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Abstract: The spectral decomposition is a valuable tool for improving the resolution of seismic inter-
pretation, and thus can improve the accuracy of the subtle geo-features (thin and narrow channels,
thin reservoirs, etc.). Variational mode decomposition (VMD) is an adaptive signal decomposition
algorithm that non-recursively decomposes multicomponent signals into several band-limited in-
trinsic mode functions, which is competitive in enhancing time-frequency resolution. However,
discontinuity is normally caused by the trace-by-trace process, making the 3D seismic interpretation
difficult. To address this issue, we present a novel seismic geological channel detection method for
3D seismic dataset based on multi-trace variational mode decomposition (MTVMD). The proposed
method decomposes the broadband seismic data into several intrinsic mode functions and then
computes seismic attributes from each component for geological feature analysis. Further tested
by field seismic case, the proposed method demonstrates strength in depicting the detailed edges
and sedimentary signatures of paleochannels. Overall, the proposed method provides an alternative
approach to identifying seismic channels, especially for the detailed portrayals of subtle geo-features
in low-quality seismic data.

Keywords: seismic interpretation; spectral decomposition; seismic geological channel; variational
mode decomposition; multi-variate variational mode decomposition

1. Introduction

Channel sand bodies are of great importance in many petroliferous reservoirs and
are targets in oil and gas explorations [1]. The appropriate distribution of sand bodies,
particularly sand thicknesses, aids in the investigation of sedimentary facies [2]. Therefore,
the precise interpretation of seismic geological channels is highly demanding. Ascribing
to the continuous channel migration and frequent vertical superposition of sand bodies,
sedimentary patterns of the channels in seismic records are always complicated. Doubly
inhibited by varied physical properties and oil-bearing properties on seismic data, tradi-
tional attribute-based analytical methods have difficulties in recognition, especially for
identifying the precise edges and geological patterns of paleo-channels [3,4].

With spectral decomposition techniques, initial broadband seismic data can be de-
composed into a sequence of frequency-decomposed seismic volumes of various frequen-
cies. Separating the frequency bands of seismic data is theoretically valid for extracting the
information on varied geological scales [5]. The spectral characteristics of relatively nar-
row band components are usually used to delineate the anomalous geologic features that
would otherwise be hidden within the full-bandwidth seismic response; thus, appropriate
bands would effectively increase resolution and reliability in seismic interpretation [6,7].
Accordingly, spectral decomposition-based methods were developed and widely applied in
seismic data analysis, including sequence stratigraphy analysis [8], reservoir characteriza-
tion [9], thin-layer thickness estimation [10], and hydrocarbon detection [11]. Conventional
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spectral decomposition methods include short-time Fourier transform (STFT) [12], contin-
uous wavelet transform (CWT) [13], and S transform (ST) [14]. The STFT, CWT, and ST
are all bound by the Heisenberg uncertainty principle with a tradeoff between time and
frequency localization [15]. In order to identify the intrinsic hidden properties contained
in the nonlinear and non-stationary signals, the empirical mode decomposition (EMD)
method is introduced by Huang et al. as a data-driven signal decomposition technique
without using predefined wavelet libraries or base functions [16]. The EMD-based time-
frequency analysis of seismic data shows the relative high resolutions in both the temporal
and frequent realms, as it is effective on the instantaneous attributes of nonlinear and
nonstationary signals. However, with a deficiency on the bandlimited assumption of the
instinct mode function, the usage of the EMD method is limited. Further, the variational
mode decomposition (VMD) method was developed, which can decompose the seismic
signals into a sequence of quasi-orthogonal intrinsic mode functions, with the most compact
bandwidth [17].

The VMD method was applied in seismic data analysis, including denoising [18,19],
sequence stratigraphy analysis [7,20], seismic time-frequency analysis [21], and seismic
facies analysis [22,23]. The VMD-based method, which calculates trace-by-trace, is unable
to maintain the lateral continuity of 2D or 3D seismic data, causing difficulties in subtle
geological feature discriminations [7], and consequently, including the seismic channels.
Rehman and Aftab recently proposed the multivariate variational mode decomposition
(MVMD) that is valid for multivariate or multichannel datasets [24]. In the MVMD method,
the lateral continuity of the decomposed intrinsic mode functions (IMFs) is improved by
applying lateral constraints, which are valid for extracting the spatial aspects of seismic
reflection on different geological scales [25].

The tangled geo-features ascribed to the subtle discontinuities have brought difficulties
in recognition by the original variational mode decomposition-based method. Taking into
account the horizontal consistency of 3D seismic data, we propose a multi-trace variational
mode decomposition-based seismic spectral decomposition method for geological feature
discrimination in this study. First, we introduce the theory of variational mode decomposi-
tion and multivariate variational mode decomposition methods. Then, we illustrate the
proposed MTVMD-based method for geological channel detection. Finally, we demonstrate
the applicability of the proposed method to 3D field data.

2. Methods

In this section, we describe the variational mode decomposition method and multivari-
ate variational mode decomposition method, then demonstrate the workflow of a multi-trace
variational mode decomposition-based approach for 3D seismic data interpretation.

2.1. Variational Mode Decomposition

The variational mode decomposition method aims to decompose a real valued signal
into a series of sub-signals with specific sparsity properties of its bandwidth in the spec-
tral domain, while reproducing the input [17]. It is an adaptive and non-recursive signal
decomposition approach in which each mode is assumed to be an amplitude modulation-
frequency modulation (AM-FM) signal with a bandwidth and corresponding center fre-
quency, i.e.:

uk(t) = Ak(t) cos(φk(t)), (1)

where, Ak(t) and φk(t) are the instantaneous amplitude and phase of uk(t) respectively. The
whole process of VMD can be considered as the construction and solution of a constrained
variational problem, as described by Equation (2):

min
{

K
∑

k=1
‖∂t

[(
δ(t) + i

πt

)
× uk(t)

]
e−iωkt‖

2

2

}
,

s.t.
K
∑

k=1
uk(t) = x(t) ,

(2)
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where uk is the kth decomposed mode, ωk is the center frequency of the corresponding
kth decomposed mode, δ(t) is a Dirichlet function, x(t) is the input signal. The term
(δ(t) + i/πt) × uk(t) is the Hilbert transform of uk.

A quadratic penalty term α and Lagrangian multipliers λ are adopted to render the
variational problem unconstrained; the quadratic penalty term can guarantee better con-
vergence properties, even in the presence of Gaussian noise, and the Lagrangian multiplier
is used to enforce a strict constraint. The augmented Lagrangian is described as follows:

L(uk, ωk, λ) = α
K
∑

k=1
‖∂t

[(
δ(t) + i

πt

)
× uk(t)

]
e−iωkt‖

2

2

+‖x(t)−
K
∑

k=1
uk(t)‖

2

2
+

〈
λ, x(t)−

K
∑

k=1
uk(t)

〉
.

(3)

where α is a parameter balancing the variational energy term and the fidelity term. The alter-
nating direction method of the multipliers (ADMM) can be employed to solve Equation (3).
The modes and the center frequencies are updated iteratively by Equations (4) and (5),
respectively:

ûn+1
k =

x̂−∑j 6=k ûj +
(
λ̂/2

)
1 + 2α(ω−ωk)

2 . (4)

ωn+1
k =

∫ ∞
0 ω|ûk(ω)|2dω∫ ∞

0 |ûk(ω)|2dω
. (5)

where (·̂) indicates a Fourier-transformed signal. The Lagrangian multiplier will also be
updated according to the following equation after each epoch:

λn+1 = λn + τ

(
x̂−∑

k
ûn+1

k

)
. (6)

Finally, the above iteration terminates when the convergence condition is satisfied, namely:

∑
k
‖ûn+1

k − ûn
k ‖

2
2/‖ûn

k ‖
2
2 < ε. (7)

According to the preceding descriptions, there are four parameters that must be
specified in advance: the mode number K, the balancing parameter α, the constraint
intensity τ, and the tolerance of convergence criterion ε. The detailed complete algorithm
of VMD can be found in [17]. It is important to note that VMD decomposes the input signal
trace by trace, the lateral continuity is not considered.

2.2. Multivariate Variational Mode Decomposition

The goal of multivariate variational mode decomposition (MVMD) is to analyze a
multivariate input signal containing M number of data channels into a predefined number
K of multivariate components. As an extension of the VMD method, K multivariate
components that will fully construct the input signal x(t) are searched:

x(t) =
K

∑
k=1

uk(t). (8)

where the kth multivariate component. uk(t) = [uk,1(t), uk,2(t), . . . , uk,M(t)] is a vector with
M components.

MVMD takes the multivariate input signal as a whole and tries to seek K num-
ber of multivariate components from the input signal, with a minimum sum of band-
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widths [24]. The optimization problem for MVMD can be naturally expanded from
Equation (2) as follows:

min
uk ,ωk

{
K
∑

k=1

M
∑

m=1
‖∂t

[(
δ(t) + i

πt

)
× uk,m(t)

]
e−iωkt‖

2

2

}
,

s.t.
K
∑

k=1
uk,m(t) = xi(t), i = 1, 2, . . . , M.

(9)

In Equation (9), the target function becomes the sum of the bandwidth of all of the
modes over all of the channels, and the central frequencies ωk in each mode are the same
among different channels. The target function in Equation (8) can be reformulated as an
augmented Lagrangian:

L(uk, ωk, λ) = α
K
∑

k=1

M
∑

m=1
‖∂t

[(
δ(t) + i

πt

)
× uk,m(t)

]
e−iωkt‖

2

2

+
M
∑

m=1
‖xm(t)−

K
∑

k=1
uk,m(t)‖

2

2
+

M
∑

m=1

〈
λm(t), xm(t)−

K
∑

k=1
uk,m(t)

〉
.

(10)

where the Lagrangian multiplier and the penalty weighting factor play the same role as
those in VMD. The ADMM procedure is also used for the solution of Equation (10), as
formulated in Equations (10)–(12), which is slightly different from that in VMD:

ûn+1
k,m =

x̂m −∑j 6=k ûj,m +
(
λ̂l,m/2

)
1 + 2α(ω−ωk)

2 , (11)

ωn+1
k =

∑M
m=1

∫ ∞
0 ω

∣∣ûk,m(ω)
∣∣2dω

∑M
m=1

∫ ∞
0

∣∣ûk,m(ω)
∣∣2dω

, (12)

λn+1 = λn + τ

(
xm(ω)−∑

k
un+1

k,m

)
, m = 1 : M (13)

Until convergence:

∑
m

∑
k
‖ûn+1

k,m − ûn
k,m‖

2

2
/‖ûn

k,m‖
2
2 < ε. (14)

The associated explanation can be located in the original work of Rehman and
Aftab [24] and is not repeated here.

Figure 1 gives a schematic illustration of the algorithm of MVMD for a 2D seismic
profile. In the algorithm, MVMD unifies the quantity of the decomposed component and
their center frequency. It can not only increase the seismic signal similarity, but also the
calculation efficiency by exchanging the time through memory space. The decomposition
results reflect the seismic geological structures on various scales.

2.3. Multi-Trace VMD Based Seismic Channel Detection Method

Inspired by multi-variational mode decomposition [24] and quasi-bivariate varia-
tional mode decomposition [26] methods, we proposed a multi-trace variational mode
decomposition-based (MTVMD) approach to deal with a 3D seismic dataset with only
one primary dimension with discernible quasi-periodicity. However, instead of a simple
concatenation of these intrinsic mode functions (IMFs) among the second non-decomposed
dimension (inline and crossline direction are assumed here), the carrier frequency of IMFs
with the same rank should be rebalanced among all of the traces. Such a consideration is
based on the idea that there should be no big inter-trace discontinuity in each IMF; therefore,
this step serves as an additional constraint to minimize the mode mixing problem.
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The 3D seismic data xl,m(t) with L number of inline traces and M number of crossline
traces is converted to be a quasi-2D seismic dataset after dimensionality reduction with
the trace from both inline and crossline directions. We propose a novel seismic channel
detection method, based on MTVMD in conjunction with seismic attributes. The detailed
workflow (shown in Figure 2) can be summarized as follows.
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(1) Decompose the 3D seismic dataset into a series of band-limited components using the
MTVMD method;
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(2) The instantaneous frequency and amplitude of each component are utilized to obtain
the seismic attributes, such as Root Mean Square amplitude, amplitude variance,
and coherence;

(3) The attributes are involved in the analysis of seismic geological feature interpretation,
such as seismic channels.

3. Field Data Application

We evaluate the performance of the proposed method by a 3D field seismic data. The
dataset here is derived from the Chepaizi uplift in the western Junggar Basin, China. The
Chepaizi Uplift was formed during the deposition of the Neogene Shawan Formation as a
large-scale terrestrial slope with fluvial-delta sedimentation in the western basin, and it
currently offers a potential exploratory perspective [27,28]. These data contain the sedi-
mentary transition from the braided channel to the curved channel and the near-end delta,
with frequent vertical superposition of sand bodies and continuous channel migration in
the Shawan Formation. Discriminating subtle geological features of sedimentary channels
from seismic data is difficult, due to the complicated patterns of the fluvial-delta deposition.
Figure 3 shows the 3D field dataset, and time slices and vertical profiles are extracted from
the seismic volume. The exacted time slice at t = 1665 ms (Figure 4a), the vertical profiles at
inline No. 98520 (Figure 4b), and crossline No. 11272 (Figure 4c) are used as cases. As seen
in the vertical profiles, pinch out on both sides of the seismic reflections are characteristic
of the fluvial seismic facies (noted by the black arrows), however, hardly seen features of
an entire channel in the horizontal time slice.
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We can use the through-well seismic profiles to analyze more precisely the properties of
the seismic geological channels. Figure 5 depicts the location of Well C1 on the southeastern
channel of the selected real data. Through the lithological characteristics of the channel of
Well C1, the grain size gradually becomes finer, the grains are coarser, and the lithology is
gravel-bearing fine sandstone with a thickness of 2~9 m. The logging facies at the black
ellipse dotted line is a zigzag box shape, which is in line with the logging facies type
characteristics of the channel. On the well-passing seismic section, it can be seen that the
seismic facies at the location of the black ellipse dotted line are continuous-moderately
strong amplitude, which is consistent with the characteristics of the seismic facies type of
the channel, and has a channel shape in the lateral direction.
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t = 1650 ms; (b) the vertical seismic profile extracted at Crossline No. 98520; (c) the vertical seismic
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seismic profiles.

We use the full bandwidth dataset to calculate the Root Mean Square amplitude to
analyze the seismic geological channels in this dataset, as shown in Figure 6. The figure
shows that the extension direction and detailed description of the subtle channel facies
are not clear. Apparently, spectral decomposition on the frequency bands is necessary
in this case. We evaluate the performance of the proposed method by 3D field seismic
data. To compare the performance on the resolution, we extracted band range frequency
profiles and applied VMD- and MTVMD-based methods for comparison. Otherwise, RMS
amplitude is else calculated. We demonstrate the superiority of MVMD over VMD using
the through-well seismic profiles extracted from the seismic data. The input parameters K,
α, τ and ε equal to 3, 2000, 0, and 10−4, respectively. Figures 7 and 8 depict the decomposed
components by using the MTVMD and VMD methods on the vertical seismic profile AA’
and BB’, respectively. The center frequencies of the decomposed components are from
low frequency to high frequency. In Figures 7d–f and 8d–f, we can observe that the lateral
consistency of the 2D data cannot be guaranteed, because the processing is calculated trace
by trace. Even a slight oscillation can completely alter the outcome of the breakdown,
indicated by the black arrows. Instabilities such as these are a common drawback of the
mode decomposition methods, which make it harder to control noise and cause structural
abnormalities. Figures 7a–c and 8a–c show the multivariate intrinsic mode functions
(MIMFs) from the MVMD method, geological structural changes are more consistent and
reasonable, which improves seismic interpretation.
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For extracting the appropriate frequency bands, the dominant frequency of seismic
data is considered, which is approximately 45 Hz on average with the effective bandwidth
ranging from 10 to 81 Hz. Accordingly, three frequency bands of the RMS amplitude are
chosen, including 10~33 Hz, 34~57 Hz, and 58~81 Hz, by the STFT method (Figure 9a–c).
Consequently, three decomposed components are calculated by the VMD and MTVMD
methods, as shown in Figures 10 and 11, respectively. Based on the VMD methods, channels
of the fluvial-delta depositional system in the Shawan Formation are complete, verifying
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that both the VMD and MTVMD methods are valid for enhancing the geological features’
discrimination. However, details of the geological features, especially for the subtle seismic
geological channel features, are dissimilar.
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Figure 10. The RMS amplitude slices at t = 1650 ms. (a–c) show three decomposed components from
the VMD method: (a) IMF1; (b) IMF2; (c) IMF3.

Recognized channels in fluvial-delta depositions are noted as red arrows in Figures 9–12.
The presence of gaps and “jumps” in Figure 10a,c, marked as the black arrows, are evident
due to the inconsistent center frequency. Overall, it is noticed that the high-frequency
data (e.g., Figures 9c, 10c and 11c) are all presenting more sedimentary details compared
to those of a low and medium frequency. However, it is always difficult to identify the
spatial location, width, and flow direction of the narrow channels by using traditional
time-frequency analysis methods. Although the high-frequency results are not as clear as
the intermediate-frequency results in some locations, it is evident that the high-frequency
spectrum is better described. For instance, some narrow channels (shown as the red
arrow in Figure 11) in slices by the VMD method (Figures 10a and 11b) are expected
but unrecognizable, however, these characteristics are significantly improved using the
MTVMD based algorithm (Figure 11c,d).
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Figure 12. The detailed comparison in IMF2 and IMF3 components from the VMD and MT-VMD
methods. Here, (a,c) are from Figure 10b,c, respectively; (b,d) are from Figure 11b,c, respectively. The
original location of (a–d) are marked as white boxes in Figures 10 and 11.

Specifically, spatial spreading of the narrower branched channels is differentiated
(Figure 10c, marked with a red arrow), except for the main stream of wide channels
(Figure 9c). Subtle channels in lateral distributions are more distinct with the MTVMD
method (Figure 11c, red dash lines). As estimated by scales, the resolution of channels by
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the MTVMD method can reach around 16 m (e.g., 16 m thickness and 20 m width, as shown
in Figure 11). In addition, by the MTVMD method, overall clear depositional patterns and
lateral consistency are evident (Figure 11), with the comparison of the results decomposed
by STFT and VMD (Figures 9 and 10), which is expected to result in more concentrated
energy and reduced shadow effect from the dip of seismic data by the MTVMD method.

4. Conclusions

A novel multi-trace variational mode decomposition-based seismic spectral decompo-
sition method is presented for the purpose of better discrimination of the subtle seismic
geological channels. The conclusions from this study are that:

(1) The variational mode decomposition method has the advantages of high resolution,
complete decomposition, and avoidance of the mode stacking effect, which is suitable
for enhancing the extraction of the target signal in seismic interpretation;

(2) Multi-trace variational mode decomposition provides an improved lateral consistency
and resolution for recognizing the subtle geological features of channels, which
enhances the quality and reliability of seismic interpretation;

(3) Tested by a 3D seismic dataset, the results have proved that, on data-driven decompo-
sition approaches, a higher spectral-spatial resolution and clearer stratigraphy and
lithology boundaries were obtained, compared to the traditional short-time Fourier
transform method.

Although the computational efficiency was improved, a multi-core parallel computing
strategy should be considered when processing 3D datasets by using the MTVMD method.
With more big data input, the alternating direction method of multipliers for MVMD in
the frequency domain may have high computation complexity. Data segmentation is also
an effective strategy that divides the input data into a series of smaller ones, which can be
considered for processing. In addition, subsequent research should also concentrate on the
optimal selection of decomposition parameters.
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