, and
the production and operation planning phase. During the safety life cycle, considered
issues cover initialization of the product concept, specification establishment, product

Appl. Sci. 2022, 12, 5456. https://doi.org/10.3390/app12115456 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12115456
https://doi.org/10.3390/app12115456
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-0283-5960
https://orcid.org/0000-0002-6156-5473
https://doi.org/10.3390/app12115456
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12115456?type=check_update&version=2


Appl. Sci. 2022, 12, 5456 2 of 29

design, and pre-production tests. All these issues put emphasis on functional safety con-
sideration. At the product development phase, the V-model [3] is adopted as the primary
design, verification, and validation flow. This phase is further divided into three different
levels: System level, hardware level, and software level. For these levels, functional safety
requirements are verified and validated through failure mode and effect analysis (FMEA),
fault tree analysis (FTA), and safety-related metrics.

The ISO-26262 standard adopts the ASILs (Automotive Safety Integrity Levels) to
measure whether the developed systems have achieved the demanded safety level or not.
There are four ASILs defined in the standard—from A to D, where ASIL A defines the
lowest and ASIL D defines the highest safety level. More strict requirements need to be
fulfilled if a higher ASIL is specified.

In this study, based on the ISO-26262 functional safety standard, we propose a safety-
oriented hardware architecture exploration framework for safety-critical automotive sys-
tems. The proposed framework integrates the hardware architecture exploration algorithms
with the FTA-based weak-point analysis to quickly find an efficient system solution that
complies with the ISO-26262 ASIL requirement as well as the hardware overhead constraint.
We employ the autonomous emergency braking (AEB) system to demonstrate the effec-
tiveness of the proposed design framework. The AEB system integrates the brake-by-wire
system proposed in [4] with automotive radar sensors and a speed sensor to implement a
front-vehicle collision avoidance system.

The paper is organized as follows. Section 2 discusses the related works and Section 3
introduces the ISO-26262 hardware architecture metrics. The safety-oriented system hard-
ware exploration framework a including fault tree analysis with vulnerability identification,
safety mechanism deployment, and hardware overhead constraint conformation is pro-
posed in Section 4. A case study demonstration is illustrated in Section 5. Conclusions and
future works appear in Section 6.

2. Related Works

To implement the safety-oriented system architecture exploration framework, there
are two infrastructural technical bases; one is the safety analysis and the other is the safety
improvement. In this section, related works for these two technical bases are discussed and
compared to our proposed framework.

In [5], an accurate and well-explained practical guide to the specific techniques ap-
propriate for PMHF (probabilistic metric for hardware failure) calculation using FTA was
proposed. This paper presented a structured and systematic quantitative FTA while show-
ing various schemes for calculating the PMHF considering both single-point faults and
dual-point latent faults. In [6], the author performed quantitative assessments of ISO-26262
hardware architecture metrics by means of a fault tree analysis. A custom coverage gate
was firstly proposed to represent the diagnostic coverage related to a safety mechanism.
The advantage of introducing the coverage gate is to reduce the complexity of fault tree
construction. The author of [7] presented generalized formulas for the calculation of PMHF
in non-redundant and redundant subsystems using observable parameters, such as the
failure rate of a mission function and a safety mechanism, the diagnostic coverages of the
primary and secondary safety mechanisms, and the diagnostic period of the secondary
safety mechanisms to expand the scope of the application according to ISO 26262. A mixed
model based on FTA and the Markov chain was proposed in [8] to evaluate random hard-
ware failures of the whole-redundancy system in ISO 26262. The mixed model presented
in [8] tried to solve the problem of calculating the PMHF in the whole-redundancy system,
whose fault tree only contains several dynamic logic gates.

Another study [9] illustrated the application of hardware reliability calculation proce-
dures according to the ISO 26262 standard. This paper described computational procedures
with the derivation and explanation of mathematical formulas for various hardware ar-
chitectures of electronic systems. The described formulas consider the impact of multiple
failures and the impact of self-tests, but the formulas are relatively simple. The research
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in [10] aimed to provide a framework for quantitative FTAs, while considering periodic
inspections and repairs, which are the key assumption of the standard. The framework is
based on models of the Markov stochastic process and the PMHF equations derived from
those models. Further research [11] considered the design-phase safety analysis of vehicle
guidance systems. The proposed approach constructed dynamic fault trees (DFTs) to model
a variety of safety concepts and E/E architectures for drive automation. Our previous
work [12] proposed an FTA-based weak-point analysis methodology for the safety-critical
automotive systems, but only the safety metric, PMHF, was considered.

On the other hand, previous literature [13–23] has demonstrated how to accomplish
safety improvement through architecture exploration, which take both the overall system
safety and hardware overhead as the design metrics. Reference [13] was a survey paper that
collected and compared the published literatures addressing the safety-oriented system
architecture exploration in recent years. According to [13], combined with our survey
results, we find that recent studies [14–23] have proposed the feasible solutions for safety-
aware hardware cost-optimization techniques. The main idea of [14–17] is to identify the
removable hardware elements in an existing system hardware architecture so the system
safety and operation performance requirements can still be met. For example, a processor
core is removable if the tasks allocated to this processor can be ported to other processors
without violating the safety and timing requirements. Therefore, the hardware overhead
can be reduced after removing these identified hardware elements. However, the proposed
techniques [14–17] can only meet the requirement of one single safety-related design metric.
Thus, these techniques are not feasible for systems with more than one safety-related design
metric to be fulfilled.

The core concept of references [18–23] is very similar. The proposed hardware architec-
ture exploration frameworks in these studies tried to satisfy the system safety requirements
in compliance with the target ASIL first and then reduce the hardware overhead through
the ASIL decomposition, which is a technique adopted in ISO-26262 for cost-effective con-
siderations. After applying ASIL decomposition, hardware elements or subsystems with a
higher ASIL can be decomposed into hardware elements with lower design complexity,
and the required ASIL can be lowered accordingly. In such a way, the overall hardware
overhead can be effectively reduced. Furthermore, verification and testing efforts can also
be reduced due to the lowered ASIL. However, these papers only considered the ideal case,
i.e., the ASIL decomposition is feasible. For real automotive systems, ASIL decomposition
may not allow the hardware elements to be in hardcore form when they are provided by the
suppliers. Thus, the proposed methodology in [18–23] would be limited to only the systems
that the ASIL decomposition allows. To avoid such a limitation, the proposed hardware
architecture exploration framework in this study does not adopt ASIL decomposition as
the main scheme for hardware overhead reduction.

Compared to the previous works, the advantages of the proposed architecture explo-
ration framework in this study primarily concern the following two aspects:

(1) Complying with more safety-related design metrics.

The safety-aware architecture exploration methodologies proposed in the literature
tend to only comply with an overall system reliability or PMHF safety metric requirement.
However, PMHF is only one of the three safety metrics required in ISO-26262. In fact,
two other specific safety-related design metrics, the single-point fault metric (SPFM) and
latent-fault metric (LFM), also play important roles in safety-critical design, especially
when ISO-26262 is the primary safety norm to be complied with. Thus, we should
consider SPFM, LFM, and PMHF metrics holistically. Otherwise, the developed safety-
critical system could still contain unknown safety vulnerability, which could lead to
reliability and safety problems and violate the requirements of ISO-26262. For example,
if multiple-point faults in a system are not considered, then latent faults could exist
in such a system. Therefore, specific safety-related design metrics such as SPFM and
LFM representing the fault-tolerant capabilities of single-point faults and multiple-point
faults are required to be defined and fulfilled. In this study, the proposed safety-oriented
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system architecture exploration framework is highly customized for ISO-26262. We
specify the three safety-related design metrics, SPFM, LFM, and PMHF, requested by
ISO-26262 as the primary targets to be achieved for safety-critical automotive systems.
Thus, the proposed framework can assure that the obtained system architecture can
fulfill the safety requirements for single-point and multiple-point fault tolerance as well
as overall system reliability and safety.

(2) Satisfying safety-related design metrics and hardware overhead constraints simulta-
neously in a very limited number of design iterations.

In addition to the safety-related design metrics required by ISO-26262, the pro-
posed system architecture exploration framework also takes hardware overhead into
account. Thus, there are four design metrics to be satisfied so that the high-design-
complexity problem, as encountered in previous works [13–23], arises to be resolved.
In this work, we show that the proposed hardware architecture exploration frame-
work only requires a very limited number of design iterations to achieve a system
hardware architecture that simultaneously satisfies the three safety-related design
metrics and hardware overhead constraints through a real safety-critical automotive
system demonstration.

3. ISO-26262 Hardware Architecture Metrics

Failure mode, effect, and diagnostic analysis (FMEDA) is a systematic analysis tech-
nique to obtain subsystem/product level failure rates, failure modes, and diagnostic ca-
pability. The main purpose of FMEDA in ISO-26262 is to evaluate hardware architecture
metrics and safety goal violations due to random hardware failures and provide sufficient
information to improve safety gaps if the required hardware safety level is not fulfilled.
The hardware architecture metrics include the single-point fault metric (SPFM), latent-fault
metric (LFM), and probabilistic metric for hardware failure (PMHF). SPFM reflects the
robustness of the item to single-point and residual faults by either coverage from safety
mechanisms or design (primarily safe faults). A high SPFM implies that the proportion
of single-point faults and residual faults in the hardware of the item is low. LFM reflects
the robustness of the item to latent faults by either coverage of faults in safety mechanisms
or by the driver recognizing that the fault exists before the violation of the safety goal, or
by design (primarily safe faults). A high latent-fault metric implies that the proportion of
latent faults in the hardware is low. Finally, PMHF is a probabilistic metric for evaluating
the violation of the considered safety goal due to random hardware failure. Table 1 lists
the target values for SPFM, LFM, and PMHF under different ASILs. It is worth noting that
there is no target value for ASIL A.

Table 1. Target values of SPFM, LFM, and PMHF for different ASILs.

ASIL B ASIL C ASIL D

SPFM ≥90% ≥97% ≥99%
LFM ≥60% ≥80% ≥90%

PMHF <10−7 h−1 <10−7 h−1 <10−8 h−1

To acquire PMHF, SPFM, and LFM, λS, λSPF, λRF, and λDPF,L, which represent the
failure rates associated with a safe fault, single-point fault (SPF), residual fault (RF), and
latent dual-point fault (DPF), have to be derived in advance. Figure 1 shows the fail-
ure rate calculation process according to ISO-26262, where λC(i) is the failure rate of
the ith safety-related component C(i) and assumes the system has n number of safety-
related elements.
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Figure 1. ISO 26262 fault classification and failure rate calculation process.

For a safety-related hardware element, C(i), its faults consist of safe and non-safe
faults. The safe faults will not cause a safety goal violation. Therefore, only the non-safe
faults could cause a safety goal violation and contribute to the λSPF if there is no safety
mechanism to protect the faults. If there is a safety mechanism to prevent the faults of C(i)
from causing a safety goal violation, then the faults not covered by the safety mechanism
are identified as residual faults of C(i), and the corresponding failure rate, λRF, can be
derived from the following expression (1)

λRF = λC(i) × (percentage o f non− sa f e f aults)×
(

1− DCRFC(i)

)
(1)

where λC(i) and DCRFC(i)
are the failure rate and the diagnostic coverage with respect to

the residual faults of C(i).
In Figure 1, the faults of C(i) that have no potential to directly cause the system to

violate the safety goals are identified as multiple-point faults. There are two sources of the
multiple-point faults; the first one is attributed to the single-point faults covered by the
safety mechanism, and the second one is from faults that can cause the system to violate the
safety goals only when the fault in C(i) combines with one or more other independent faults.
Because the probability of violation of the safety goal contributed to by three or more faults
is low enough, we treat them as safe faults in this study. Thus, only the latent dual-point
faults (DPF) are considered, which can be calculated by the following expression (2)

λDPF,L = λC(i) × (percentage o f non− sa f e f aults)× DCRFC(i)
×

(
1− DCDPF,LC(i)

)
(2)

where DCDPF,LC(i)
is the diagnostic coverage of C(i) with respect to latent dual-point faults.

4. Safety-Oriented System Hardware Architecture Exploration Framework

In this study, we propose a safety-oriented system hardware architecture exploration
framework whose goal is to achieve a system hardware architecture that complies with the
ISO-26262 safety metrics and the hardware overhead constraint simultaneously. Figure 2
exhibits the overall flow of the proposed framework.
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Figure 2. Flowchart of the proposed safety-oriented system HW architecture exploration framework.

First, the ISO-26262 safety metrics are calculated for the initial system hardware archi-
tecture provided by the system engineers and compared to the target values to determine
whether the target ASIL is achieved or not. If the target ASIL cannot be achieved, the
safety-oriented system architecture exploration is performed to effectively apply appropri-
ate safety mechanisms to reduce the whole system’s failure rates. Such system architecture
exploration is repeated until all the safety metrics can be satisfied. After that, the system
hardware architecture that meets the ASIL goal but fails to satisfy the hardware overhead
constraint is used to further explore the final solution that satisfies the safety metrics and
hardware overhead constraint simultaneously. The reason we consider the safety metrics
and hardware overhead constraint sequentially is due to the complexity problem. The
idea of our architecture exploration methodology is first to discover a feasible solution that
meets the safety metrics, and then use that solution to adjust its hardware architecture to
satisfy the safety metrics and hardware overhead constraint simultaneously. To address the
issues of safety metrics and the hardware overhead constraint separately, our architecture
exploration methodology can tackle the complexity problem well.

The safety-oriented system architecture exploration framework comprises the follow-
ing three phases:

i. FTA-based weak-point analysis.

In this phase, we apply the well-known and widely adopted safety analysis methodol-
ogy, fault tree analysis, to identify all the hardware elements that cause the safety metrics
to be unachievable. Furthermore, we can utilize the quantitative FTA to evaluate the failure
probabilities for the MCS (Minimal Cut Set) and determine the MCSs, which are the weak
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points of the system, by comparing their failure probabilities to the target failure probability
for the required ASIL. The details for this analysis are illustrated in Section 4.2.

ii. ASIL-oriented hardware architecture exploration algorithm.

In last phase, the hardware elements identified as weak points have been listed. Thus,
the safety mechanisms need to be deployed to those hardware elements to reduce their
failure rates. The issue for this phase is proposing an effective measure to evaluate the
extent of failure rates reductions that are required to achieve the target ASIL goal and then
recognize which safety mechanisms are sufficient for the identified hardware elements.
The proposed ASIL-oriented hardware architecture exploration, which is introduced in
Section 4.3.2, can aptly address the safety issue to be solved.

iii. HO-oriented hardware architecture exploration algorithm.

In phase ii, the safety mechanisms are used to reach the target ASIL goal without
considering the cost of hardware overhead induced from the deployed safety mechanisms.
Thus, the additional hardware overhead could cause the overall system hardware cost to
exceed the acceptable upper bound. To address this issue, we propose a hardware overhead
(HO)-oriented hardware architecture exploration methodology. Through this methodology,
the system hardware architecture with safety mechanism deployment derived from the
previous phase is analyzed to recognize the bottleneck when the additional hardware
overhead exceeds the constraint specified by the system engineers. Accordingly, the
system hardware is adjusted to meet the safety metrics and hardware overhead constraint
simultaneously. More details can be found in Section 4.3.3.

After the safety-oriented system architecture exploration is accomplished and both
the safety metrics and hardware overhead constraint are conformed, the final system
hardware architecture can be obtained with additional hardware costs invested. Besides,
the corresponding FMEDA report is also generated to provide more detailed information
for the designers. The effectiveness of the proposed framework is demonstrated with an
autonomous emergency braking system design as described in Section 5.

In the following subsections, we will introduce the proposed safety-oriented system
hardware architecture exploration framework and illustrate the details of the exploration
process through a simple example.

4.1. Problem Formulation

Before the problem can be formalized, the following notations are defined first:

• n: The number of safety-related hardware elements in the system;
• C(i): The ith safety-related component, where 1 ≤ i ≤ n;
• λC(i): Failure rate of the ith safety-related component;
• λS, λSPF, λRF, and λDPF,L: The failure rates associated with a safe fault, single-point

fault (SPF), residual fault (RF), and latent dual-point fault (DPF), respectively;
• SPFMtar, LFMtar, and PMHFtar: The target values for SPFM, LFM, and PMHF in

accordance with the target ASIL;
• PFSPFMtar (t), PFLFMtar (t), and PFPMHFtar (t) : The target failure probability for achiev-

ing SPFMtar, LFMtar, and PMHFtar safety metrics at mission time t;
• SPFMite_d, LFMite_d, and PMHFite_d: The values of SPFM, LFM, and PMHF in the dth

design iteration, where d ≥ 0.

With the notations defined above, the main goal of the safety-oriented system hard-
ware architecture exploration framework can be formalized as:

1. Explore the system hardware design space to determine a hardware architecture such
that the following requirements can be fulfilled:

� PMHFite_d < PMHFtar.
� SPFMite_d ≥ SPFMtar.
� LFMite_d ≥ LFMtar.
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Based on Table 1, the target values of PMHFtar, SPFMtar and LFMtar can be determined
according to the target ASIL. For example, if the target ASIL B is selected, then th PMHFtar,
SPFMtar, and LFMtar are specified as 10−7 h−1, 90%, and 60%, respectively. On the other
hand, PMHFite_d, SPFMite_d, and LFMite_d can be derived from the following formulae
provided by ISO-26262 for the hardware architecture metrics calculation.

PMHFite_d can be calculated by the following expression (3)

PMHFite_d = ∑Safety-Related hardware(HW) elements(λSPF + λRF + λDPF,L) (3)

Next, SPFMite_d can be computed by the following expression (4)

SPFMite_d = 1−
∑Safety-Related HW elements(λSPF + λRF)

∑Safety-Related HW elements λ
(4)

where ∑Safety-Related HW elements λ represents the total failure rates of all safety-related hard-
ware elements and can be calculated by ∑Safety-Related HW elements λ = ∑Safety-Related HW elements
λSPF + λRF + λDPF + λS (assuming all failures are independent and follow the expon-
ential distribution).

Moreover, the following expression can be derived from the safety requirement
SPFMite_d ≥ SPFMtar.

∑Safety-Related HW elements(λSPF + λRF) ≤ (1− SPFMtar)×∑Safety-Related HW elements λ (5)

Lastly, the calculation of LFMite_d is based on the following expression (6)

LFMite_d = 1−
∑Safety-Related HW elements(λDPF,L)

∑Safety-Related HW elements(λ− λSPF − λRF)
(6)

Similarly, the following expression can be derived from the safety requirement
LFMite_d ≥ LFMtar.

∑Safety-Related HW elements(λDPF,L) ≤ (1− LFMtar)×∑Safety-Related HW elements(λ− λSPF − λRF) (7)

The failure rates λS, λSPF, λRF, and λDPF,L in expressions (3)–(7) can be derived from
the process as exhibited in Figure 1 and expressions (1) and (2) as shown in Section 3.

4.2. FTA-Based Weak-Point Analysis

After PMHFite_d, SPFMite_d, and LFMite_d, are acquired, we can compare them with the
target values to check whether the functional safety requirements can be fulfilled. When
any requirement is violated, the current system hardware architecture should be analyzed
to identify the main contributors to the safety goal violation. We term such an analysis
as the weak-point analysis. The weak-point analysis should provide the precise basis to
guide the deployment of a feasible safety mechanism for the vulnerable components so
that all target values of the hardware architecture metrics can be achieved in an efficient
and cost-effective manner.

In this study, we propose an effective weak-point analysis methodology based on fault
tree analysis (FTA). FTA has been widely adopted as the primary system-level reliability
modeling for decades. Besides, in ISO-26262, FTA is also recommended as the primary
system-level safety analysis methodology. However, the concrete measures are not dis-
closed. To address this hiatus, we intend to illustrate how to locate the safety vulnerability
in the system through the FTA approach. Before explaining the proposed FTA measures,
the following notations need to be defined in advance:

• FPMCS(t): The failure probability for an MCS at mission time t;
• FPRFC(i)

(t): The failure probability associated with the residual faults for a hardware
element C(i) at mission time t;
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• FPDPF,LC(i)
(t): The failure probability associated with the latent dual-point faults for a

hardware element C(i) at mission time t;
• λSPFMtar : The target failure rate to be achieved for satisfying the SPFM requirement

with respect to the target ASIL;
• λLFMtar : The target failure rate to be achieved for satisfying the LFM requirement with

respect to the target ASIL;
• PFPMHFtar (t): The target failure probability at mission time t to be achieved for satisfy-

ing the PMHF requirement with respect to the target ASIL;
• PFSPFMtar (t): The target failure probability at mission time t to be achieved for satisfy-

ing the SPFM requirement with respect to the target ASIL;
• PFLFMtar (t): The target failure probability at mission time t to be achieved for satisfying

the LFM requirement with respect to the target ASIL;
• GapPMHF(MCSk): The quantified gap between the failure probability for the kth MCS

in the system hardware and the PFPMHFtar (t) at mission time t;
• GapSPFM(MCSk): The quantified gap between the failure probability for the kth MCS

in the system hardware and the PFSPFMtar (t) at mission time t;
• GapLFM(MCSk): The quantified gap between the failure probability for the kth MCS in

the system hardware and the PFLFMtar (t) at mission time t.

First, we take the system to be analyzed as the input and construct the corresponding
fault tree according to the system hardware architecture. The process of constructing a
fault tree is out of this paper’s scope but has been comprehensively illustrated in previous
literature [5–12,24–28] either from the system preliminary hardware architecture or from
the system-level simulation models. Thus, the details of fault tree construction are omitted
in this study. After the fault tree is constructed, the FTA can be performed to list all the
MCSs for the fault tree. Next, we classify all the listed MCSs into the following two types:

• Single-point failure (SPF): MCS contains a single safety-related hardware element
represented as {C(i)}.

� The failure probability of the MCS belonging to SPF is calculated by the follow-
ing expression

FPMCS(t) = FPC(i)(t) = 1− e−λC(i)×t (8)

where FPC(i)(t) is the failure probability of the safety-related hardware element
C(i) at mission time t.

• Dual-point failure (DPF): MCS contains two hardware elements and id further classi-
fied into two kinds of constitution.

� MCS consists of the safety-related hardware element and the safety mechanism
to protect this safety-related hardware element, represented as {C(i), SMC(i)}.
The failure probability of such an MCS is computed by the following expression

FPMCS(t) = FPRFC(i)
(t) + FPDPF,LC(i)

(t) (9)

where
FPRFC(i)

(t) = 1− e
−λC(i)×(1−DCRFC(i)

)×t
(10)

and
FPDPF,LC(i)

(t) = 1− e
−(λC(i)×DCRFC(i)

×(1−DCDPF,LC(i)
))×t

(11)

where DCRFC(i)
and DCDPF,LC(i)

represent the diagnostic coverage (DC) of safety
mechanisms with regard to the residual faults and latent dual-point faults.

� Any two safety-related hardware elements could lead to the safety goal viola-
tion only when these two hardware elements fail at the same time, represented
as {C(i), C(j)}.
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The failure probability of such an MCS is calculated by the following expression

FPMCS(t) = FPC(i)(t)× FPC(j)(t) (12)

With the above expressions (8)–(12), we can calculate the failure probability for each
MCS. An MCS is marked as the safety vulnerability if this MCS’s failure probability is
greater than or equal to PFPMHFtar (t), PFSPFMtar (t), or PFLFMtar (t). For such an MCS, the
safety mechanism must be deployed or upgraded (if existed) to reduce the failure rate of
the hardware element(s) in this MCS. Otherwise, the requirements for achieving the target
ASIL goal could never be fulfilled. We call such an MCS the MBP (Must-Be-Protected)
weak points. There are MBPPMHF, MBPSPFM, and MBPLFM associated with the safety
metrics of PMHF, SPFM, and LFM, respectively. On the contrary, an MCS is termed POD
(Protected-On-Demand) if the failure probability is lower than PFPMHFtar (t), PFSPFMtar (t),
and PFLFMtar (t). Similarly, an MCS could belong to the PODPMHF, PODSPFM, or PODLFM. It
is worth noting that the requirements for reaching the target ASIL may still not be achieved
even though all the listed MCS belong to the POD. Under these circumstances, we need to
determine the most critical weak point and then deploy or upgrade the safety mechanism
to the addressed hardware element so that the most effective failure rate reduction for the
whole system can be assured.

For each MCS, the quantified gaps between FPMCS(t) and PFPMHFtar (t), and PFSPFMtar (t)
and PFLFMtar (t) are calculated through the following steps:

a. Calculate the λSPFMtar and λLFMtar : According to expression (5), we know that SPFMtar
can be achieved only when the total failure rates associated with the single-point faults
and residual faults are less than (1− SPFMtar)× ∑Safety-Related HW elements λ. Thus, the
λSPFMtar can be specified by

λSPFMtar = (1− SPFMtar)×∑Safety-Related HW elements λ (13)

Similarly, according to expression (7), the λLFMtar can also be specified by

λLFMtar = (1− LFMtar)×∑Safety-Related HW elements(λ− λSPF − λRF) (14)

b. Calculate PFPMHFtar (t), PFSPFMtar (t), and PFLFMtar (t) with the following expressions

PFPMHFtar (t) = 1− e−PMHFtar×t (15)

PFSPFMtar (t) = 1− e−λSPFMtar×t (16)

PFLFMtar (t) = 1− e−λLFMtar×t (17)

c. Calculate GapPMHF(MCSk), GapSPFM(MCSk), and GapLFM(MCSk) for the kth MCS with
the following expressions

GapPMHF(MCSk) = FPMCSk (t)/PFPMHFtar (t) (18)

GapSPFM(MCSk) = FPMCSk (t)/PFSPFMtar (t) (19)

GapLFM(MCSk) = FPMCSk (t)/PFLFMtar (t) (20)

Subsequently, the MCSk can be marked as the MBP or POD by the following criteria:

• When GapPMHF(MCSk), GapSPFM(MCSk), or GapLFM(MCSk)

I ≥1 → for Gapx(MCSk) ≥ 1, MCSk is identified as an MBPx weak point for
the corresponding safety metric x, where x can be PMHF, SPFM, or LFM. For
example, if GapPMHF(MCSk) ≥ 1 and GapSPFM(MCSk) ≥ 1, then MCSk belongs
to MBPPMHF and MBPSPFM.
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I <1 → for Gapx(MCSk) < 1, MCSk is identified as a PODx weak point for the
corresponding safety metric x, where x can be PMHF, SPFM, or LFM.

The process regarding the FTA-based weak-point analysis is exhibited in Figure 3. All
the hardware elements in the MBP weak points are required to lower their failure rates
by safety mechanism deployment until there are no hardware elements marked as MBP
weak points. Therefore, we specify a set named PT_MBP, which is the union of MBPPMHF,
MBPSPFM, and MBPLFM to contain all the MBP weak points. If PT_MBP is not an empty set,
then all the hardware elements in PT_MBP are required to employ the appropriate safety
mechanisms to diminish the failure rates. On the other hand, if the PT_MBP becomes an
empty set, then all the MCSs belong to the POD. If the target ASIL is still not achieved,
the MCS with the highest Gapx(MCSk), where x can be PMHF, SPFM, or LFM, is selected,
and the hardware elements contained in this MCS are assigned to set PT for POD. The
elements in set PT for POD are the targets to conduct the safety mechanism deployment or
enhancement. For safety mechanism deployment or improvement, we develop an ASIL-
oriented system hardware architecture exploration algorithm to effectively apply safety
mechanisms to achieve the safety requirements for the target ASIL goal. This algorithm
will be introduced in the next subsection.

Figure 3. Execution flow of the proposed FTA-based weak-point analysis.

Before we depict the FTA-based weak-point analysis methodology, a simple example
is used to explain the idea of the methodology. In this example, we assume that there are
five hardware elements in the system. Furthermore, all five hardware elements are not
protected by any safety mechanism initially. Table 2 shows the original failure rates for
these five elements and Figure 4 shows the constructed fault tree for this simple system.

Table 2. The hardware elements and their failure rates.

HW Element HW Unit * % Non-Safe Fault Failure Rate λC(i)(/h)

C(1) 6 100% 7.6 × 10−8

C(2) 4 100% 4.4 × 10−8

C(3) 8 100% 2.6 × 10−7

C(4) 10 100% 1.05 × 10−6

C(5) 3 0% 1.2 × 10−8

* 1 HW unit = 10 K gate counts.
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Figure 4. Constructed fault tree for the simple system.

We point out that the hardware element C(5) does not appear in the constructed fault
tree in Figure 4 because all of C(5)’s faults have no chance of causing a safety goal violation
as shown in Table 2. In this example, we assume that the target ASIL is B. Therefore, the
SPFMtar = 90%, LFMtar = 60%, and PMHFtar = 10−7 h−1 according to Table 1.

First, the failure rates as seen below are computed following the process of Figure 1.

∑Sa f ety-Related HW elements λs = 1.2× 10−8

∑Sa f ety-Related HW elements λSPF = λC(1) + λC(2) + λC(3) + λC(4) = 1.43× 10−6

∑Sa f ety-Related HW elements λRF = ∑Sa f ety Related HW elements λDPF,L = 0 (no hardware ele-
ments are applied to the safety mechanism).

Then the target failure probabilities at a mission time o five thousand hours can be
calculated according to expressions (13)–(17) as shown below.

PFPMHFtar (t) = 1− e−PMHFtar×t = 4.99875× 10−4

λSPFMtar = (1− SPFMtar)×∑Safety-Related HW elements λ = (1− 90%)× 1.44× 10−6 = 1.44× 10−7

PFSPFMtar (t) = 1− e−λSPFMtar×t = 7.14744× 10−4

λLFMtar = (1− LFMtar)×∑Safety-Related HW elements(λ− λSPF − λRF) ∼= 0

PFLFMtar (t) = 1− e−λLFMtar×t = 0

All the MCSs can be identified according to the fault tree in Figure 4, and the failure
probabilities for all MCSs can also be computed as shown in Table 3.

Table 3. List of MCSs and their failure probabilities.

MCS SPF/DPF FPMCSk (t = 5000 h)

{C(1)} SPF 3.79928 × 10−4

{C(2)} SPF 2.19976 × 10−4

{C(3)} SPF 1.29916 × 10−3

{C(4)} SPF 5.23624 × 10−3

Consequently, we can mark each MCS as MBP or POD based on the calculated
GapPMHF(MCSk), GapSPFM(MCSk), and GapLFM(MCSk) according to expressions (18)–(20),
and the results are shown in Table 4.

The results in Table 4 show that MBP weak points exist in the system. Therefore, the
protection target set PT is specified by the union of MBPPMHF, MBPSPFM, and MBPLFM,
i.e., PT_MBP = {C(3), C(4)}. In the next subsection, we will illustrate how to apply appro-
priate safety mechanisms to the hardware elements in PT after we depict the proposed
ASIL-oriented system hardware architecture exploration algorithm.
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Table 4. List of MCSs and their quantified gaps to the target values and MBP/POD identifications.

MCS GapPMHF (MCSk) GapSPFM (MCSk) GapLFM (MCSk) MBPPMHF/PODPMHF MBPSPFM/PODSPFM MBPLFM/PODLFM

{C(1)} 7.6005 × 10−1 5.3156 × 10−1 N/A PODPMHF PODSPFM N/A
{C(2)} 4.4006 × 10−1 3.0777 × 10−1 N/A PODPMHF PODSPFM N/A
{C(3)} 2.5990 × 100 1.8177 × 100 N/A MBPPMHF MBPSPFM N/A
{C(4)} 1.0475 × 101 7.3260 × 100 N/A MBPPMHF MBPSPFM N/A

4.3. System Hardware Architecture Exploration with Safety and Hardware Overhead Consideration

The proposed system hardware architecture exploration is performed for two aspects:
Safety and hardware overhead. For the former, the system hardware architecture needs to
contain sufficient safety mechanism protection so that the safety metrics for the target ASIL
can be achieved; for the latter, the additionally increased hardware overhead attributed to
safety mechanism deployment needs to comply with the constraint specified by the system
engineers. To fulfill the safety and hardware overhead requirements, we firstly propose an
effective ASIL-oriented system hardware architecture exploration algorithm to determine
a solution that meets the safety requirements, and then use a Hardware Overhead (HO)-
oriented hardware architecture exploration algorithm to adjust the hardware architecture
solution derived from the ASIL-oriented system hardware architecture exploration algo-
rithm to satisfy the safety metrics and hardware overhead constraint simultaneously. These
two algorithms will be introduced in Sections 4.3.2 and 4.3.3, respectively. Furthermore,
we will demonstrate how to perform these two algorithms for a system with the simple
example already shown in Section 4.2.

In this work, the deployed safety mechanisms are categorized into three different
levels, which are “High”, “Medium”, and “Low” and represent the diagnostic coverage
(DC) estimated to be at least 99%, 90%, and 60%, respectively. Such categorized levels are
adopted in ISO-26262. System engineers can also specify their required DC percentages
for these three levels. If a hardware element belongs to the MCSk marked as an MBP weak
point and the GapPMHF(MCSk), GapSPFM(MCSk), and GapLFM(MCSk) cannot be reduced to
be lower than 1, even when the safety mechanism (SM) with “High” DC is used to protect
the element, then the target ASIL goal will never be fulfilled. Thus, system engineers
should replace the hardware element with a superior one with a lower inherent failure rate
or adjust the target ASIL.

4.3.1. Safety Mechanism Library

There are different types of hardware elements in a system, such as microcontroller
units, storages, sensors, and actuators. The specific safety mechanisms for each type of
hardware element should be deployed to assure the effectiveness in terms of the diagnostic
coverage and corresponding hardware overhead. If there exists a database that collects
all the feasible safety mechanisms with the information of DC and hardware overhead for
each type of hardware element, then we can rapidly discover the most appropriate safety
mechanism to be employed. In this study, we call such a database the safety mechanism
library. For safety-related hardware elements, a specific safety mechanism library can
be established. Moreover, the safety mechanism library is formalized and then can be
used in the succeeding ASIL-oriented and HO-oriented system hardware architecture
exploration algorithms.

It is worth noting that there are two feasible fault-tolerant design concepts to prevent
the dual-point faults from becoming latent. The first one is to deploy a safety mechanism
with a self-checking capability and the other is to adopt two-layered safety mechanisms,
which means that there is a first-layer safety mechanism for the hardware element protection
and a second-layer safety mechanism to detect the first-layer safety mechanism’s faults. In
this study, we assume that all the deployed safety mechanisms are developed with self-
checking features to monitor the safety mechanism itself, and therefore, no second-layer
safety mechanism is required.

The notations for the formalized safety mechanism library are defined below.
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• SMxyz(PT(e)): The deployed safety mechanism for the protection target PT(e), the eth
element in the set PT, where x,y,z ∈ {L, M, H};

� x, y represents the level of the DCRFPT(e)
and DCDPF,LPT(e)

of the deployed SM
for PT(e), respectively, where

I L means diagnostic coverage = 60%//Low diagnostic coverage.
I M means diagnostic coverage = 90%//Medium diagnostic coverage.
I H means diagnostic coverage = 99%//High diagnostic coverage.

� z is for the hardware overhead of PT(e) contributed from the deployed SM for
PT(e).

I The percentages of hardware overhead for L(Low), M(Medium), and H(High)
are assumed to be known and specified by the system engineers.

Then, the formalized safety mechanism library can be defined in the following:

• SM_Lib(PT(e)): The safety mechanism library for the PT(e); the safety mechanisms of
an element can be represented by a set that contains all feasible safety mechanisms
such as {SMLLL, SMMMM, SMHHH} or {SMLML, SMMHH, SMHHM} or {SMMHM, SMHHH}
depending on the hardware element type. SM_Lib(PT(e)) collects the sets of safety
mechanism for all hardware elements in the PT(e).

4.3.2. ASIL-Oriented Hardware Architecture Exploration Algorithm

In Section 4.2, we have pointed out that GapPMHF(MCSk), GapSPFM(MCSk), and
GapLFM(MCSk) must all be lower than 1 to eliminate the gaps between current and target
failure probabilities so that the three hardware architecture metrics could be achieved.
As seen from Figure 3, Max_Gap(k) represents the maximum gap among GapPMHF(MCSk),
GapSPFM(MCSk), and GapLFM(MCSk) for the MCSk. In the following, we assume MCSk
contains the hardware element C(i). Therefore, the reduced failure probabilities obtained
from the safety mechanism deployment shall comply with the following condition:

FPMCSk (t)
FPRFMCSk

(t)
> Max_Gap(k) (21)

where FPMCSk (t) is the original failure probability of MCSk attributed to the hardware
element C(i)’s failures without any safety mechanism protection, and FPRFMCSk

(t) is the
failure probability due to residual faults attributed to the hardware element C(i) under the
safety mechanism protection. Then, the DCRFMCSk

can be obtained according to the linearity
between the FPMCSk (t), FPRFMCSk

(t) and Max_Gap(k) as described below.

• If Max_Gap(k)= 2.5, the expression (21) can be rewritten as FPRFMCSk
(t) < 0.4× FPMCSk (t).

Next, we let FPMCSk (t) = FPC(i)(t) and FPRFC(i)
(t) = 1 − e

−λC(i)×(1−DCRFC(i)
)×t ∼=(

1− DCRFC(i)

)
× FPC(i)(t). Thus, we can acquire the expression

(
1− DCRFC(i)

)
×

FPC(i)(t) < 0.4× FPC(i)(t), which means that the DCRFC(i)
must be greater than 60%.

Therefore, we can conclude that the “Low” safety mechanism is sufficient to eliminate
the gaps if Max_Gap(k) < 2.5.

• Similarly, if 2.5≤Max_Gap(k) < 10, then we can induce the DCRFC(i)
= 90%, i.e., “Medium”

safety mechanism to be sufficient and DCRFC(i)
= 99%, i.e., “High” safety mechanism

deployment for the case Max_Gap(k) ≥ 10.

Once the DCRFC(i)
is decided, the FPDPF,LC(i)

(t) becomes nonzero. Therefore, the cur-
rent FPMCSk (t) can be expressed as FPRFC(i)

(t) + FPDPF,LC(i)
and all the GapPMHF(MCSk),

GapSPFM(MCSk) and GapLFM(MCSk) need to be updated to reflect such changes. The up-
dated GapPMHF(MCSk), GapSPFM(MCSk), and GapLFM(MCSk) here are used to determine
the DCDPF,LC(i)

. Accordingly, FPRFC(i)
(t) should be excluded when updating the gaps so

that the DCDPF,LC(i)
assignment can assure that the derived FPMCSk (t) can be lower than
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PFPMHFtar (t), PFSPFMtar (t), and PFLFMtar (t). The updated gaps are computed with the
following expressions (22)–(24):

GapPMHF(MCSk) = FPDPF,LC(i)
(t)/(PFPMHFtar (t)− FPRFC(i)

(t)) (22)

GapSPFM(MCSk) = FPDPF,LC(i)
(t)/(PFSPFMtar (t)−FPRFC(i)

(t)) (23)

GapLFM(MCSk) = FPDPF,LC(i)
(t)/(PFLFMtar (t)−FPRFC(i)

(t)) (24)

where FPDPF,LC(i)
(t) = 1− e

−
(

λC(i)×DCRFC(i)
×(1−DCDPF,LC(i)

)

)
×t

with DCDPF,LC(i)
= 0.

Next, we reassign Max_Gap(k) with the largest one among the updated GapPMHF(MCSk),
GapSPFM(MCSk), and GapLFM(MCSk). Consequently, DCDPF,LC(i)

can be assigned according
to the same derivation method for deciding DCRFC(i)

as shown above.
The proposed ASIL-oriented system hardware architecture exploration algorithm is

written by pseudo-codes as shown below.
In Algorithm 1, if the element has been assigned the safety mechanisms at previous

iterations and selected again as the target to improve its diagnostic coverage, then the
following criteria are adopted to guide the upgrade of the DC of safety mechanism for the
target element to be protected. The criteria are based on the aspects of the effectiveness of
failure rate reduction and the increased hardware overhead. We note that the protection of
the hardware element for single-point and dual-point faults is based on the concept of a
safety mechanism with self-checking. In general, the self-checking scheme employed to
cope with the dual-point faults will be considered first, because we do not need to change
the safety mechanism for single-point faults and enjoy the lower hardware overhead
increase as well as the higher failure rate reduction. As we know, the failure rate of residual
faults decreases while the DC of safety mechanism to tackle the single-point faults increases,
but meanwhile, the failure rate of latent dual-point faults could increase due to the fact that
more single-point faults covered by the safety mechanism could possibly become the latent
dual-point faults. According to the reasons stated above, the self-checking scheme used to
protect the safety mechanism is first considered to be enhanced if the hardware element
has deployed the safety mechanisms and selected the protection target again.

Algorithm 1: ASIL-oriented system hardware architecture exploration

1: Function SM_Deploy(PT)
2: for e = 1 to n do //n is the number of the elements in the set (PT)//
3: { flag← 0; SM-status← ‘false’;
4: if (DCRFPT(e)

= 0 and DCDPF,LPT(e)
= 0) then //No protection for single-point faults

and dual-point faults
5: { GapSM_D ←Max(GapPMHF(PT(e)), GapSPFM(PT(e)), GapLFM(PT(e))); //apply the Max_Gap

for PT(e)//
6: SM_Sel(PT(e), GapSM_D, “RF”);
7: Update GapPMHF(PT(e)), GapSPFM(PT(e)) and GapLFM(PT(e)) with expressions (22)–(24);
8: GapSM_D ←Max(GapPMHF(PT(e)), GapSPFM(PT(e)), GapLFM(PT(e)));
9: SM_Sel(PT(e), GapSM_D, “DPF,L”); flag← 1; }
10: if (DCRFPT(e)

6= 0 and DCDPF,LPT(e)
= 0) then //there is a protection of single-

point faults but no protection for latent dual-point faults//
11: { Update GapPMHF(PT(e)), GapSPFM(PT(e)) and GapLFM(PT(e)) with expressions (22)–(24);
12: GapSM_D ←Max(GapPMHF(PT(e)), GapSPFM(PT(e)), GapLFM(PT(e)));
13: SM_Sel(PT(e), GapSM_D, “DPF,L”);}
14: if (flag = 0 and DCRFPT(e)

6= 0 and DCDPF,LPT(e)
6= 0) then //the considered

element has been assigned the safety mechanisms at previous iterations and
selected again as target to improve its diagnostic coverage//
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Algorithm 1: Cont.

15: { if (DCDPF,LPT(e)
6= 99% and DCDPF,LPT(e)

≤ DCRFPT(e)
) then upgrade

DCDPF,LPT(e)
to the next higher level of DC; SM-status← ‘true’;

//as mentioned before, the protection of hardware element for single-
point and dual-point faults is based on the concept of safety mechanism
with self-checking. Therefore, considering the effectiveness of failure rate
reduction and the increased hardware overhead, when DC of latent dual-
point faults is not at the highest level and less than or equal to the DC of
single-point faults, the DCDPF,LPT(e)

is upgraded to the next higher level
of DC//

16: if (SM-status = ‘false’ and DCRFPT(e)
6= 99%) then upgrade DCRFPT(e)

to the next higher level of DC;
17: if (DCRFPT(e)

= 99% and DCDPF,LPT(e)
= 99%) then

18: { if PT(e) ∈ PT_MBP then return(failed); //MBP cannot be eliminated using
available SM_Lib, and therefore, fail to find a solution//

19: else PT ← MCS with the second most critical Max_Gap among all POD;
call SM_Deploy(PT); }}

20: }
21: if (PMHFite_d ≥ PMHFtar or SPFMite_d < SPFMtar or LFMite_d < LFMtar) then
22: if (all safety-related hardware elements have been applied with SMHHz) then

return(failed); //the target ASIL not achieved, but the highest DC of safety
mechanism has been employed for all safety-related hardware elements, then
the algorithm fails to disciver a feasible solution to satisfy the ASIL goal//

23: End SM_Deploy;
24: Function SM_Sel(PT(e), GapSM_D, type)
25: switch GapSM_D do
26: case ≥ 10 do//DC: High
27: if (type = RF) then DCRFPT(e)

← 99%; else DCDPF,LPT(e)
← 99%; //SM_Lib

always provides a high DC of safety mechanism for each hardware
element in the set PT//

28: case < 10 && ≥ 2.5 do //DC: Medium
29: if (type = “RF”) then
30: if (there exists SMMyz inSM_Lib(PT(e))) then DCRFPT(e)

← 90%; else
DCRFPT(e)

← 99%; //check whether medium DC of safety mechanism
for the target element to be protected is available or not in the
SM_Lib. If not, the high DC of safety mechanism is used instead.//

31: if (type = “DPF,L”) then
32: if (there exists SMxMz inSM_Lib(PT(e))) then DCDPF,LPT(e)

← 90%;
33: else DCDPF,LPT(e)

← 99%;
34: case < 2.5 do //DC: Low
35: if (type = “RF”) then
36: { if (there exists SMLyz inSM_Lib(PT(e))) then DCRFPT(e)

← 60%;
37: else if (there exists SMMyz inSM_Lib(PT(e))) then DCRFPT(e)

← 90%;
38: else DCRFPT(e)

← 99%; }
39: if (type = “DPF,L”) then
40: { if (there exists SMxLz inSM_Lib(PT(e))) then DCDPF,LPT(e)

← 60%;
41: else if (there exists SMxMz inSM_Lib(PT(e))) then DCDPF,LPT(e)

← 90%;
42: else DCDPF,LPT(e)

← 99%; }
43: End SM_Sel;

In this work, we assume that SM_Lib will provide the ‘High’ level of DC of the
safety mechanism for each hardware element in the set PT. For the cases to select the safety
mechanism of ‘Medium’ and ‘Low’ DC, we need to determine whether the demanded safety
mechanisms exist in the SMxyz(PT(e)). The safety mechanism with a higher level of DC will
be deployed if the demanded safety mechanism cannot be found in the SM_Lib(PT(e)).

Next, we will demonstrate how to perform Algorithm 1 with the simple example
presented in Section 4.2 where the set of protection targets is PT = {C(3), C(4)}. For the sake
of simplicity, we use the same safety mechanism set {SMLLL, SMLML, SMMMM, SMMHM,
SMHHH} for all hardware elements in the SM_Lib.

For C(3) and C(4) hardware elements, there is no safety mechanism deployed, so
DCRFPT(e)

= 0. Besides, from Table 4, the Max_Gap for C(3) and C(4) can be acquired.
Thus, the deployed safety mechanisms can be determined as shown in Table 5 where the
deployed safety mechanism for hardware element C(3) is represented by SMMyM, which
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means that the DCRFPT(e)
= 90% with “Medium” hardware overhead and DCDPF,LPT(e)

is
still unspecified. The meaning of SMHyH can be explained in a similar way. After safety
mechanism deployment to avoid single-point faults, the GapSM_D for C(3) and C(4) need
to be updated following the aforementioned process with expressions (22)–(24). Then
the DCDPF,LPT(e)

for C(3) and C(4) can be decided according to the updated GapSM_D as
illustrated in Table 6.

Table 5. Safety mechanism deployment for the PT according to DCRFPT(e)
.

MCS GapSM_D Deployed SM DCRFPT(e)

{C(3)} 2.5990 × 100 SMMyM 90%
{C(4)} 1.0475 × 101 SMHyH 99%

Table 6. Safety mechanism deployment for the PT according to DCDPF,LPT(e)
.

MCS GapSM_D Deployed SM DCDPF,LPT(e)

{C(3),SMC(3)} 3.1613 × 100 SMMMM 90%
{C(4),SMC(4)} 1.1588 × 101 SMHHH 99%

Then, the hardware architecture metrics can be updated in accordance with the de-
ployed safety mechanisms as stated in the following:

∑Sa f ety-Related HW elements λs = 1.2× 10−8

∑Sa f ety-Related HW elements λSPF = λC(1) + λC(2) = 1.2× 10−7

∑Sa f ety-Related HW elements λRF =
4

∑
i=3

λC(i) ×
(

1− DCRFC(i)

)
= 3.65× 10−8

∑Sa f ety-Related HW elements λDPF,L =
4

∑
i=3

λC(i) × DCRF(C(i))×
(

1− DCDPF,LC(i)

)
= 3.38× 10−8

SPFMite_d = 1−
∑Safety-Related HW elements(λSPF + λRF)

∑Safety-Related HW elements λ
= 1− 1.57× 10−7

1.43× 10−6 = 89.06%

LFMite_d = 1−
∑Safety-Related HW elements(λDPF, L)

∑Safety-Related HW elements(λ− λSPF − λRF)
= 1− 3.38× 10−8

1.274× 10−6 = 99.0%

PMHFite_d = λSPF + λRF + λDPF,L = 1.9× 10−7

Compared to the PMHFtar, SPFMtar, and LFMtar for target ASIL B, we can conclude
that only LFMtar has been achieved and PMHFite_d and SPFMite_d still violate the target
values. Thus, another design iteration is required to perform the weak-point analysis and
exploration algorithm again to deploy and/or upgrade the safety mechanisms. The results
of the weak-point analysis for the updated hardware architecture are shown in Table 7.

From Table 7, we can observe that all the MBPs have been resolved. The results show
that the proposed exploration algorithm improves the system hardware architecture’s
failure rates in an efficient fashion. However, the target ASIL is still not achieved even
though no MBP exists. Thus, the most critical weak point among all MCSs marked as
POD should be identified further. According to Table 7, {C(1)} is the most critical POD
weak point. Then, Algorithm 1 is performed to assign an appropriate safety mechanism
to C(1) according to its GapSM_D. As a result, the DCRFPT(e)

and DCDPF,LPT(e)
for C(1) are

both decided to be 60%. Furthermore, the updated hardware architecture metrics are
SPFMite_d = 92.24%, LFMite_d = 96.06%, and PMHFite_d = 1.63× 10−7, respectively. The
results demonstrate that the PMHFite_d is still greater than the target value and, hence,
another design iteration is required. The process for the next design iteration is similar to
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iteration 1 and 2, and the changes of DCRFPT(e)
and DCDPF,LPT(e)

for each hardware element
in the following design iterations are summarized in Table 8.

Table 7. List of MCSs and their failure probabilities with updated system hardware architecture.

MCS GapPMHF (MCSk) GapSPFM (MCSk) GapLFM (MCSk) MBPPMHF/PODPMHF MBPSPFM/PODSPFM MBPLFM/PODLFM

{C(1)} 7.6005 × 10−1 5.3156 × 10−1 1.49357 × 10−1 PODPMHF PODSPFM PODLFM
{C(2)} 4.4006 × 10−1 3.0777 × 10−1 8.64767 × 10−2 PODPMHF PODSPFM PODLFM

{C(3), SMC(3)} 4.9409 × 10−1 3.4556 × 10−1 9.70944 × 10−2 PODPMHF PODSPFM PODLFM
{C(4), SMC(4)} 2.0900 × 10−1 1.4617 × 10−1 4.10700 × 10−2 PODPMHF PODSPFM PODLFM

Table 8. The assigned DCRFPT(e)
and DCDPF,LPT(e)

in the design iteration 4–6. (The DC value adjusted
in each design iteration is marked as bold text.

Hardware
Element

Iteration 3 Iteration 4 Iteration 5 Iteration 6

DCRFPT(e)
DCDPF,LPT(e)

DCRFPT(e)
DCDPF,LPT(e)

DCRFPT(e)
DCDPF,LPT(e)

DCRFPT(e)
DCDPF,LPT(e)

C(1) 60% 60% 60% 90% 60% 90% 90% 90%
C(2) – – – – 60% 60% 60% 60%
C(3) 90% 99% 90% 99% 90% 99% 90% 99%
C(4) 99% 99% 99% 99% 99% 99% 99% 99%

After performing the six design iterations, the updated hardware architecture metrics
are SPFMite_d = 95.69%, LFMite_d = 97.8%, and PMHFite_d = 9.18× 10−8. As a result, all the
target values for achieving ASIL B have been satisfied. The deployed safety mechanisms for
the hardware element C(1)–C(4) are SMMMM, SMLLL, SMMHM, and SMHHH, respectively.

• Because the increased hardware overhead for the deployed safety mechanisms is not
examined in Algorithm 1, the overall hardware overhead for the whole system could
violate the specified constraint. If the constraint is violated, the proposed HO-oriented
hardware architecture exploration process should be activated. The corresponding
details are depicted in the next subsection.

4.3.3. HO-Oriented Hardware Architecture Exploration Algorithm

As aforementioned, the HO-oriented hardware architecture exploration algorithm will
be performed if the hardware overhead constraint is not met. The main purpose of this
algorithm is to explore whether there are other safety mechanism deployment solutions
with lower hardware overhead than the one assigned by the ASIL-oriented hardware
architecture exploration algorithm. During such design space exploration, there will be
four possible outcomes, which are:

a. Both the safety metrics and hardware overhead constraint are met.
b. The safety metrics are satisfied but the hardware overhead constraint is not.
c. The hardware overhead constraint is met but the safety metrics are not.
d. Neither the hardware overhead constraint nor the safety metrics are satisfied.

Outcome a indicates that a feasible system hardware architecture has been found and
the FMEDA report will also be generated. For outcome b, a new round of system hardware
architecture exploration is required to search for another possible solution with lower
overall hardware overhead. To assure that the overall hardware overhead can be effectively
reduced, our strategy is to replace the safety mechanism, which contributes the highest
hardware overhead among all deployed safety mechanisms, with a safety mechanism with
lower DC and lower hardware overhead. However, such a replacement is not allowed if the
replacement will cause the element to become MBP again. In such a case, the element with
the next highest hardware overhead in the overhead ranking will be selected as the target
to be adjusted. Moreover, if outcome c occurs, the element deploying the safety mechanism
with the lowest hardware overhead in the overhead ranking will be chosen to be replaced
by the safety mechanism with a higher level of DC. Undoubtedly, the safety mechanism



Appl. Sci. 2022, 12, 5456 19 of 29

with better DC will lead to higher hardware overhead and has the potential to lead the
outcome to turn into c or d. Therefore, the outcomes could alternatively repeat between b,
c, and d until all the possible safety mechanism replacements have been examined. If so,
it means that no feasible system hardware architecture can meet the hardware overhead
constraint and the safety requirements simultaneously. Thus, the system engineers should
review whether the specified constraint is reasonable for the target ASIL. For outcome d,
we tend to meet the hardware overhead constraint first and then the safety metrics because
satisfying the hardware overhead constraint is the primary goal in the current design phase.

We organize the concepts described above into an algorithm, which is shown in
Algorithm 2. The following notations and expressions are defined next:

• PT_d: The set containing the hardware elements with safety mechanism deployment
in the system hardware architecture derived from the Algorithm 1.

• no_d: The number of elements in the set PT_d.
• ite_d: The number of search iterations performed.
• HO_Maxsys: The maximal allowable system hardware overhead in percentage.
• HO_Totalite_d: Total system hardware overhead due to safety mechanism deployment.

HO_Totalite_d(%) =
∑no_d

e=1 HC
(
SMxyz(PT_d(e))

)
∑n

i=1 HC(i)
(25)

where

• HC(i): The hardware size in unit for the ith hardware element and n is the total
number of hardware elements in the evaluated system.

• HC
(
SMxyz(PT_d(e))

)
: The hardware overhead in unit for the safety mechanism of

the eth element in set PT_d.

HC
(
SMxyz(PT_d(e))

)
= HC(PT_d(e))× HO

(
SMxyz(PT_d(e))

)
(26)

where HO(SMxyz(PT_d(e))), the required hardware overhead in percentage for protect-
ing the hardware element PT_d(e), is specified by the system engineers.

Algorithm 2: HO-oriented system hardware architecture exploration

1: PT_d← set of all hardware elements with safety mechanism deployment in the
system hardware architecture derived from the Algorithm 1; ite_d← 0;

2: Rank all the elements in PT_d by the hardware overhead in unit from high to low;
Calculate HO_Totalite_d for PT_d;

4: pdown ← 1; pup ← no_d; SM_HO(HO_Totalite_d, down)//Select the first hardware element in
PT_d as the target to adjust

5: Function SM_HO(HO_Totalite_d, strategy)
6: while (pup ≥ pdown) //check if pup < pdown then stop the search; it means that the

design space has been comprehensively explored and no
solution can be found when pup < pdown occurs.//

7: { if (strategy = down) and (downgrade the SMPT_d(pdown) is allowable) then
8: downgrade SMPT_d(pdown) to reduce HC

(
SMxyz(PT_d(pdown))

)
;

9: else if (strategy = up) and (upgrade the SMPT_d(pup) is feasible) then
10: upgrade SMPT_d(pup) to improve DCRFPT_d(pup )

or DCDPF,LPT_d(pup )
or both;

11: else//both SM downgrade and upgrade are not allowable. In this case, the
other candidate will be selected.

12: { if (strategy = down) then pdown ← pdown + 1; SM_HO(HO_Totalite_d, down); //Try
next element

13: else pup ← pup − 1; SM_HO(HO_Totalite_d, up) //Try previous one element.}
14: ite_d← ite_d + 1; update HO_Totalite_d and ASIL metrics;
15: if (HO_Totalite_d ≤ HO_Maxsys) and (Target ASIL has been achieved) then
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Algorithm 2: Cont.

16: { return (a feasible solution has ben discovered; all the adjusted elements with
revised SM and overall system hardware overhead); terminate the
Algorithm 2; //a cost-effective solution to meet the hardware overhead
constraint and ASIL safety goal is obtained//}

17: if (HO_Totalite_d > HO_Maxsys) and (Target ASIL has been achieved) then
18: { if (downgrade the SMPT_d(pdown) is feasible) then SM_HO(HO_Totalite_d, down);//Try

same element again.
19: else pdown = pdown + 1; SM_HO(HO_Totalite_d, down); //Try next element.}
20: if (HO_Totalite_d ≤ HO_Maxsys) and (Target ASIL is not achieved) then
21: { if (upgrade the SMPT_d(pup)) is feasible) then SM_HO(HO_Totalite_d, up)//Try same

element again.
22: else pup = pup − 1; SM_HO(HO_Totalite_d, up) //try previous one element.}
23: if (HO_Totalite_d > HO_Maxsys) and (Target ASIL is not achieved) then //both hardware

overhead and ASIL metrics are violated. In this case, try to meet hardware
overhead constraint first//

24: { if (downgrade the SMPT_d(pdown) is feasible) then SM_HO(HO_Totalite_d, down); //Try
same element again.

25: else pdown = pdown + 1; SM_HO(HO_Totalite_d, down); //Try next element.}
26: }
27: return (failed); //pup < pdown occurs.
28: End function;

In the following, we will illustrate how to perform Algorithm 2 with the example
presented earlier. Before performing Algorithm 2, the hardware overhead of existing safety
mechanisms for each hardware element are provided by the system engineers as shown in
the Table 9. Here, the hardware overhead constraint HO_Maxsys is set up for 15%.

Table 9. The hardware overhead of safety mechanisms for the elements in the system.

Hardware
Element

Hardware
Unit

HO
(
SMxyz(PT(e))

)
%

SMLLL SMLML SMMMM SMMHM SMHHH

C(1) 6 6 8 20 24 32
C(2) 4 8 10 16 20 40
C(3) 8 8 10 16 18 24
C(4) 10 6 8 12 16 20
C(5) 3 10 12 20 24 30

Next, HC
(
SMxyz(PT_d(e))

)
for PT_d = {{C(1), SMC(1)}, {C(2), SMC(2)}, {C(3), SMC(3)},

{C(4), SMC(4)}} derived from Algorithm 1 can be computed, and the results are summarized
in Table 10.

Table 10. List of PT_d(e) and their HC
(
SMxyz(PT_d(e))

)
.

PT_d HC(i) HO(SMxyz(PT_d(e))) (%) HC
(
SMxyz(PT_d(e))

)
{C(1),SMC(1)} 6 HO(SMMMM(C(1))) = 20% 1.2
{C(2),SMC(2)} 4 HO(SMLLL(C(2))) = 8% 0.32
{C(3),SMC(3)} 8 HO(SMMHM(C(3))) = 18% 1.44
{C(4),SMC(4)} 10 HO(SMHHH(C(4))) = 20% 2.0

According to Tables 9 and 10, the overall hardware overhead can be computed
as follows:

HO_Totalite_d(%) =
∑4

e=1 HC
(
SMxyz(PT_d(e))

)
∑5

i=1 HC(i)
=

1.2 + 0.32 + 1.44 + 2
6 + 4 + 8 + 10 + 3

=
4.96
31

= 16.0%
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As a result, the current HO_Totalite_d is greater than HO_Maxsys, and therefore, Algo-
rithm 2 is activated to adjust the system hardware architecture acquired from Algorithm 1.
First, the set PT_d is specified to contain all the safety-related hardware elements that are
protected by safety mechanisms, and then all the elements in PT_d are sorted according to
the increased hardware overhead due to the deployed safety mechanisms. It is evident that
PT_d = {C(4), C(3), C(1), C(2)}. Then we declare two pointers, pdown and pup where pdown
points to the hardware element with the highest HC

(
SMxyz(PT_d(e))

)
, i.e., C(4), and pup

points to the hardware element with the lowest HC
(
SMxyz(PT_d(e))

)
, i.e., C(2).

Subsequently, the safety mechanism of C(4), SMHHH(C(4)), is selected as the candidate
to be downgraded for the hardware overhead reduction. However, the downgraded safety
mechanism could allow C(4) to become MBP again. Therefore, the downgrade of the
safety mechanism for C(4) is not allowable and hence we need to let pdown point to the
hardware element with the next highest HC

(
SMxyz(PT_d(e))

)
, i.e., C(3). Unfortunately,

the downgrade of C(3)’s safety mechanism is also not allowable so the next candidate C(1)
is selected. At this time, the downgrade of SMMMM(C(1)) is allowable and feasible because
C(1) is kept as POD with the downgraded safety mechanism. Consequently, SMMMM(C(1))
is replaced by SMLML(C(1)). In accordance with this replacement, all the considered design
metrics HO_Totalite_d, SPFMite_d, LFMite_dˆ, and PMHFite_d need to be updated.

HO_Totalite_d(%) =
∑4

e=1 HC
(
SMxyz(PT_d(e))

)
∑5

i=1 HC(i)
=

0.48 + 0.32 + 1.44 + 2
6 + 4 + 8 + 10 + 3

=
4.36
31

= 13.68%

SPFMite_d = 1−
∑Safety-Related HW elements(λSPF + λRF)

∑Safety-Related HW elements λ
= 1− 8.45× 10−8

1.43× 10−6 = 94.09%

LFMite_d = 1−
∑Safety-Related HW elements(λMPF,L)

∑Safety-Related HW elements(λ− λSPF − λRF)
= 1− 2.79× 10−8

1.35× 10−6 = 97.93%

PMHFite_d = λSPF + λRF + λMPF,L = 1.12× 10−7

Clearly, the PMHFite_d exceeds PMHFtar although HO_Totalite_d has met the hard-
ware overhead constraint. Therefore, another design iteration is activated to explore the
potential solution.

In the next design iteration, the hardware element C(2) pointed by pup is selected as
the upgraded candidate for its deployed safety mechanism. Apparently, the upgrade of
SMLLL(C(2)) is feasible because there exists a safety mechanism with a higher level of DC.
Thus, SMLLL(C(2)) is replaced by SMMMM(C(2)). It is worth noting that the replacement of
SMLLL(C(2)) by SMLML(C(2)) cannot resolve the PMHFtar violation situation. For this reason,
SMLML(C(2)) is not applied. Again, we need to update the corresponding HO_Totalite_d,
SPFMite_d, LFMite_d, and PMHFite_d.

HO_Totalite_d(%) =
∑4

e=1 HC
(
SMxyz(PT_d(e))

)
∑5

i=1 HC(i)
=

0.48 + 0.64 + 1.44 + 2
6 + 4 + 8 + 10 + 3

=
4.56
31

= 14.71%

SPFMite_d = 1−
∑Safety-Related HW elements(λSPF + λRF)

∑Safety-Related HW elements λ
= 1− 7.13× 10−8

1.43× 10−6 = 95.01%

LFMite_d = 1−
∑Safety-Related HW elements(λMPF,L)

∑Safety-Related HW elements(λ− λSPF − λRF)
= 1− 2.13× 10−8

1.36× 10−6 = 98.44%

PMHFite_d = λSPF + λRF + λMPF,L = 9.26× 10−8

The results show that all the hardware architecture metrics and the hardware overhead
constraint have been satisfied. Thus, the fault tree can be updated with the results of the
safety mechanism deployment as exhibited in Figure 5.
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Figure 5. Updated fault tree for the simple system with final safety mechanism deployment.

With this simple example, we have demonstrated that the proposed safety-oriented
system hardware architecture exploration framework can simultaneously deal with four
design metrics (three safety metrics and one hardware overhead constraint) with two
exploration algorithms. The framework can deliver a system hardware architecture that
conforms to the safety and hardware overhead requirements in a very limited number
of design iterations. In the following section, to concretely demonstrate the effectiveness
of the proposed framework, we employ a safety-critical AEB (Autonomous Emergency
Braking) system adopted in the real automotive industry to exemplify how to apply the
proposed framework to such a safety-related system design.

5. Case Study—An Autonomous Emergency Braking System

Figure 6 shows the functional block diagram of the AEB system [4]. The primary
function of the AEB system is to warn drivers about emergent situations and autonomously
brake vehicles to avoid a serious collision if drivers do not react to the warning signal.

Figure 6. Functional block diagram of AEB system.

For implementing the warning and autonomous braking function, radar will continu-
ously monitor the distance between the subject vehicle and the front vehicle and provide the
distance information to the central AEB control node. Once the AEB control node is aware
that the current distance falls into the dangerous range and a collision could happen under
the relative vehicle speed, the AEB control node will first send a warning message (a sound
or flashlight) to warn the driver. If the driver does not react to the warning message and
the situation becomes more severe, the AEB control node will inform the electric braking
units to immediately perform the braking action to avoid the serious collision.

Figure 7 shows the hardware architecture of the AEB system. The CAN bus is adopted
as an in-vehicle communication backbone. According to the designer’s requirements, other
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advanced in-vehicle communication protocols such as FlexRay or automotive Ethernet can
also be employed.

Figure 7. Hardware architecture of the AEB system.

The braking function of the AEB system is implemented with fail-operational consid-
eration. Once any one among four EBD nodes (whether the Brake ECU or the EBM, Electric
Brake Module) is diagnosed as having failed, the AEB control node will stop sending
the braking force to the failed EBD node. Under the circumstances, braking forces are
redistributed to the remaining three working EBD nodes. Therefore, the AEB system can
tolerate one failed EBD node with degraded braking performance.

Figure 8 illustrates the fault tree constructed from the hardware architecture as shown
in Figure 6. The K-out-of-N (or K/N) gate reflects the fail-operational design concept 3/4
(3-out-of-4) gate for four EBD nodes. It means that the failure of one EBD node will not
lead to the AEB system failure.

Figure 8. Constructed fault tree of the illustrated AEB system.



Appl. Sci. 2022, 12, 5456 24 of 29

One thing should be pointed out, and that is the concept of safety mechanism library
presented in Section 4.3.1 is developed only for demonstrating the idea of the proposed
safety framework. However, the variety of safety mechanisms or fault-tolerant techniques
in the real world is more diverse than the safety mechanisms defined in Section 4.3.1.
Therefore, in addition to the safety mechanisms described in Section 4.3.1, we also em-
ploy other types of safety mechanisms in the case study to concretely demonstrate our
safety framework with more diverse safety mechanisms in the design of safety-critical
automotive systems.

There are two kinds of safety mechanisms used in the case study, which do not belong
to the safety mechanism library depicted in Section 4.3.1. The first one is the aforementioned
k-out-of-n design applied at the system level instead of the element level for the EBD nodes.
The advantage of implementing the element protection at the system level is that the
additional safety mechanism for each individual hardware element is not required but
needs to develop the error detection scheme to monitor the healthy status of EBD nodes.
Here, we assume that an error detection has been embedded in each of the EBD nodes.
Moreover, the corresponding design and verification complexity are raised as well. Besides,
an issue arises regarding such a design, and that is how one can evaluate the failure rates for
the hardware elements, i.e., Brake ECUs and EBM in this case study, under the protection of
the K/N fault-tolerant design. In fact, the failure rates of each individual hardware element
cannot be evaluated through the proposed expressions (1) and (2) because the effectiveness
of the K/N fault-tolerant design cannot be directly represented by the diagnostic coverage
DCRFPT(e)

and DCDPF,LPT(e)
. Instead, only an overall failure rate for the whole K/N-formed

subsystem constituted by the four EBD nodes can be evaluated. The detailed steps for the
evaluation are illustrated as follows.

(1) Let λB_ECU, λEBM, and λEBD be the failure rates of the Brake ECU, EBM, and EBD
nodes (which represents any one of EBD nodes 1-4) and then λEBD = λB_ECU + λEBM
because either the failed Brake ECU or failed EBM would lead to the failure of the
EBD node.

(2) Let RK/N(t) be the reliability of the K/N-formed subsystem estimated at mission time t
and then the RK/N(t) can be computed through expression (27) as shown below [29,30].

RK/N(t) =
N

∑
K

N!
K!(N − K)!

(e−λEBD×t)K(1− e−λEBD×t)N−K (27)

(3) Let λK/N_Sub be the failure rate of the K/N-formed subsystem and then the λK/N_Sub
can be acquired by the following expression (28).

λK/N_Sub = − ln(RK/N(t))
t

(28)

The second type of safety mechanism is the hardware duplication. To protect the se-
lected hardware element with duplication, a duplication of the original hardware element is
required. Next, the original and the duplicated hardware elements are formed as a pair, and
each output of the paired hardware elements is compared to check the consistency through
a comparator. Any inconsistency means that there must be at least one faulty element in the
hardware pair. It is worth noting, in this work, we assume that the duplicated hardware
element is implemented with the diversity technique so that the probability of common-
cause failure occurring is reduced to be low enough and can be ignored. Thus, the formed
hardware element pair combined with the comparator will cause the safety goal violation
only when all of them fail concurrently. Such a fault scenario conforms to the three-point
faults, which have been classified into a safe fault as mentioned in Figure 1. Thus, the failure
rate of the hardware element deployed with hardware duplication will not be counted
when computing the three hardware architecture metrics. However, the hardware overhead
required to implement the hardware duplication technique will be 100%.
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In this demonstration, we specify ASIL D as the target to be achieved. Thus, PMHFtar,
SPFMtar, and LFMtar are required to be 10−8 h−1, 99% and 90%, respectively. The hardware
element’s failure rates used for the purpose of demonstration are listed in Table 11. System
engineers may specify more realistic component failure rates by applying reliability data
books such as SN-29500, IEC-62380/61709, and HDBK-217F, which are widely adopted in
the related industry. The percentage of non-safe faults and the applied safety mechanism
library for each hardware element can also be found in Table 11. Besides, the mission time
t is set to be five thousand hours, and the hardware overhead constraint HO_Maxsys is
set to be 40%.

Table 11. Hardware element’s failure rates of the AEB system.

Hardware Elements Failure Rate λ (/h) % Non-Safe Fault SM_Lib(C(i))

Brake ECU 3.3 × 10−7 100% Not Necessary
EBM 4.2 × 10−7 100%

CAN bus 2.4 × 10−7 100% {SMLML, SMLHL, SMHHH}
AEB microcontroller 3.8 × 10−7 100%

{SMLML, SMLHL, SMMMM,
SMMHM, SMHHH}

Brake pedal sensor 2.6 × 10−8 100%
Brake pedal ECU 1.05 × 10−8 100%

Radar 1.3 × 10−7 100%
Radar ECU 1.05 × 10−8 100%

Speed sensor 2.6 × 10−8 100%
Speed Meter ECU 1.05 × 10−8 100%

Power supply 2 × 10−8 100% {SMLHL, SMMHM, SMHHH }

Now we can compute λK/N_Sub by applying the specified failure rates and mission
time to expressions (27) and (28), respectively. The acquired λK/N_Sub is 4.18 × 10−11.
λK/N_Sub is approximately −3~−4 order of magnitude compared to the failure rates of
other hardware elements, so its effect on the overall system’s failure rate can be ignored.
Thus, the λK/N_Sub will not be counted in the following hardware architecture metric
calculation. In addition, the K/N-formed subsystem, i.e., the four EBD nodes, is also
excluded in the FTA-based weak-point analysis. In addition to the K/N-formed subsystem,
the identified MCS failure probability, acquired by quantified gaps through expressions
(18)–(20) and the corresponding Max_Gap are summarized in Table 12.

Table 12. List of MCSs and their failure probabilities for the AEB system.

MCS FPMCSk (t) GapPMHF (MCSk) GapSPFM (MCSk) GapLFM (MCSk) Max_Gap

{CAN bus} 1.19928 × 10−3 2.3986 × 101 6.3856 × 100 N/A 2.3986 × 101

{AEB microcontroller} 1.89820 × 10−3 3.7965 × 101 1.0107 × 101 N/A 3.7965 × 101

{Brake pedal sensor} 5.24986 × 10−5 2.5999 × 100 6.9178 × 10−1 N/A 2.5999 × 100

{Brake pedal ECU} 1.29992 × 10−4 1.0500 × 100 2.7953 × 10−1 N/A 1.0500 × 100

{Radar} 2.64965 × 10−4 5.2994 × 100 1.4108 × 100 N/A 5.2994 × 100

{Radar ECU} 5.24986 × 10−5 1.0500 × 100 2.7953 × 10−1 N/A 1.0500 × 100

{Speed sensor} 1.29992 × 10−4 2.5999 × 100 6.9178 × 10−1 N/A 2.5999 × 100

{Speed Meter ECU} 5.24986 × 10−5 1.0500 × 100 2.7953 × 10−1 N/A 1.0500 × 100

{Power supply} 9.99995 × 10−6 2.0000 × 10−1 5.3245 × 10−2 N/A 2.0000 × 10−1

According to Table 12, the PT is assigned as PT = PT_MBP = {CAN bus, AEB microcon-
troller, Brake pedal sensor, Brake pedal ECU, Radar, Radar ECU, Speed sensor, Speed Meter
ECU}. Then the ASIL-oriented hardware architecture exploration algorithm is performed.
For the sake of saving space, the AEB microcontroller, Brake pedal sensor, Brake pedal ECU,
Radar ECU, Speed sensor, and Speed Meter ECU are abbreviated as AEB_MCU, B_SEN,
B_PECU, R_ECU, S_SEN, and S_ECU, respectively, in the following demonstration.

Among all MBP weak points, it is evident that the Max_Gap of the CAN bus and
AEB_MCU are much higher than others. Thus, to reduce the failure rates of these two
hardware elements more efficiently, we apply the hardware duplication with diversity
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design to the CAN bus and AEB_MCU to let their faults become safe faults. Table 13
exhibits the results of the safety mechanism deployment in this design iteration.

Table 13. Safety mechanism deployments and their DCRF and DCDPF,L for PT.

PT(e) Deployed SM DCRFPT(e)
DCDPF,LPT(e)

{CAN bus,SMCAN bus} Duplication – –
{AEB_MCU,SMAEB_MCU} Duplication – –

{B_SEN,SMB_SEN} SMMMM 90% 90%
{B_PECU,SMB_PECU} SMLML 60% 90%

{Radar,SMRadar} SMMHM 90% 99%
{R_ECU,SMR_ECU} SMLML 60% 90%
{S_SEN,SMS_SEN} SMMMM 90% 90%
{S_ECU,SMS_ECU} SMLML 60% 90%

After safety mechanism deployment, the hardware architecture metrics are calculated
as shown below:

SPFMite_d = 1−
∑Safety-Related HW elements(λSPF + λRF)

∑Safety-Related HW elements λ
= 1− 2.51× 10−8

3.76× 10−6 = 99.33%

LFMite_d = 1−
∑Safety-Related HW elements(λDPF,L)

∑Safety-Related HW elements(λ− λSPF − λRF)
= 1− 7.05× 10−9

3.73× 10−6 = 99.81%

PMHFite_d = λSPF + λRF + λDPF,L = 3.215× 10−8

Consequently, only the PMHFite_d still exceeds PMHFtar and therefore a subsequent
design iteration is required. The process of the FTA-based weak-point analysis and ASIL-
oriented hardware architecture exploration at subsequent design iterations is very similar
to the previous iteration and omitted here. The derived outcomes of safety mechanism
deployment are SMCAN bus = SMHHH, SMAEB_MCU = SMHHH, SMB_SEN = SMHHH, SMB_PECU
= SMMMM, SMRadar = SMHHH, SMR_ECU = SMMMM, SMS_SEN = SMHHH, SMS_ECU = SMMMM,
SMPS = SMLML (PS stands for the power supply) and the corresponding hardware architec-
ture metrics all comply with the target ASIL D requirements, which are SPFM = 99.87%,
LFM = 99.89%, and PMHF = 8.995× 10−9. To reach these results, there are ten design
iterations executed. Next, the total hardware overhead needs to be calculated according to
the hardware overhead data summarized in Table 14.

Table 14. Hardware overhead of safety mechanism for each AEB hardware element.

Hardware
Element

Hardware
Unit

HO
(
SMxyz(PT(e))

)
%

SMLLL SMLML SMMMM SMMHM SMHHH

Brake ECU 1-4 8 – – – – –
EBM 1-4 4 – – – – –
CAN bus 16 8 10 – – 100

AEB MCU 20 20 25 50 55 100
Brake pedal

sensor 8 24 28 45 50 75

Brake pedal ECU 14 25 30 60 64 80
Radar 12 28 30 48 54 75

Radar ECU 16 28 32 52 56 75
Speed sensor 10 20 24 45 48 75

Speed Meter ECU 14 20 25 48 52 75
Power supply 6 12 15 – – 20

HO_Totalite_d(%) =
∑9

e=1 HC
(
SMxyz(PT(e))

)
∑17

i=1 HC(i)
=

82.84
204

= 40.61% > HOMaxsys
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Because the current system hardware overhead does not meet the constraint, the HO-
oriented hardware architecture exploration algorithm is activated to solve the hardware
overhead problem.

The process of performing the HO-oriented hardware architecture exploration is
similar to the previous example presented in Section 4.3.3. Therefore, we do not repeat the
process and directly provide the modified parts, which are summarized as follows:

â SMS_SEN = SMHHH → SMMHM, SMS_ECU = SMMMM → SMMHM and SMPS = SMLML
→ SMHHH.

â HO_Totalite_d(%) = ∑9
e=1 HC(SMxyz(PT(e)))

∑17
i=1 HC(i)

= 81
204 = 39.71% < HO_Maxsys.

â Hardware architecture metrics, which all comply with the target ASIL D requirement
are SPFM = 99.83%, LFM = 99.52%, and PMHF = 9.58× 10−9.

Thus, after a total of thirteen design iterations, including eleven iterations for the ASIL-
oriented algorithm and two iterations for the HO-oriented algorithm, the resulting fault
tree and the FMEDA report are obtained, as shown in Figure 9 and Table 15, respectively.

Figure 9. Resulting fault tree for the AEB system hardware architecture in compliance with ASIL D
and the hardware overhead constraint.

Table 15. FMEDA report for the AEB system with ASIL D safety goal.

Hardware
Element

Failure
Rate SR Failure

Mode(FM) FD V SM FMC RF/SPF VI L FMCL LMPF

CAN Bus 2.4 × 10−7 x Module failure 100% Duplication 100% 0 x Duplication 100% 0
Brake ECU 1-4 3.3 × 10−7 x Module failure 100% K/N 100% 0 x K/N 100% 0

EBM 1-4 4.2 × 10−7 x Module failure 100% K/N 100% 0 x K/N 100% 0
AEB MCU 3.8 × 10−7 x Module failure 100% Duplication 100% 0 x Duplication 100% 0

Brake pedal
ECU 1.05 × 10−8 x Module failure 100% x SMB_PECU 99% 2.6 × 10−10 x SMB_PECU 90% 2.57 × 10−10

Brake pedal
sensor 2.6 × 10−8 x Module failure 100% x SMB_SEN 90% 1.05 × 10−9 x SMB_SEN 99% 9.45 × 10−10

Radar 5.3 × 10−8 x Module failure 100% x SMRadar 99% 5.3 × 10−10 x SMRadar 99% 5.25 × 10−10

Radar ECU 1.05 × 10−8 x Module failure 100% x SMR_ECU 90% 1.05 × 10−9 x SMR_ECU 99% 9.45 × 10−10

Speed sensor 2.5 × 10−8 x Module failure 100% x SMS_SEN 90% 2.6 × 10−9 x SMS_SEN 99% 2.34 × 10−10

Speed Meter
ECU 1.05 × 10−8 x Module failure 100% x SMS_ECU 90% 1.05 × 10−9 x SMS_ECU 99% 9.45 × 10−11

Power supply 2.0 × 10−8 x Module failure 100% x SMPS 99% 2.00 × 10−11 x SMPS 99% 1.98 × 10−11

Total 3.76 × 10−6 6.56 × 10−9 3.02 × 10−9

Through the AEB case study, we have illustrated the proposed safety-oriented system
hardware architecture exploration framework for the safety-critical automotive system
design. Furthermore, the remarkable performance of the proposed framework has also
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been demonstrated so only a limited number of design iterations is required to achieve a
cost-effective and reliable hardware architecture that complies with the ASIL safety goal
and hardware overhead constraint simultaneously.

6. Conclusions and Future Works

In this study, we focus on the design of safety-critical automotive systems, and espe-
cially consider the metrics of ASIL safety goal and hardware overhead constraint together
in the development process. A safety-oriented system hardware architecture exploration
framework is proposed to tackle the complexity of the safety-critical automotive system
design. The core of the framework consists of three phases, namely FTA-based weak-
point analysis, an ASIL-oriented hardware architecture exploration algorithm, and an
HO-oriented hardware architecture exploration algorithm. The main contributions of this
work are the development of the ASIL-oriented and HO-oriented hardware architecture ex-
ploration algorithms to rapidly discover a cost-effective and robust hardware architecture,
which satisfies the target ASIL represented by three hardware architecture metrics, SPFM,
LFM, and PMHF, defined in ISO-26262, and the system hardware overhead constraint at the
same time. The second is to illustrate how to accomplish hardware architecture exploration
for the AEB system to comply with the requirements of the ISO-26262 functional safety
standard and hardware overhead constraint. Through the proposed FTA-based weak-point
analysis and safety-oriented fault-tolerant design methodologies, we have shown how to
effectively apply safety mechanisms to the system design so that the required ASIL can be
achieved with the required hardware overhead constraint.

We successfully overcome the high design complexity challenge of fault-tolerant hard-
ware design and kept the number of design iterations low enough to make the approach
feasible and effective in real cases. Besides, the proposed methodologies are very suitable
to be implemented in an EDA (Electronic Design Automation) tool. Integrating our design
framework into an automotive design tool chain will be our next work to be accomplished.
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