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Abstract: This study identifies seven human subjects’ walking features by training a deep learning
model with sensor data. Using the proposed Mobile Health Application developed for collecting
sensor data from an Android device, we collected data from human subjects with a history of
mild traumatic brain injury. The sensors measure acceleration in m/s2 with respect to: the X, Y,
and Z directions using an accelerometer, the rate of rotation around a spatial axis with a gyroscope,
and nine parameters of a rotation vector with rotation vector components along the X, Y, Z axes
using a rotation vector software-based sensor. We made a deep learning model using Tensorflow
and Keras to identify the walking features of the seven subjects. The data are classified into the
following categories: Accelerometer (X, Y, Z); Gyroscope (X, Y, Z); Rotation (X, Y, Z); Rotation vector
(nine parameters); and a combination of the preceding categories. Each dataset was then used for
training and testing the accuracy of the deep learning model. According to the Keras evaluation
function, the deep learning model trained with Rotation vector data shows 99.5% accuracy for
classifying walking characteristics of subjects. In addition, the ability of the model to accurately
classify the characteristics of subjects’ walking with all datasets combined is 99.9%.

Keywords: walking feature; deep learning; mobile; sensor; mild traumatic brain injuries; mobile health

1. Introduction

Because the human body is composed of many different biomechanical systems (e.g.,
multiple joints, diverse sensorimotor responses, muscular and skeletal interconnectivity, etc.),
individuals may have an inherently unstable biomechanical structure. For individuals
with a traumatic brain injury (TBI), the brain injury may further exacerbate problems
with this unstable biomechanical structure. Mild types of TBI or mild traumatic brain
injury (mTBI) also contribute to several body balance problems because unspecified areas
in the injured brain may negatively influence the center of gravity (COG) of the human
body. In fact, several individuals with even a history of mTBI experience long-term
difficulties in sensorimotor functions, including visual function or eye movements and
muscle imbalance, which may cause limited mobility and impaired body balance [1–5].
Therefore, it is important to understand the challenges associated with maintaining daily
balance, such as walking balance, among those with a history of mTBI. Previous research
indicates that mTBIs increase the range of COG [6,7], thus making walking different from
that of individuals without mTBI. This COG is related to walking balance [8].

Previous studies in human balance and related health problems have used a variety of
measurement tools, such as force plates for postural stability testing [6], motion capture
systems for gait analysis [9], visual motor equipment to measure eye movements [10],
or body sensors to measure gait patterns [8,11]. However, the major limitation of these
tools is that they require affected individuals to visit a clinical or research laboratory
for assessment. Therefore, it is not suitable to measure human body balance for mobile
health (mHealth).
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Mobile health (mHealth) methodologies [11,12] are inexpensive and widely available,
and are used for monitoring gait disturbances associated with chronic diseases [13]. Addi-
tionally, mHealth is a nice tool for providing real-time assessment and receiving feedback
because it works on a smartphone. Real-time assessment and feedback [14] can both detect
and prevent further functional deterioration, as well as save affected individuals multiple
trips to clinics [15,16].

In this study, smartphone sensors collected data on leisurely walking for subsequent
analysis using deep learning. Data for six mTBI subjects and one non-TBI subject were
collected using a mHealth application that accesses two hardware sensors and one soft-
ware sensor on smartphone devices that were worn by the subjects. On-board hardware
recorded acceleration in m/s2, with the accelerometer recording acceleration in X, Y, and Z
directions, and a gyroscope measuring acceleration with respect to rotation around a spatial
axis. In addition, nine parameters associated with a rotation vector and rotation vector
component along the X, Y, and Z axes were recorded using rotation vector software-based
sensors previously installed on the Android devices. The subjects walked about 220-feet
round trips. Walking data for the seven subjects were imported into a deep learning model
originally built with TensorFlow [17] and Keras [18] in R, and subsequently classified in
order to improve accuracy of the deep learning model. Model training with accelerometer
data yielded a 50.5% accuracy in classifying subjects’ walking. Deep learning model train-
ing with Gyroscope data presented an accuracy of 48.3%. The accuracy of the model trained
with the rotation vector component along the X, Y, and Z axis data was 77.1%. Model
training with the nine parameters of rotation vector was 99.5%. Model training with all
data sets yielded a 99.9% accuracy in predicting the classification of the subject’s walking.

2. Experiment Methods
2.1. Mobile Health Application

The mHealth application was developed to measure and record acceleration data
and rotational data in real time using an Android smartphone’s motion sensors [19,20].
Figure 1a shows the mHealth application in use during data collection. The application
was developed for use with Android mobile platforms, software development kits (SDKs)
greater than 21 [21], using Android Studio, The mHealth application was installed on the
Samsung Galaxy S8 with the Android 7.0 mobile operating system.

Figure 1. (a) The measuring sensor data in walking. Accelerometer, Gyroscope, and Rotation Matrix
of XYZ were collected. (b) Subject information. Base information that can be related to walking was
collected from subjects.
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The smartphone measures rotation and acceleration through an angle around an
axis (X, Y, Z) as shown in Figure 1a. The mHealth application collects rotation data
and acceleration data in 10 ms intervals using the on-board accelerometer, gyroscope,
and rotation vector software-based sensor.

The data are then saved to an SQLite database and CSV (comma-separated values) files
stored on the smartphone. The application (Figure 1b) also collects subjects’ background
information prior to real-time data collection, including any head, back, or leg pain; prior
concussion experience; and gender, race, height, and weight.

2.2. Data Collection

A total of seven subjects were tested and their walking data were collected by the
mHealth application. Table 1 describes their background information, including age, race,
gender, number of mTBI injuries, year of last injury, weight, and height. All of the subjects’
ages ranged from 19 to 35 years. Among six subjects who reported a history of mTBI,
three subjects (50%) had more than one mTBI and two of which were injured within the
past year. One subject did not have any history of mTBI.

Table 1. Human subjects’ general information.

ID Age Race Gender # of mTBI Injuries Year of Last Injury Weight Height

A01 23 Asian Female 1 2019 127 5′1”

A02 35 Asian Male 5 2018 148 5′4”

A04 20 Asian Female 1 2015 117 4′11”

C20 32 White Female 3 2015 155 5′4”

C21 19 White Female 4 2019 132 5′8”

C17 21 White Female 1 2015 115 5′1”

CS03 24 White Female 0 0 115 5′2”

During the experiment, each subject wore a smartphone in the pocket of a waistband
located at the center of the front body, as shown in Figure 2a. The smartphone screen
was placed facing the direction of travel with its top turned to the right side of the body.
The subjects walked along a straight, linear path at a comfortable pace in an indoor hallway
of a building. The subjects were also instructed to walk leisurely to an initial destination ca.
220 feet away from their current location and return to the starting location as shown in
Figure 2b.

Figure 2. (a) A subject wearing the Smartphone. (b) XYZ-axis orientations of the smartphone during
the walking balance test. X-axis is the right (−) and the left (+) side of the subject. Y-axis is the up
(−) and the down (+) of the subject. Z-axis is the forward (+) and the backward (−) of the subject.
Subjects wearing the smartphone walked for about 440 feet in total.
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Upon return, each subject walked a total of ca. 440 feet round trip. The mHealth
application was activated upon the subject’s touching the “begin” button on the phone
screen at the beginning of the trial, and the data collection was terminated in the mHealth
application when the subject returned to the starting location.

3. Analysis and Experimental Results

We analyzed subjects’ acceleration in m/s2 for the rate of rotations around spatial X, Y,
Z axes; the nine parameters of rotation vector; and the rotation vector component along
the X, Y, Z axes. Table 2 shows the resulting statistical analysis from one of the subjects in
terms of acceleration (accX, accY accZ); the rate of rotations as measured by the on-board
gyroscope (gyroX, gyroY, gyro Z); and the rotation vector component assessed by the
rotation vector software-based sensor (rotX, rotY, rotZ). Table 2 shows the minimum value,
maximum value, mean, median, variance (var), standard deviation (SD), and Quartiles
(Q). For example, A01 has a higher acceleration speed downward from its current location
(X axis in Figure 2a) than upwards (−X axis in Figure 2a) due to the effect of gravity.
In addition, although subjects intended to walk in a straight line (as indicated by the Z axis
in Figure 2a), some subjects proceeded to deviate left (−Y axis in Figure 2a) or right (Y axis
in Figure 2a) from the target path. All the subjects’ statistical information on walking data
are displayed in Appendices A and B and show a scatter plot of rotation X, Y, Z with the
first 30 s of walking data.

Table 2. Statistical information of A01 subject’s data.

ID Sensor Min Max Mean Med Var SD Q1 Q2 Q3 Q4

A01

accX 4.111 17.638 9.459 8.731 4.848 2.202 4.111 7.844 8.731 10.873

accY −5.259 5.494 −0.276 −0.309 2.207 1.486 −5.259 −1.286 −0.309 0.692

accZ −6.954 7.104 −0.174 0.230 3.122 1.767 −6.954 −1.101 0.230 1.105

gyroX −1.185 2.714 0.014 0.042 0.190 0.436 −1.185 −0.315 0.042 0.344

gyroY −1.260 1.510 0.002 −0.033 0.094 0.306 −1.260 −0.213 −0.033 0.181

gyroZ −1.115 1.229 0.002 −0.008 0.103 0.322 −1.115 −0.209 −0.008 0.200

rotX −0.756 0.749 0.033 −0.412 0.260 0.510 −0.756 −0.466 −0.412 0.552

rotY −0.600 0.011 −0.493 −0.493 0.004 0.060 −0.600 −0.544 −0.493 −0.444

rotZ −0.662 0.672 0.056 −0.393 0.251 0.501 −0.662 −0.433 −0.393 0.567

Data corresponding to the first 10 s (1000 rows) and the last 10 s (1000 rows) during
each subject’s data collection session were removed to account for the start- and stop-
button activation within the mHealth application. The data were then analyzed by the
deep learning algorithms originally developed within Tensorflow and Keras in R, as shown
in Figure 3. The model uses one input layer, one output layer, and three hidden layers.
The output layer uses softmax activation [22] function and the inner and hidden layers use
the Rectified Linear Units (relu) [23] function for activation. Figure 4 shows the detailed
information of each layer. Both the input layer and hidden layers contain 256 arbitrarily
decided neurons and the output layer contains 7 neurons for classifying seven subjects.
The dropout rate [24] is 50% for both the input and hidden layers to avoid overfitting from
the training data set (x_data_train, y_data_train). For initializing the weight of neurons,
the model uses the Glorot normal initializer (also called Xavier normal initializer) [25].
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Figure 3. (a) Deep learning model using Tensorflow and Keras. (b) Compile the model. (c) Train the
model. (d) Evaluate the model.

Figure 4. Deep learning model.
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Figure 3b shows the compilation of the deep learning model. The model is compiled
with the categorical cross entropy loss function [17,18] to classify seven categories, and the
Adam algorithm [26] to find a minimized cost of the model. For training of the model,
we used the ID of subjects as a label (y_data) and the time series data (accX, accY, accZ,
gyroX, gyroY, gyroZ, rotX, rotY, rotZ, and the nine parameters for the rotation vector) as
input data (x_data). The ratio of input (x_data_train)–output (y_data_train) training data set,
to input (x_data_test)–output (y_data_test) test data set is seven to three. So, approximately
100,000 input rows of data (x_data_train)–output (y_data_train) are used for training and
approximately 43,000 input rows of data (x_data_test)–output (y_data_test) are used to
test the model. Model training used the training data set (x_data_train, y_data_train).
The training data set was used 300 times (epoch) to train the deep learning model as shown
in Figures 3c and 5 shows the loss and accuracy of the model during training, where X-axis
of the graph represents epoch time and Y-axis represents a loss value by optimizer and
accuracy of evaluation. Improving the accuracy of the deep learning model was facilitated
with five different combinations of data sets including acceleration (Acc X, Y, Z) in the
X, Y, and Z directions for the data set corresponding to the gyroscope (data set titled,
Gyro X, Y, Z); the rotation vector component along the X, Y, Z axis (Rot X, Y, Z) data
set; the nine parameters of the rotation vector (Rot vector—9); and the previously stated
datasets combined. The trained deep learning model used Acc data (Figure 5a) and Gyro
data (Figure 5b) to gradually minimize loss and increased the accuracy of the model up to
50 epochs. However, models of more than 100 epochs experienced few significant gains in
terms of greater accuracy and minimization of loss.

The deep learning model trained with the Rot data (Figure 5c), the Rotation vector
data (Figure 5d) and the dataset composed of all existing data sets combined (Figure 5e),
each experienced significant decreases in the loss and similarly significant increases in
model accuracy. Rotation vector (Figure 5d) and the combination of all data sets (Figure 5e)
achieved up to 100% accuracy during the training of the deep learning model. Accuracy
for the Rot (Figure 5c) increased to approximately 80% during model training. Among the
multiple data sets, the deep learning model presented the highest performance when
trained with the Rot XYZ (Figure 5d) and with all datasets combined (Figure 5e).

Outcomes associated with model training were evaluated with the test data set
(x_data_test, y_data_test) using Keras code (Figure 3d).

Table 3 shows the result of this evaluation. Model training with acceleration (Acc X,
Y, Z) in X, Y, and Z directions data sets indicates a 50.5% accuracy in classifying subjects’
walking characteristics using the test data (x_data_test). The model trained with Gyro-
scope data (Gyro X, Y, Z) presents an accuracy rate of 48.3%. The model trained with the
rotation vector component along the X, Y, Z axis data set (Rot X, Y, Z) reveals 77.1 % accu-
racy. Rot XYZ is calculated from the nine parameters associated with the rotational vector.
Thus, the trained model with Rot XYZ presents a higher accuracy than the accuracies
derived from the accelerometer-related, and gyroscope-related datasets. The model trained
with the nine parameters of rotation vector (Rot vector—9) displays accuracy of 99.5%.
The model trained with all datasets shows 99.9% accuracy in matching the subject’s unique
walking features with the corresponding correct subject (y_data_test) using test data
(x_data_test). According to evaluation of the model, using nine parameters of rotation
vector data was most effective in training the deep learning model for classifying the
walking characteristics of the seven subjects.
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Table 3. Loss and accuracy of the model.

Model Data Type Loss Accuracy

Acc X, Y, Z 1.291 0.505 (50.5%)

Gyro X, Y, Z 1.316 0.483 (48.3%)

Rot X, Y, Z 0.540 0.771 (77.1%)

Rot vector—9 0.014 0.995 (99.5%)

All data set 0.010 0.999 (99.9%)

4. Conclusions and Future Work

We analyzed the walking characteristics of six mTBI subjects and one non-mTBI
subject to identify their walking features by training the deep learning model with multiple
data sets. We collected the walking data from the subjects using the mHealth application
originally developed for measuring acceleration in m/s2 in the X, Y, and Z directions
from the accelerometer; the rate of rotations around a spatial axis of gyroscope hardware;
nine parameters of rotation vectors; and rotation vector components along the X, Y, Z axis
using rotation vector software-based sensor on the Android device. The sensor data were
subsequently used to train a deep learning model developed with Tensorflow and Keras
in R. According to model evaluations, using nine parameters of rotational vectors was
the most effective dataset in training the deep learning model to accurately identify the
walking characteristics of the seven subjects (95.5% accuracy).

With clinical data of mTBI and non-mTBI subjects, we will make a deep learning model
that can predict (or be matched with) different levels of post-injury symptom severity on
the Glasgow coma scale [27]. It is our hope that this model and the mHealth application
together will contribute to the early detection of acute decline in sensorimotor function
after mTBI based on the patient walking data. Additionally, the mHealth application
will be useful to examine and screen the clinical symptom progress during post-mTBI
recovery [28].
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Appendix A

Statistics Information of acceleration, rate of rotation around a spatial axis from the
gyroscope, rotation vector component along the X, Y, Z axis. (Q is Quantiles).
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ID Sensor Min Max Mean Med Var SD Q1 Q2 Q3 Q4

A01

accX 4.111 17.638 9.459 8.731 4.848 2.202 4.111 7.844 8.731 10.873

accY −5.259 5.494 −0.276 −0.309 2.207 1.486 −5.259 −1.286 −0.309 0.692

accZ −6.954 7.104 −0.174 0.230 3.122 1.767 −6.954 −1.101 0.230 1.105

gyroX −1.185 2.714 0.014 0.042 0.190 0.436 −1.185 −0.315 0.042 0.344

gyroY −1.260 1.510 0.002 −0.033 0.094 0.306 −1.260 −0.213 −0.033 0.181

gyroZ −1.115 1.229 0.002 −0.008 0.103 0.322 −1.115 −0.209 −0.008 0.200

rotX −0.756 0.749 0.033 −0.412 0.260 0.510 −0.756 −0.466 −0.412 0.552

rotY −0.600 0.011 −0.493 −0.493 0.004 0.060 −0.600 −0.544 −0.493 −0.444

rotZ −0.662 0.672 0.056 −0.393 0.251 0.501 −0.662 −0.433 −0.393 0.567

A02

accX 3.429 20.308 9.247 9.126 8.345 2.889 3.429 7.083 9.126 11.076

accY −6.690 5.626 −0.130 −0.074 2.734 1.653 −6.690 −1.103 −0.074 1.003

accZ −8.901 3.527 −2.067 −1.641 4.072 2.018 −8.901 −3.553 −1.641 −0.565

gyroX −0.799 3.170 0.016 0.003 0.076 0.276 −0.799 −0.141 0.003 0.150

gyroY −0.936 1.213 −0.002 0.029 0.112 0.335 −0.936 −0.271 0.029 0.226

gyroZ −0.994 0.845 −0.004 0.010 0.079 0.281 −0.994 −0.241 0.010 0.229

rotX −0.783 0.783 0.079 −0.430 0.346 0.589 −0.783 −0.495 −0.430 0.682

rotY −0.703 0.013 −0.493 −0.555 0.014 0.116 −0.703 −0.605 −0.555 −0.379

rotZ −0.622 0.623 0.067 −0.345 0.220 0.469 −0.622 −0.389 −0.345 0.548

A04

accX 3.520 18.975 9.341 8.983 5.798 2.408 3.520 7.494 8.983 10.952

accY −6.312 7.734 0.226 0.397 5.936 2.436 −6.312 −1.764 0.397 2.075

accZ −12.249 3.984 −1.193 −0.390 8.057 2.838 −12.249 −1.809 −0.390 0.592

gyroX −1.867 2.629 0.015 0.006 0.482 0.694 −1.867 −0.576 0.006 0.574

gyroY −1.911 2.213 0.004 −0.014 0.274 0.524 −1.911 −0.343 −0.014 0.320

gyroZ −1.087 1.237 −0.004 0.005 0.146 0.381 −1.087 −0.257 0.005 0.230

rotX −0.731 0.729 0.027 −0.427 0.353 0.594 −0.731 −0.566 −0.427 0.625

rotY −0.610 0.061 −0.447 −0.449 0.004 0.059 −0.610 −0.489 −0.449 −0.406

rotZ −0.696 0.691 0.011 −0.427 0.280 0.529 −0.696 −0.517 −0.427 0.543

C17

accX 2.249 17.106 9.411 9.174 5.381 2.320 2.249 7.679 9.174 11.153

accY −4.707 6.073 0.096 0.206 1.790 1.338 −4.707 −0.730 0.206 0.907

accZ −8.789 6.298 1.599 1.819 4.147 2.036 −8.789 0.715 1.819 3.005

gyroX −1.485 3.033 0.015 0.014 0.168 0.410 −1.485 −0.263 0.014 0.267

gyroY −1.246 1.663 0.002 −0.039 0.185 0.430 −1.246 −0.300 −0.039 0.228

gyroZ −1.053 1.275 0.011 −0.021 0.080 0.283 −1.053 −0.200 −0.021 0.202

rotX −0.638 0.658 0.047 −0.292 0.180 0.425 −0.638 −0.353 −0.292 0.495

rotY −0.610 0.024 −0.477 −0.504 0.006 0.076 −0.610 −0.545 −0.504 −0.407

rotZ −0.776 0.767 0.057 −0.362 0.255 0.505 −0.776 −0.418 −0.362 0.594
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ID Sensor Min Max Mean Med Var SD Q1 Q2 Q3 Q4

C20

accX 3.271 15.704 9.413 9.617 4.846 2.201 3.271 7.698 9.617 11.002

accY −3.575 4.934 0.435 0.447 1.728 1.314 −3.575 −0.517 0.447 1.290

accZ −6.564 2.625 −0.880 −0.340 2.924 1.710 −6.564 −1.711 −0.340 0.297

gyroX −0.955 2.356 0.016 −0.013 0.103 0.321 −0.955 −0.208 −0.013 0.211

gyroY −1.137 1.324 0.001 −0.009 0.131 0.362 −1.137 −0.271 −0.009 0.260

gyroZ −1.028 1.051 −0.002 0.001 0.090 0.301 −1.028 −0.185 0.001 0.171

rotX −0.761 0.763 0.075 −0.415 0.300 0.547 −0.761 −0.464 −0.415 0.628

rotY −0.626 0.011 −0.480 −0.510 0.011 0.103 −0.626 −0.579 −0.510 −0.386

rotZ −0.664 0.651 0.050 −0.403 0.251 0.501 −0.664 −0.443 −0.403 0.557

C21

accX 4.314 15.072 9.442 9.086 2.473 1.572 4.314 8.384 9.086 10.512

accY −3.994 5.240 0.578 0.500 1.523 1.234 −3.994 −0.220 0.500 1.371

accZ −6.882 5.154 −0.264 −0.029 2.322 1.524 −6.882 −0.957 −0.029 0.684

gyroX −1.607 2.609 0.013 0.021 0.206 0.454 −1.607 −0.316 0.021 0.318

gyroY −1.276 1.426 0.005 −0.016 0.066 0.256 −1.276 −0.164 −0.016 0.166

gyroZ −0.763 0.650 0.002 −0.003 0.039 0.197 −0.763 −0.134 −0.003 0.156

rotX −0.727 0.727 −0.007 −0.449 0.247 0.497 −0.727 −0.496 −0.449 0.500

rotY −0.604 0.077 −0.516 −0.517 0.001 0.032 −0.604 −0.533 −0.517 −0.502

rotZ −0.687 0.695 −0.042 −0.477 0.232 0.482 −0.687 −0.515 −0.477 0.447

CS03

accX 1.900 21.839 9.326 8.969 13.316 3.649 1.900 6.293 8.969 12.385

accY −6.451 6.068 −0.004 0.024 5.227 2.286 −6.451 −1.941 0.024 1.924

accZ −15.912 7.004 −1.262 −0.502 9.513 3.084 −15.912 −2.084 −0.502 0.646

gyroX −2.138 3.812 0.019 0.075 0.746 0.864 −2.138 −0.750 0.075 0.754

gyroY −2.553 2.288 −0.005 −0.046 0.192 0.438 −2.553 −0.272 −0.046 0.243

gyroZ −1.259 1.548 −0.004 0.015 0.303 0.551 −1.259 −0.454 0.015 0.435

rotX −0.718 0.718 0.051 0.507 0.323 0.568 −0.718 −0.515 0.507 0.616

rotY −0.658 0.072 −0.473 −0.482 0.007 0.086 −0.658 −0.541 −0.482 −0.411

rotZ −0.690 0.698 0.050 0.501 0.260 0.510 −0.690 −0.461 0.501 0.557

Appendix B

Scatter plot of Rotation X, Y, Z with the first 30 s of walking data.

A01′s Rotation X and Y A01’s Rotation X and Z A01′s Rotation Y and Z
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A02′s Rotation X and Y A02′s Rotation X and Z A02′s Rotation Y and Z

A04′s Rotation X and Y A04′s Rotation X and Z A04′s Rotation Y and Z

C17′s Rotation X and Y C17′s Rotation X and Z C17′s Rotation Y and Z

C20′s Rotation X and Y C20′s Rotation X and Z C20′s Rotation Y and Z

C21′s Rotation X and Y C21′s Rotation X and Z C21′s Rotation Y and Z

CS03′s Rotation X and Y CS03′s Rotation X and Z CS03′s Rotation Y and Z
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