
Citation: Yang, G.; Qu, Y.; Fang, X.

Editable Image Generation with

Consistent Unsupervised

Disentanglement Based on GAN.

Appl. Sci. 2022, 12, 5382. https://

doi.org/10.3390/app12115382

Academic Editor: Hui Yuan

Received: 28 April 2022

Accepted: 24 May 2022

Published: 26 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Editable Image Generation with Consistent Unsupervised
Disentanglement Based on GAN
Gaoming Yang †, Yuanjin Qu *,† and Xianjin Fang

School of Computer Science and Engineering, Anhui University of Science and Technology,
Huainan 232001, China; gmyang@aust.edu.cn (G.Y.); xjfang@aust.edu.cn (X.F.)
* Correspondence: quyuanjin1996@163.com
† These authors contributed equally to this work.

Featured Application: This work will be applied to editable image generation. In the future, con-
trollable 3D models can be generated to reduce the workload of film and television or game workers.

Abstract: Generative adversarial networks (GANs) are often used to generate realistic images, and
GANs are effective in fitting high-dimensional probability distributions. However, during training,
they often produce model collapse, which is the inability of the generative model to map the input
noise to the real data distribution. In this work, we propose a model for disentanglement and
mitigating model collapse inspired by the relationship between Hessian and Jacobian matrices. This
is a concise framework for producing few modifications to the original model while facilitating the
disentanglement. Compared to the pre-improvement generative models, our approach modifies the
original model architecture only marginally and does not change the training method. Our method
shows consistent resistance to model collapse on some image datasets, while outperforming the
pre-improvement method in terms of disentanglement.

Keywords: deep learning; unsupervised learning; disentanglement; generative adversarial networks

1. Introduction

In recent years, many frameworks for representing high-dimensional data in an unsu-
pervised manner have proliferated. Among many deep generative methods, generative
adversarial networks (GANs) are among the most prominent methods for synthesizing
real images. Generative Adversarial Network (GAN) has many meaningful works in
high-resolution graph generation [1–5]. The emergence of GANs has made a huge leap in
modeling high-dimensional distributed data, which has attracted great research interest. It
consists of two networks: a generator and a discriminator, where the generator tries to map
the latent data to the real data distribution. However, these data are often highly diverse.
Therefore, the training of datasets often brings various model training collapse, both in
terms of reduced model generation quality and generation diversity.

To solve this problem, there are three main options: (1) modifying the model architec-
ture to change different architectures for different situations (e.g., AdaGAN [6], D2GAN [7]);
(2) achieving better data mapping for the required generative goals by modifying the loss
function (e.g., WGAN [8], LSGAN [9], EBAGN [10]); or (3) modifying the hidden space
(DeLiGAN [11]). We focus on the model architecture, and we modify the original learning
paradigm. This approach does not require large modifications to the original model, which
greatly broadens the ease of use and applicability, and allows faster convergence to an
equilibrium point.

Such a modified approach makes the model more entangled in the latent space. To
cope with this problem, SeFa [12] disassembled the first fully connected layer of the GAN
to disentanglement, and it is this layer of disentanglement that makes the overall disen-
tanglement capability very limited. The Hessian GAN [13] minimizes the non-diagonal

Appl. Sci. 2022, 12, 5382. https://doi.org/10.3390/app12115382 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12115382
https://doi.org/10.3390/app12115382
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app12115382
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12115382?type=check_update&version=2

Appl. Sci. 2022, 12, 5382 2 of 22

terms of the Hessian matrix to better learn disentanglement, and this method treats each
output independently but lacks holistic constraint, so it lacks competitiveness in spatial
representation. To solve this problem, Jacobian (OroJaR) [14] computes the Jacobian matrix
of outputs to represent the changes caused by potential inputs, constraining the Jacobian
vectors of each dimension to be orthogonal, so it can make it possible to compensate for this
problem. Still, this method lacks the hessian penalty for effective access to the second-order
of the original model information and weakens the output diversity. We demonstrate the
intrinsic connection between these two methods and propose a new method that allows
the model to have a clear separation boundary and effective spatial separation.

The mode collapse of the generative adversarial network has existed since the model
was produced. Some scholars’ works [15–18] make the model better to avoid this problem.
For using these methods [15–18], the original model needs to be significantly changed, so
we propose our method to mitigate mode collapse.

The method we propose to mitigate mode collapse is dedicated to further reducing the
probability of mode collapse based on the original model, which we mainly show through
loss line graphs and evaluation metrics. Moreover, our model can mitigate mode collapse
without increasing the training burden.

Alleviating model collapse is only the first step in practical training. To generate
higher-quality and controllable images, disentanglement is necessary. Some scholars’
works [19–23] have done many works, but they do not perform well in disentanglement
with multiple objects and complex scenes, so we propose our disentanglement method.
Our method outperforms previous disentanglement performances for multiple objects and
complex scenes.

In summary, we propose a new training framework that improves model stability
and disentanglement with brief modifications to the model. Our approach allows training
the model without getting into a local Nash equilibrium problem and doing the model as
a disentanglement process. Our approach encourages discriminators and generators to
diversify the generated samples to step out of the local optimum. At the same time, the loss
term can make the boundaries of the diverse samples clearer to achieve the diversity of real
data. In this framework that we proposed, we can choose to change the model architecture
to resist model collapse, or we can choose to add our loss function to solve the entanglement.
We conducted some experiments on various GAN models to evaluate the performance
of our approach under different datasets. Our method consistently outperforms the pre-
improvement learning paradigm in model collapse mitigation and generation quality. In
short, this paper makes the following contributions:

• We analyze the intrinsic connections and differences between Hessian regularization
and Jacobian regularization.

• We propose a joint Hessian–Jacobian regularization model that enables GAN to en-
courage models to better disentanglement, while modifying the network architecture
using only the hyperparameters in it can also better mitigate model collapse.

• We have done relevant experiments to show that our approach is useful in both
mitigating model collapse and disentanglement representations.

2. Related Work

In deep learning, the two main types of unsupervised disentanglement learning are
adversarial generative network (GAN) [24] and variational autoencoder (VAE) [25]. Before
this, reconstruction networks already existed [26,27], and the creation of GANs brought
at the same time the related optimization and disentanglement problems. Among the
responses, there are changes in different architectures to modify the model architecture
(AdaGAN [6], D2GAN [7]), and by modifying the loss function to achieve better data
mapping for the required generative target (WGAN [8], LSGAN [9], EBAGN [10]), and by
modifying the hidden space (DeLiGAN [11]).

Appl. Sci. 2022, 12, 5382 3 of 22

2.1. Better Model Structure
2.1.1. Modifying the Model Architecture

In the training of the datasets, not all their data streams are connected. So, there are
cases where a single generator has difficulty capturing all the streams. Some researchers
have turned their attention to the network architecture of GAN. The main focus here is
to modify the number of generators or discriminators. AdaGAN [6] improves model
performance by aggregating many potential individual predictors to form a composite
predictor, but its multiple models and complex training process make training more expen-
sive. BEGAN [28] uses a self-encoder as a classifier and matches the loss distribution of
the self-encoder through the loss based on Wasserstein distance. In order to make 3D con-
trollable, Henzler et al. [29] used differentiable rendering learning to represent voxels, and
the voxels based on this method were not clear enough to cause artifacts. Heusel et al. [30]
proposed two time-scale update rules. Still, this approach tends to make the training of
GANs network hard. Even if the regularization term is added, the effect is not very obvious,
and the training cost is also high. CGAN [31] is different from GAN, it adds the same con-
dition to both the Generator and the Discriminator and uses this condition to determine the
direction of the Generation model. CGAN [31] uses the conditional probability Generation
model to generate multiple outputs simultaneously through different inputs of dependent
variables. D2GAN [7] uses two discriminators to minimize KL divergence (Kullback–
Leibler divergence: KL divergence is used to express the degree of difference between two
distributions) and invert KL divergence, and it can solve the model collapse problem to
some extent. However, like other methods, D2GAN [7] has the common problem of the
computational complexity.

2.1.2. Alternative Loss Functions

InfoGAN [32] proposed an information-theoretic extension of GANs that obtains a
deconvoluted representation of the data by penalized latent reconstructions. Mao et al. [9]
proposed LSGAN, which uses a least-squares loss function instead of the GAN loss func-
tion, and they defined a pullback operator to map the generated samples to the data stream
shape, which alleviates the instability of GAN training and poor quality of the generated
images. EBGAN [10] provides an energy-based explanation for GAN, and thus can use
a series of energy-based tools for GAN. The exhaustive grid search experiment verifies
the complete set of hyperparameters and architecture settings of GAN and EBGAN [10].
Radford et al. [33] alleviates the stability of GAN-generated images to some extent, but the
generated images lack global uniformity. Arjovsky et al. [8] used Wasserstein distance
instead of JS scatter while completing stable training, which is difficult to train and slow to
converge during practical experiments. Then, Gulrajani et al. [34] improved WGAN [8] and
proposed WGAN-GP, which used weight clipping in dealing with Lipschitz constraints.
The method 3D Controllable Image Synthesis proposed by Liao et al. [35] requires pure
background images as an auxiliary to process multi-object scenes, which brings differen-
tiable rendering to a new level, and the difficulty of obtaining pure background images
reduces to a certain extent the breadth of application of this method. Hessian Penalty [13]
achieved orthogonalization by constraining the output to be diagonal to the input Hessian
matrix. After that, OroJaR [14] constrained the input by Jacobian matrix dimensions to
disentangle the model. BGAN [36] means Boundary Seeking GAN, and it is dedicated to
finding the boundary of GAN; this refers to the boundary when the discriminator’s loss
is generally stable at 0.5 because the effect of generating pictures at this time is the best.
To obtain the optimal D, Hjelm et al. [36] made some modifications to the loss function.
When D(x) = 0.5, G is optimal. The opposite approach has been used by [37], in order to
make localization operations easier and more meaningful in each semantic region, they
used a large number of localization controls by semantic mappings and sorted them, thus
achieving the desired effect.

Appl. Sci. 2022, 12, 5382 4 of 22

2.2. Disentanglement

Among the existing unsupervised methodological approaches, the two main types
of disentanglement representations for GAN are disentanglement in the GAN potential
space and regularized disentanglement. GANSPACE [38] applies PCA to the sampled
data to find significant and meaningful directions in the style space of StyleGAN [1].
Mildenhall et al. [39] proposed a neural radiation field that combines implicit neural mod-
els with volume rendering to reconstruct complex scenes. FineGAN [40] uses information
theory with weaker supervised information for background, object pose, shape, and texture
to find meaningful orientations. An unsupervised method such as [41] enables the clas-
sifier to correctly identify the semantic orientations in the matrix. InfoGAN [32] includes
autoencoders on the potential space; however, it has been shown to have similar stability
issues to standard GAN and requires stabilization of empirical skills. Giraffe [42] advocates
generation directly in the 3D modeling process, and they introduce regularization in 3D
modeling. Giraffe [42] can better disentangle a single object, but the disentanglement does
not perform well in the multi-object case.

In generation tests, generators still suffer from uneven generation distributions, includ-
ing collapsed generation content and incomplete semantics. However, these works provide
a variety of approaches and solutions that alleviate the generator crash problem to some
extent, but the disentanglement does not perform well. Among many existing generative
frameworks, GANs tend to synthesize the highest quality generation. However, they
are more difficult to optimize due to unstable training dynamics. Compared to previous
methods, our approach requires neither too much change in the model structure nor any
additional trainable parameters to achieve a better Nash equilibrium and less overfitting,
and a better disentanglement representation.

3. Theoretical Method and Simplified Calculation

In this section, we first introduce the basic theory of GAN dynamics description. Then,
we describe the intrinsic unity of the proposed Hessian regularization and Jacobian regular-
ization for learning the disentanglement representation. Finally, we discuss it with related
methods (Jacobian (OroJaR) [14] and Hessian penalty [13]) and present our approach.

3.1. Basic Theory and Dynamics of GAN

Generative adversarial networks (GANs) fit the data distribution of generators to the
original dataset using a game in which generative models compete with discriminators.
The generator G takes a random noise vector as input and maps it to points in the target
data distribution. The discriminator D receives the data and tries to determine whether it
really comes from the empirical distribution (if so, it outputs 1) or is made by the generator
(output 0). During the training iterations, noise vectors from the Gaussian distribution G
are pushed through the generator network to form a batch of generated data samples. This
process is expressed in the max-min formula as Equation (1)

min
u

max
v
L(u, v) (1)

In Equation (1), L denotes the objective function, u denotes the parameters of the
generator and v denotes the parameters of the discriminator. In the rest of this paper, G
denotes the generator, and D denotes the discriminator. In GAN, x refers to the samples in
the real distribution being learned, and z is the target distribution. We set the optimization
goal of G to maximize fG and the optimization goal of D to maximize fD. In this way, in
GAN, we can represent the process as a dynamical system using the ordinary differential
equation, and the parameters of this dynamical system consist of two parts: θ = (u, v),
then Equation (1) combined with the basic equation of GAN can be written as:

L(u, v) = E(x,z)∼P [L(u, v; x, z)] = E
x∼pdata(x)

[f (Dv(x))] + E
z∼pz(z)

[f (1− Dv(Gu(z)))] (2)

Appl. Sci. 2022, 12, 5382 5 of 22

In Equation (2), x denotes the training samples and z denotes the noise vectors. GAN
is not searching for a globally optimal solution but a local optimal solution. We want the
trajectory of the dynamical system to enter a local convergence point, i.e., Nash equilibrium,
with continuous iterations, and define the Nash equilibrium point as: u = arg max

u
fG(u, v),

v = arg max
v

gD(u, v) It is easy to prove that for a zero-sum game (f = −g), at the Nash

equilibrium point, its Jacobian matrix (Equation (3)) is negative definite.[
∇2

u fG(u, v) ∇u,v fG(u, v)
∇v,u fD(u, v) ∇2

v fD(u, v)

]
(3)

We can determine whether local convergence is reached by checking the properties of
the Jacobian matrix. If at some point, its first-order derivative is 0 (as Equation (4)) and its
Jacobian matrix is negative definite, then that point is a Nash equilibrium point.(

0
0

)
=

(
∇u fG(u, v)
∇v fD(u, v)

)
(4)

We know that the eigenvalues of semi-negative definite matrices are all less than or
equal to zero. Then: if the eigenvalues of the Jacobian matrix at a point are all negative
real numbers, the training process converges with a sufficiently small learning rate; if
the eigenvalues appear to be complex, the training does not achieve local convergence
in general; if the real part of the complex eigenvalues is small and the imaginary part is
relatively large, some very demanding learning rate is needed to reach convergence. To
deal with this situation, we first analyzed the connection and difference between using
the Hessian penalty and the Jacobian discriminant (Section 3.2) and approached this
convergence with the Hessian–Jacobian consistent orthogonal method, which is partially
seen in Section 3.3.

3.2. Hessian Penalty and Jacobian Penalty

The Hessian penalty and the Jacobian penalty each have their own focus in character-
izing the original data distribution. This section focuses on the parts of these two things
that we use.

3.2.1. Hessian Penalty

Now consider the Hessian matrix, first making the non-diagonal of the Hessian matrix
zero, so that its partial derivatives only act independently in each direction, as Equation (5).

Hij =
∂2G

∂zi∂zj
=

∂

∂zj

(
∂G
∂zi

)
= 0 (5)

The purpose of this is that zj has no effect on how the perturbation zi changes the

output of G. The Hessian matrix thus corresponds to the loss LH(G) =
|z|
∑

i=1

|z|
∑
j 6=i

H2
ij, but this

is difficult to solve directly for the calculation, and we need to manipulate it further. After
estimating it with unbiased empirical variance, we have Equation (6).

LH(G) = Varv

(
vT Hv

)
(6)

where v is the Rademacher vector (each entry has the same −1 or +1) and vT Hv is the
second-order directional derivative of G in the direction v times |v|. Equation (6) can be
estimated using the unbiased empirical variance. In practice, we sample a small number of v
vectors (usually only two) to compute this empirical variance. The minimizing Equation (6)
is equivalent to minimizing the sum of squares of the non-diagonal elements of the Hessian

Appl. Sci. 2022, 12, 5382 6 of 22

matrix. We quickly calculate the second-order directional derivative term in Equation (7)
by the second-order central finite difference approximation.

vT Hv ≈ 1
ε2 [G(z + εv)− 2G(z) + G(z− εv)] (7)

where ε > 0 is a hyperparameter that controls the granularity of the second directional
derivative estimate. In our implementation, we use ε = 0.1. Such a Hessian matrix is a
square matrix composed of second-order partial derivatives of real-valued functions whose
independent variables are vectors. This matrix focuses more on the information change
rate of the inverse in the calculation, which corresponds to the extraction and fitting of the
surface information (compared to the Jacobi matrix). The Jacobian matrix is a matrix in
which the first-order partial derivatives are arranged in a certain way to obtain the Hessian
matrix in the shallow features. The Jacobian Penalty corresponding to the Jacobian matrix
is described in Section 3.2.2.

3.2.2. Jacobian Penalty

Focusing on the Jacobian matrix, and to more clearly reflect the role of the input
parameters and the implied variables on the model, the previous equation fG(u, v) in
Equation (3) is now replaced by fG(x, z). It is well known that in such a deep generative
model, if the correlation coefficients of changes due to different latent dimensions are
zero, i.e., Cov(zi, . . ., zj) = 0, then it is considered that each potential dimension controls
the variation of only one variation factor. Using the Jacobian matrix mentioned in the
kinetic Equation (4), combined with [14], using the Jacobian vector and constraining it to
be orthogonal in different dimensions, we can obtain Equation (8) .

Jij =

[
∂ fG(x, z)

∂z′i

]T fG(x, z)
∂z′j

= 0 (8)

In Equation (8), ∂z′i and ∂z′j represents the parameters of the function fG(x, z) in
different directions in the Z space. Then the G loss of Jacobian penalty becomes the sum of
the squared term of Equation (8), and to reduce the computational effort following [43], we
rewrite the formula using the Hutchinson estimate as Equation (9).

LJ(G) = Varv

[
(jdv)T jdv

]
(9)

In Equation (9),we use jd = ∂ fG(x,z)
∂z to represent a Jacobian vector. v is the Rademacher

vector (each entry has an equal probability of −1 or 1) and Var denotes the variance. jdv
is the first-order directional derivative in the v times |v| direction. jdv can be efficiently
computed by the first-order finite difference approximation as Equation (10).

jdv =
1
ε
[G(z + εv)− G(z)] (10)

The operation of this step (Equation (10)) is very similar to the simplification of the Hes-
sian matrix ((Equation (7)), which allows our subsequent calculations to be simplified with
similar operations, and it is easy to associate them with each other and the characteristics
of their application on GAN networks. We will explain this in Section 3.3.

3.3. Association Between the Hessian Penalty and the Jacobian Penalty

In Section 3.2, we have derived through formulas and calculations the Jacobian penalty
(Equation (9)) and the Hessian penalty (Equation (6)). Although they target first-order
and second-order information on the solution domain, respectively, they are surprisingly
consistent in the solution process, which makes practical calculations convenient. We have
also analyzed the association between the two for this case. We give our loss at the end of
this subsection.

Appl. Sci. 2022, 12, 5382 7 of 22

The relationship between the Hessian matrix and the Jacobian matrix is first given: the
Hessian matrix is the inverse of the Jacobian matrix of the function’s gradient. The formula
expression is in Equation (11).(

H f (p)
)

ij
=

∂

∂xj
(∇ f (p))i =

∂2 f
∂xj∂xi

(p) =
(

J∇ f (p)
)

ij
(11)

In Equation (11), f is a function from that transforms points into column vectors. p is
is the matrix parameters, H f (p) denotes the hessian matrix, and J∇ f (p)denotes the Jacobi
after the gradient of the matrix f . Thus, the relationship between the Hessian matrix and
the Jacobian matrix can be abbreviated as H(f (x)) = J(∇ f (x))T , considering the nature of
matrix operations, so that transposition of the matrix is required in the actual computation.

The Hessian penalty encourages the generator to use the diagonal Hessian of the
output concerning the input, using the orthogonalized features as the target of the model,
approximated by an unbiased stochastic approximator. The Hessian penalty [13] uses a
second-order central finite difference approximation. In contrast, a similar approximation
method appears in the same [14], where the Jacobian penalty focuses more on the matrix
composed of Jacobian vectors. The orthogonalized features are used as the model’s objec-
tive to obtain the corresponding Jacobian objective function. This Jacobi approximation
calculation used by [14] differs little from the Hessian penalty.

Approximate Computational Procedure and Loss Function

Considering the Taylor expansion of f (x), we note that the Hessian matrix appears in
the local gradient expansion, and we add the Hessian as a linear operator to the expansion
to obtain Equation (12)

∇ f (x + ∆x) = ∇ f (x) + H(x)∆x +O
(
‖ ∆x‖2

)
(12)

where ∇ f (x) is the gradient of f (x) , H(x)∆x is the f (x) incremental value about ∆x , and
the tail term O

(
‖ ∆x‖2) is the second-order infinitesimal term about ∆x. To simplify the

calculation, we vectorize ∆x, so that ∆x = εv , substituting into the equation H(x)∆x, we
have Equation (13).

H(x)∆x = H(x)εv = εH(x)v = ∇ f (x + εv)−∇ f (x) +O
(

ε2
)

(13)

In Equation (13), ε is the scalar and v is the vector, and dividing both sides of
Equation (13) by ε, we have H(x)v = 1

ε [∇ f (x + εv)−∇ f (x)] +O(ε), and removing the
infinitesimal term in Equation (13), the formula is equal to Equation (14).

H(x)v ≈ 1
ε
[∇ f (x + εv)−∇ f (x)] (14)

The approximation of the removal of the term(O(ε)) usually brings numerical instabil-
ity, we need to make O(ε) small enough, and the effect of O(ε) can be ignored in actual
calculations, O(ε) is very small, so in the actual calculation, we remove this . The effect of
Equation (14) and the calculation procedure is the same as that of the original one.

In order to apply the present method to GAN training, we only need to modify the
loss of G as Equation (15). Referring to the derivation of Equation (6) for LH(G) and
Equation (9) for LJ(G), combined with GAN’s original LGo = E

z∼pz(z)
[f (1− D(G(z)))], we

can obtain Equation (15). Here, the values of λ1 and λ2 are calculated using game theory.
For the specific solution process, refer to Appendix A.1. Likewise, the two parameters of
this part are also used in the network architecture; for the network architecture algorithm
pseudo-code, refer to Appendix A.2.

LG = E
z∼pz(z)

[f (1− D(G(z)))] + λ1 E
z∼pz(z)

[LH(G)] + λ2 E
z∼pz(z)

[
LJ(G)

]
(15)

Appl. Sci. 2022, 12, 5382 8 of 22

In Equation (15), λ1 and λ2 are hyperparameters. The inclusion of LH(G) and LJ(G)
in GAN training is beneficial to learn the representation and to achieve the generation
of controllable images. The specific calculations for the hyperparameters λ1 and λ2 are
shown in Appendix A.1. We found that using these hyperparameters only to adjust the
training parameters in the model architecture, without using this disentanglement loss
in Equation (15), can mitigate the pattern collapse. The use of the hyperparameters in the
model is referenced in Appendix A.2.

3.4. Network Model Structure

Figure 1 shows the network model proposed in this paper, where the green solid line
frame is the original model architecture, and the red dotted lines are the parts added by
our method. The green part divides the generative adversarial network training into two
processes. The first process updates the generation loss, and the second process updates
the discriminant loss. GLoss and DLoss correspond to the loss functions of the generator
and discriminator, respectively. Our method is divided into two parts to be added to the
model; one is the Update red dashed box in process one and process two, which is mainly
used to mitigate mode collapse; the other is the red dashed box corresponding to Gloss. We
use Hessian combined with Jacobian for disentangled representation. The two added parts
of our model are independent of each other. The red dashed part in the green box is used
alone for mode collapse mitigation, and the red dashed part out of the green box is used
alone for disentanglement representation.

Figure 1. Structure of the network model.

3.5. Evaluation Metrics

Inception Score (IS) [44] uses an image class classifier to evaluate the quality of the
generated images. The image class classifier used is Inception Net-V3. IS is a measure of
the clarity and diversity of the generated images, and the bigger the IS value, the better.
The specific formula is as Equation (16).

IS(G) = exp
(
Ex∼pg DKL(p(y | x)‖p(y))

)
(16)

In Equation (16), DKL denotes KL divergence (Kullback–Leibler divergence). For a
picture x, the probability distribution that belongs to all classes is p(y | x). p(y) denotes
marginal probability.

Fréchet Inception Distance (FID) [30] does not rely on a classifier, but directly considers
the distance between the generated data and the real data at the feature level. FID uses the
2048-dimensional vector before the full connection of Inception Net-V3 as the feature of the

Appl. Sci. 2022, 12, 5382 9 of 22

picture. FID is the distance between the generated image and the real image; the smaller
the FID value, the better. The specific formula is as Equation (17).

FID =
∥∥µr − µg

∥∥2
+ Tr

(
Σr + Σg − 2

(
ΣrΣg

)1/2
)

(17)

In Equation (17), µr denotes the feature mean of the real images. µg denotes the feature
means of the generated images. Σr denotes the covariance matrix of the real images. Σg
denotes the covariance matrix of the generated images. Tr denotes the trace of the matrix.

Perceptual Path Length (PPL) [1] subdivides the interpolation path of two noise points
into multiple segments, finds the length of each segment, and then averages it. PPL
evaluates the distance at which the generator changes from one image to another. The
smaller the PPL value, the better.The specific formula is as Equation (18).

PPL = E
[

1
ε2 d(G(slerp(z1, z2; t)), G(slerp(z1, z2; t + ε)))

]
(18)

In Equation (18), ε denotes subdivision, replaced with 1× 10−4. d denotes perceptual
distance, measured using pre-trained VGG. G denotes the image generator. Function slerp
denotes spherical linear interpolation, an interpolation method. t denotes the interpolation
parameters, subject to the uniform distribution.

4. Experiments

We conducted experiments on datasets such as MNIST, Cifar-10, and ClEVR with
several different generative adversarial network models. We evaluate generation based on
two criteria: model collapse and generated sample quality. Model collapse and generated
sample quality are the two criteria we target and evaluate by Fréchet Inception Distance
(FID) [30] and Inception Score (IS) [44]. An important metric for assessing model perfor-
mance is IS. Calculating IS requires Inception Net-V3 (the third version of Inception Net),
and the FID calculates the real samples and generates the distance between samples in the
feature space. Different from IS, a lower FID implies higher image quality and diversity.

A comparative test of GANs and the original method is performed to give experimen-
tal curves and correlation analysis. Experiments with λ1 and λ2 were selected, and then our
experiments were repeated on other GANs with quantitative analysis. The same architec-
ture and hyperparameters for each method separately ensure fairness in the experiments.

In the disentanglement part, we set all the image sizes to 128 × 128 according to
the training arrangement in Hessian. The tested datasets are Edge + Shoes and CLEVR
datasets, respectively.

In Section 4.1, we introduce the datasets used for the experiments, and in Sections 4.2
and 4.3, we test our approach in model collapse and disentanglement.

4.1. Introduction to the Datasets

The MNIST dataset was sourced from a mixture of two datasets, one handwritten by
employees from the Census Bureau and one handwritten by high school students; this
dataset had 60,000 training samples and the rest 10,000 were test samples, with each image
being a single number from 0 to 9. Example images of the dataset is shown in Figure 2a.

The Cifar-10 dataset has 60,000 images, which are 32 × 32 and divided into ten
categories with 6000 images in each category. Example images of the dataset is shown
in Figure 2f.

CelebA is the open dataset of the Chinese University of Hong Kong, containing
202,599 images of 10,177 celebrity identities. Each image is annotated with 40 attributes.
Example images of the CelebA dataset are shown in Figure 2d. CelebA-HQ is a high-quality
face image of CelebA, consisting of 30,000 images. In the experiments on the CelebA-HQ
dataset, we mainly use 256 × 256 size images. Example images of the CelebA-HQ dataset
are shown in Figure 2e.

Appl. Sci. 2022, 12, 5382 10 of 22

The CLEVR dataset is known as Compositional Language and Elementary Visual
Reasoning. CLEVR contains 100,000 rendered images and approximately 1 million auto-
matically generated questions, of which 853,000 are mutually exclusive. Example images
of the dataset are shown in Figure 2c.

Edge + Shoes is a simple dataset. This is a large dataset that includes 50,025 images.
These images are divided into four categories: shoes, sandals, flip-flops, and boots. Example
images of the dataset are shown in Figure 2b.

Figure 2. The datasets used in this article.

4.2. Resistance Model Collapse

In this part, we do not directly use the loss of the Formula (15), but instead use the λ1
and λ2 parameters in the loss, which are used in the model, specifically using the part of
the algorithm presented in Appendix A.2. The specific use of λ1 and λ2 in the model is in
Algorithm A1. The reason for doing so is to optimize the current GAN model and make
the basis for the disentanglement.

We run real image generation experiments on different datasets: MNIST, CIFAR-10,
and CelebA. It has been demonstrated experimentally that our approach is general to some
generative models.

We train all models for 25,000 iterations, and in each iteration, we pass the parameters
in the generator to the discriminator at a certain frequency. At inference, we generate
10k samples from each training model and measure these two metrics. We report in Table 1
the average scores (IS) of the images generated on the MNIST dataset [34], and p means
p-value of the statistical significance. As shown in Table 1, ours outperforms the other
methods. We divided the original training datasets into two parts to measure their IS.
Since the IS values calculated by different sample segmentation methods are different
(this is because the calculation of IS needs to calculate the two groups of pictures, and the
segmentation method determines the difference of the calculated values), so it is not given
in the Tables 1 and 2. The first p-value is determined from the IS means of the original
method and the IS means within the original training datasets. The second p-value (p (ours))
is determined by the IS means of our method and the IS means of the original training
datasets. These two p-values compare the IS means of the method before and after the
improvement with the original training datasets. Taking α = 0.001 as the judging criterion,
our results show that the difference between the IS means of the images generated by our
GANs network and the IS means of the original datasets are statistically significant.

Appl. Sci. 2022, 12, 5382 11 of 22

Table 1. Score (IS) test on GANs (MNIST).

GAN IS (Mean) IS (Std) p IS (Ours Mean) IS (Ours Std) p (Ours)

BEGAN [28] 1.366 0.179 <0.001 1.388 0.242 <0.001
BGAN [36] 1.250 0.175 <0.001 1.372 0.187 <0.001

EBGAN [10] 1.356 0.194 <0.001 1.371 0.241 <0.001
INFOGAN [32] 2.054 0.171 <0.001 2.070 0.207 <0.001

CGAN [31] 2.022 0.196 <0.001 2.302 0.291 <0.001
AAE [15] 2.289 0.298 <0.001 1.995 0.251 <0.001

ACGAN [16] 1.956 0.146 <0.001 2.041 0.271 <0.001
LSGAN [9] 1.404 0.183 <0.001 1.363 0.139 <0.001
SGAN [17] 1.418 0.159 <0.001 1.459 0.192 <0.001

The experimental results in Figure 3 show that the BGAN [36] model modified by our
method has a Discriminator closer to 0.5 than the original BGAN [36], and the fluctuation
is much smaller than that of the model without our method. At the same time, it has faster
convergence and stability.

Figure 3. The results of the CGAN [31] and BGAN [36] model.

Figure 3 shows that our improved model is more stable than the original one in
CGAN [31]. For more experimental results of the loss function curves refer to Appendix B.

After training all models for 100K iterations, we evaluated the method on CIFAR-10.
Unlike MNIST, the models in this dataset are difficult to handle. We need to evaluate color
images, and the contents of pictures are more diverse. That is why we use two different
metrics (IS and FID) for inferring the generator quality and diversity. As shown in Table 2,
our method consistently outperforms all other methods on these two metrics.

We trained on the standard CIFAR-10 dataset and used the Inception v3 image classifi-
cation model to calculate the similarity of statistical aspects of computer vision features to
measure the similarity of the two datasets. As shown in Table 3, our method generates FID
values with the optimal ones.

Table 2. Score (IS) test on GANs (Cifar-10).

GAN IS (Mean) IS (Std) p IS (Ours Mean) IS (Ours Std) p (Ours)

BEGAN [28] 1.735 0.215 <0.001 2.005 0.236 <0.001
EBGAN [10] 1.666 0.224 <0.001 1.733 0.244 <0.001

INFOGAN [32] 1.563 0.197 <0.001 1.677 0.208 <0.001
BGAN [36] 1.822 0.203 <0.001 2.932 0.221 <0.001
CGAN [31] 1.978 0.209 <0.001 2.065 0.235 <0.001
AAE [15] 2.012 0.214 <0.001 1.917 0.199 <0.001

ACGAN [16] 1.771 0.231 <0.001 1.871 0238 <0.001
LSGAN [9] 1.846 0.227 <0.001 1.959 0.236 <0.001
SGAN [17] 1.668 0.158 <0.001 2.005 0.183 <0.001

Appl. Sci. 2022, 12, 5382 12 of 22

Table 3. Score (FID) test on GANs (Cifar-10).

GAN FID (Original) FID (Ours)

BGAN [36] 243.633 226.164
BEGAN [28] 417.625 377.760
CGAN [31] 382.941 373.581
AAE [15] 187.612 181.169

ACGAN [16] 231.143 249.174
LSGAN [9] 149.675 133.783
SGAN [17] 147.770 130.251

In Figure 4, we compare the image generated in CelebA by the original DCGAN [33]
and ours. We reduced the image size of CelebA to 96 × 96 to speed up the training process
for faster results. The generated image is also in the size of 96 × 96. Compare our method
with the method before improvement in Figure 4, it is not difficult to find that the image
face generated by the original DCGAN [33] is blurry and distorted, and the hairstyle has
fewer changes in shape and eyebrow shape. Figure 4b is generated by our method, which
is improved on the original basis, it has better clarity and diversity. In Figure 4, the faces
of the upper character (with a variety of hairstyles) in the (b) pictures are more clear, and
the forehead hair of the task in the lower (b) pictures are from long to short, showing the
diversity of hairstyles. The image generated by our method also has fewer facial artifacts
than the images on the original DCGAN (a).

Figure 4. Graph generated without our Network(DCGAN [33]) (a), with ours (b).

4.3. Disentanglement Experiments
4.3.1. Qualitative Experiments

In this subsection, we compare Hessian penalty [13] and OroJaR [14] with our method.
After adding the λ1 and λ2 parameters in the model training, some cases will bring more se-
rious attribute entanglement, so we add the Equation (15) to disentanglement and compare
the current best results.

Figure 5 shows experiments been done on fox, balloons, and Tibetan mastiffs on
ImageNet. We moved the images in Z-space for each row. Z-space represents the sample
space of latent variables.The input position of the Z-space refers to Figure 1. Through the
change of the Z-space parameters, the model generates a series of pictures, as shown in
Figure 5. The role of these diagrams is explained next. The first line in Figure 5 shows the
enlargement of the fox’s face, after disentanglement, the Z-space parameters can control
the distance between the object and the lens; the second line shows the separation and
change of the background, we separate the balloon from the background, separate the
balloon property, and change the background without changing this property, and the
third line shows the separation and action of the foreground object (the Tibetan mastiff
gradually stands up). The foreground object is a Tibetan mastiff, and the background is
grass. By selecting the direction of the Z-space, the foreground object can make actions
without changing the background.

Appl. Sci. 2022, 12, 5382 13 of 22

Figure 5. The orthogonal orientation learned on BigGAN [2].

In Figure 6, we present the experimental results of our model on the Edge + Shoes
dataset. We choose the two interpretable dimensions of shoe color and style to display,
with each row corresponding to one interpretable dimension. Figure 6 shows OroJaR [14],
Hessian penalty [13], and our method learned the two separated changes, i.e., style and
shape of shoes (the first row of each sub-image is generated by the Hessian method [13],
the middle row by the OroJaR [14] method, and the last row is produced by our method).
Subfigure (a) shows the performance of different methods in disentangling shape entan-
glement, and our method covers more shapes. Subfigure (b) shows different methods
in disentangling color in terms of entanglement performance; Hessian penalizes [13] to
generate a single color of the image, and OroJaR [14] generates a serious color coupling
of shoe images. Our method covers more colors, and the independence of colors is better
than others.

Figure 6. Comparison of the disentanglement quality of OroJaR [14], Hessian penalty [13] and our
method for Edge + Shoes.

Figure 7 shows the results on the CLEVR simple dataset. Our method is able to separate
the potential space effectively. We show the four scoring dimensions of x axial shift, y axial
shift, color, and shape. Hessian penalty learning independently controls the vertical and
horizontal axial position of the object (first row of each subplot of Figure 7). However, the
shape is not controlled during the vertical movement. OroJaR [14] successfully separates
the horizontal, shape factors in CLEVR (second row of each subfigure of Figure 7), but
shows a tendency to shift toward the horizontal in the separation of the vertical movement.
Lastly, our method can successfully separate independent axial shifts and colors in CLEVR
(the third row of each subplot of Figure 7).

Appl. Sci. 2022, 12, 5382 14 of 22

Figure 7. Comparison with OroJaR [14], Hessian penalty [13], and our method for the disentangle-
ment quality of CLEVR Sample.

Figure 8 shows the comparison on the CLEVR complex dataset. Here we show the
relative position as a factor. From Figure 8, we can conclude: (1) The Hessian penalty does
not perform well in the relative positions of two objects, and when the Hessian penalty
changes the relative positions of two objects, the shapes or colors of these two objects
change at the same time (first row of each subplot of Figure 8). (2) OroJaR [14] changes
its shape when the relative position changes (second row of each subfigure of Figure 8).
(3) Our method does not change shape and color when the relative position changes (third
row of each subfigure of Figure 8).

Figure 8. Comparison of disentanglement the quality of the CLEVR complex by our method, Hessian
penalty [13], and OroJaR [14].

In Figure 9, subfigure (a) shows that, in the case of adding objects, it tries to keep
the color properties unchanged. Subfigure (b) shows that it is possible to add objects
and keep their shape properties in the case of two colors. The graphs in the first row of
subgraphs (a) and (b) in Figure 9 are generated by Hessian penalty [13], the graphs in the
second row are generated by OroJaR [14], and the graphs in the third row are generated

Appl. Sci. 2022, 12, 5382 15 of 22

by our method. The graphs generated by the Hessian penalty [13] appear in five colors
as the objects gradually increase from one to six. The graphs generated by OroJaR [14]
appear in four colors. Our method emerges in two colors. Although none of the three
methods achieves the best-case scenario of producing only one color, our method is more
advantageous in color preservation when adding objects. In subgraph (b), the graphs
generated by Hessian penalty [13] appear in two colors and two shapes, and the graphs
generated by OroJaR [14] appear in more than two colors. However, the shape remains
relatively stable (five cylinders in a row) compared to the previous two methods. The
shape-preserving effect of our method is also stable in two colors.

Figure 9. Comparison of disentanglement the quality of the CLEVR dataset by our method, Hessian
penalty [13] and OroJaR [14] for adding objects.

We conduct disentanglement experiments on the CelebA-HQ dataset and compare
the performance of Hessian penalty [13], OroJaR [14], and our method on face rotation. In
Figure 10, the graphs in the first row are generated by Hessian penalty [13], the graphs in
the second row are generated by OroJaR [14], and the graphs in the third row are generated
by our method. The properties required for disentanglement are independent of each
other. When one property is changed, the other properties remain unchanged. From the
comparison in Figure 10, it can be found that, when the Hessian penalty [13] modifies the
rotation attribute, the eyes of the characters in the figures always look towards the camera
and do not rotate with the characters, resulting in disentanglement. Moreover, artifacts
are created at the edges in the first row of images. The eyes of the OroJaR [14] method in
the second line rotate with the picture character, but when only controlling the rotation of
the character’s avatar, the mouth shape of the second line changes uncontrollably (from
normal to slightly flared). The third row shows the performance of our method on face

Appl. Sci. 2022, 12, 5382 16 of 22

rotation. Our method achieves the rotation of the eyes and the character together, and the
mouth shape remains unchanged, which cannot be achieved by the first two methods.

Figure 10. Comparison of rotation disentanglement of the CelebA-HQ dataset by our method,
Hessian penalty [13], and OroJaR [14].

4.3.2. Quantitative Evaluation

In this subsection, we compare our method quantitatively with some models. Referring
to [13], we use perceptual path length (PPL) [1], Frechet inception distance (FID) [30], and
variance predictability disentanglement measure (VP) [45] as quantitative metrics. Lower
FID and PPL are better, and higher VP is better.

As can be seen from Table 4, our method has obtained some better results on some
datasets, which indicates that our method has a better disentanglement representation.

Table 4. Comparison of different methods on Edge + Shoes and CLEVR.

Method
Edges + Shoes CLEVR-Simple CLEVR-Complex CLEVR-U

PPL (↓) FID (↓) VP (↑) PPL FID VP PPL FID VP PPL FID VP

InfoGAN [32] 2952.2 10.4 15.6 56.2 2.9 28.7 83.9 4.2 27.9 766.7 3.6 40.1
ProGAN [46] 3154.1 10.8 15.5 64.5 3.8 27.2 84.4 5.5 25.5 697.7 3.4 40.2

SeFa [12] 3154.1 10.8 24.1 64.5 3.8 58.4 84.4 5.5 30.9 697.7 3.4 42.0
Hessian Penalty [13] 554.1 17.3 28.6 39.7 6.1 71.3 74.7 7.1 42.9 61.6 26.8 79.2

OroJaR [14] 236.7 16.1 32.3 6.7 4.9 76.9 10.4 10.7 48.8 40.9 4.6 90.7
Ours 336.79 12.5 33.7 27.6 3.3 79.1 36.3 4.3 49.3 44.1 3.3 88.3

4.4. Limitation and Discussion

Our proposed method performs well on mode collapse mitigation and disentangle-
ment, scoring higher than other methods on the test dataset. However, our mode collapse
mitigation and disentanglement methods need to be used separately and cannot be com-
bined with one model simultaneously. Our approach to mode collapse mitigation focuses
on making the discriminator and generator of the generative adversarial network inter-
act with weights, and discriminator and generator can achieve better results in this way.
More features will also bring the coupling of properties, making it impossible to achieve
the expected disentanglement effect after adding the disentanglement loss. In the future,
applying both mode collapse mitigation and disentanglement methods to the model is a
considered direction for improvement.

5. Conclusions

In this work, we introduced a new method to train generative networks. We apply
our method to generative adversarial training by learning disentanglement representations.
We train the generator to optimize this disentanglement representation through loss or
hyperparameters. Our framework accumulates many desirable properties: it does not

Appl. Sci. 2022, 12, 5382 17 of 22

require any additional trainable parameters, it operates in an unsupervised environment,
and it outperforms state-of-the-art methods in some image datasets. Moreover, our method
exhibits stable adversarial training, and our method allows embedding any variant of the
GAN model. In the future, the neural radiance field can be combined with existing models
to achieve a better disentanglement representation.

Author Contributions: Conceptualization, Y.Q., G.Y. and X.F.; methodology, Y.Q.; software, X.F.;
validation, Y.Q., G.Y. and X.F.; formal analysis, Y.Q. and G.Y.; investigation, Y.Q. and G.Y.; resources,
X.F.; data curation, G.Y.; writing—original draft preparation, Y.Q. and G.Y.; writing—review and
editing, X.F.; visualization, G.Y. and X.F.; supervision, X.F.; project administration, Y.Q.; funding
acquisition, X.F. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by The School Foundation of Anhui University of Science and
Technology grant number No:2021CX2102.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The code is available in https://github.com/mathinabel/HessianAnd
Jocbian, accessed on 26 April 2022.

Acknowledgments: This research has been supported by the School Foundation of Anhui University
of Science and Technology.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

GAN Generative Adversarial Networks
D Discriminator
G Generator
KL Kullback-Leibler divergence
FID Fréchet Inception Distance
IS Inception Score

Appendix A. Supplementary Theory

Appendix A.1. Eagle Dove Game

Consider the later stage of the training process, when the Generation distribution of G
is almost the same as the original distribution, the corresponding equilibrium will be similar.
At this time, DG and the corresponding equilibrium are likely interlaced and matched, so
only this is difficult for such a theory to describe the DG game process completely. Thus,
this model was explained from the perspective of game theory. “Eagle Dove Game” is
a classic game model. The basic description of this model is that, in a particular game
environment, both sides of the game have the right to be an eagle and a dove. If both sides
of the game choose eagles, then they go out to discount the benefits, and the remaining
benefits are divided equally. If one party chooses the dove and the other side still chooses
the eagle, the other side will win. If both sides choose the doves, compared to the eagle, they
could evenly split the gains without losing the competitive discount. Then, the resulting
payout matrix is as Table A1:

Table A1. A result payout matrix of Eagle Dove Game.

Strategy Eagle Dove

Eagle S = (v − c)/2, S = (v − c)/2 T = v, P = 0
Dove P = 0, T = v R = v/2, R = v/2

https://github.com/mathinabel/HessianAndJocbian
https://github.com/mathinabel/HessianAndJocbian

Appl. Sci. 2022, 12, 5382 18 of 22

Table A1 shows the conclusion that the abilities of both parties in the game are the
same, v is the benefit and v is the conflict cost paid by both parties, S is the benefit of both
parties when both parties choose eagle strategy, T is the benefit of both parties when both
parties choose eagle dove strategy, P is the benefit of both parties when both parties choose
eagle dove strategy, and R is the benefit of both parties when both parties choose eagle
strategy. If the skills of both parties are the same, then the choice is good, but just like the
relationship between the Discriminator and the Generator, the ability between the two
parties in the game is a big gap. Suppose the skills of the two parties differ significantly, in
that case, the strategy chosen by the two parties, the Discriminator and Generator must
be affected by the ratio of the capabilities of the two parties. When the two parties fight at
this time, the obtained gain is related to the difference in the strength of the two parties.
It proves that the better Generators trained initially and the Discriminators with average
learning speed cannot effectively train the ideal results. Let the ability ratio of the two
parties involved in the game to the degree of asymmetry be k: (1 − k), then if the conflict
loss is greater than the cooperation gain, the payment matrix is shown in Table A1 can be
converted to Table A2:

Table A2. A new result payout matrix of Eagle Dove Game.

Strategy Eagle Dove

Eagle (v − c)/4k, (v − c)/4k (v, 0)
Dove (0, v) (kv, (1 − k)v)

The reason for multiplying by 1/4 in Table A2 is that, when k is 0.5, the model
degenerates to a classic eagle–dove game. Under the change of payment matrix, neither
party in the game has a purely strict dominant strategy equilibrium. Assuming that the
Generator’s frequency adopting the dove strategy is x, and the Discriminator adopts the
dove strategy as y, then correspondingly, the frequency of the Generator adopts the eagle
strategy is 1 − x, and Discriminator adopts the dove strategy as expected 1 − y. Then,
according to Table A2, it shows that the expected return of the Generator choosing the
eagle strategy is: UA(x, y) = (1− x)UH

A + xUD
A The expected return of the Generator’s

choice of dove strategy is: UB(x, y) = (1− y)UH
B + yUD

B . The Discriminator chooses the
expected return of the eagle strategy as:UH

B = (1− x) v−c
4(1−k) + xv. The expected return of

the Discriminator’s dove strategy choice is:UD
B = (1− x) · y + x(1− k)v. Then the average

expected return of the corresponding Generator is:UH
A = (1− y) v−c

4k + yv. In the same way,
the average expected return of the corresponding Discriminator is: UD

A = (1− y) · x + ykv.
Let x = λ1, y = λ2, then, the Nash equilibrium can be solved as:

((λ1, 1− λ1), (λ2, 1− λ2)) =

((
c− v

M
, 1− c− v

M

)(
c− v

M
, 1− c− v

M

))
(A1)

M = c− v + 4kv− 4k2v. In this way, we obtain the parameters about DG: λ1 , λ2. These
parameters can provide us with important hyperparameters initialization guidance in
subsequent actual experiments.

Appendix A.2. Model Architecture

In our model, the DG process is regarded as two parts. One part is to update the
Generator’s weights; the other part is to update the Discriminator’s weights. The direction
of the Generator and the Discriminator on the saddle point is opposite, the point that
finally meets is the saddle point, which is also the Nash equilibrium point of the game.
Updating the weights of the Generator and the Discriminator will cause their updated
weight direction to be opposite the original direction simultaneously. Its pseudo-code refers
to Algorithm A1.

Appl. Sci. 2022, 12, 5382 19 of 22

Algorithm A1 Our gradient descent training of GAN

Require:
Images in datasets;
k, λ1, λ2; k is a default GAN training steps, λ1 is D interaction frequency, λ2 is D
interaction frequency;

Ensure:
Distribution of target datasets;
for training iterations do

for k steps do
Take samples from noise prior.
Take examples from data generating distribution.
Update the D.
for kλ1 steps do

Update the G.
end for
Take examples from data generating distribution.
for kλ2steps do

Update the G.
end for
Take examples from data generating distribution.

end for
Take noise samples from noise prior.
for kλ1 steps do

Take examples from data generating distribution.
end for
Update the G.

end for

Appendix B. Other Experiments

Both the discriminator and generator of DCGAN [33] use a convolutional neural net-
work to replace the multi-layer perceptron in GAN, and use convolution and deconvolution
to replace the pooling layer. The output layer of the generator uses the Tanh activation
function, and the other layers use RELU, the discriminator LeakyReLU activation function
is used for all layers of. After the network is added to our method, Figure A1 shows that the
generator fluctuation of the network is significantly reduced, and the numerical distance
between the network and the discriminator is also getting closer.

Figure A1. The results of the DCGAN [33] and BEGAN [28] model.

Appl. Sci. 2022, 12, 5382 20 of 22

In Figure A1, we found that our method is not very effective for the network of the
GAN network generator that uses the loss of Wasserstein distance, but in the actual training
process, it can reach the training completion standard at a faster speed, so that we need
early stop to finish training.

A pull-away term was proposed to prevent Generator from generating the same image.
In Figure A2, our method has smaller oscillation and convergence on this EBGAN [10], and
the time to reach stable generation is also shorter.

INFOGAN [32] divides Z into fixed distribution noise and c some hidden variable
information on the basis of DC-GAN. In Figure A2, after adding our method, DG converges
faster and gets closer.

The method of LSGAN [9] is to change the objective function of GAN from cross entropy
loss to least square loss to improve the image quality and stabilize the training process. After
our method is added in Figure A3, the improvement on this GAN is not obvious.

Figure A2. The results of the EBGAN [10] and INFOGAN [32] model.

Figure A3. The results of the LSGAN [9] and SGAN [17] model.

SGAN [17] extends the Generative Adversarial Network (GAN) to semi-supervised
context by forcing the discriminator network to output class labels. From Figure A3, we
can conclude that our generator is still closer to 0.5.

Appl. Sci. 2022, 12, 5382 21 of 22

References
1. Karras, T.; Laine, S.; Aila, T. A Style-Based Generator Architecture for Generative Adversarial Networks. IEEE Trans. Pattern Anal.

Mach. Intell. 2020, 43, 4217–4228. [CrossRef] [PubMed]
2. Brock, A.; Donahue, J.; Simonyan, K. Large Scale GAN Training for High Fidelity Natural Image Synthesis. In Proceedings of the

International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018; pp. 4389–4399. [CrossRef]
3. Choi, Y.; Choi, M.; Kim, M.; Ha, J.W.; Kim, S.; Choo, J. Stargan: Unified generative adversarial networks for multi-domain

image-to-image translation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City,
UT, USA, 18–23 June 2018; pp. 8789–8797. [CrossRef]

4. Choi, Y.; Uh, Y.; Yoo, J.; Ha, J.W. Stargan v2: Diverse image synthesis for multiple domains. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 8185–8194. [CrossRef]

5. Karras, T.; Laine, S.; Aittala, M.; Hellsten, J.; Lehtinen, J.; Aila, T. Analyzing and improving the image quality of stylegan. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020;
pp. 8107–8116. [CrossRef]

6. Tolstikhin, I.; Gelly, S.; Bousquet, O.; Simon-Gabriel, C.J.; Schölkopf, B. AdaGAN: Boosting generative models. In Proceed-
ings of the International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017;
pp. 5430–5439. [CrossRef]

7. Nguyen, T.D.; Le, T.; Vu, H.; Phung, D. Dual discriminator generative adversarial nets. In Proceedings of the International
Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 2667–2677. [CrossRef]

8. Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein generative adversarial networks. In Proceedings of the International Conference
on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 214–223. [CrossRef]

9. Mao, X.; Li, Q.; Xie, H.; Lau, R.Y.; Wang, Z.; Paul Smolley, S. Least squares generative adversarial networks. In Proceedings of the
IEEE International Conference on Computer Vision, Honolulu, HI, USA, 21–26 July 2017; pp. 2794–2802. [CrossRef]

10. Zhao, J.; Mathieu, M.; LeCun, Y. Energy-based generative adversarial networks. In Proceedings of the International Conference
on Learning Representations, Toulon, France, 24–26 April 2017; pp. 1682–1693. [CrossRef]

11. Gurumurthy, S.; Kiran Sarvadevabhatla, R.; Venkatesh Babu, R. Deligan: Generative adversarial networks for diverse and limited
data. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017;
pp. 166–174. [CrossRef]

12. Shen, Y.; Zhou, B. Closed-form factorization of latent semantics in gans. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, Online, 19–25 July 2021; pp. 1532–1540. [CrossRef]

13. Peebles, W.; Peebles, J.; Zhu, J.Y.; Efros, A.; Torralba, A. The hessian penalty: A weak prior for unsupervised disentanglement.
In Proceedings of the Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; Springer:
Berlin/Heidelberg, Germany, 2020; pp. 581–597. [CrossRef]

14. Wei, Y.; Shi, Y.; Liu, X.; Ji, Z.; Gao, Y.; Wu, Z.; Zuo, W. Orthogonal Jacobian Regularization for Unsupervised Disentanglement
in Image Generation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Online, 19–25 July 2021;
pp. 6721–6730. [CrossRef]

15. Creswell, A.; Bharath, A.A. Denoising adversarial autoencoders. IEEE Trans. Neural. Netw. Learn. Syst. 2018, 30, 968–984.
[CrossRef] [PubMed]

16. Odena, A.; Olah, C.; Shlens, J. Conditional image synthesis with auxiliary classifier gans. In Proceedings of the International
Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 2642–2651. [CrossRef]

17. Ghasedi Dizaji, K.; Wang, X.; Huang, H. Semi-supervised generative adversarial network for gene expression inference. In
Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 19–23 August
2018; pp. 1435–1444. [CrossRef]

18. Liu, M.; Deng, J.; Yang, M.; Cheng, X.; Xie, T.; Deng, P.; Wang, X.; Liu, M. Express Construction for GANs from Latent
Representation to Data Distribution. Appl. Sci. 2022, 12, 3910. [CrossRef]

19. Abdal, R.; Zhu, P.; Mitra, N.J.; Wonka, P. Styleflow: Attribute-conditioned exploration of stylegan-generated images using
conditional continuous normalizing flows. ACM. Trans. Graph. 2021, 40, 1–21. [CrossRef]

20. Collins, E.; Bala, R.; Price, B.; Susstrunk, S. Editing in style: Uncovering the local semantics of gans. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 5771–5780.
[CrossRef]

21. Goetschalckx, L.; Andonian, A.; Oliva, A.; Isola, P. Ganalyze: Toward visual definitions of cognitive image properties. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019;
pp. 5744–5753. [CrossRef]

22. Jahanian, A.; Chai, L.; Isola, P. On the “steerability” of generative adversarial networks. In Proceedings of the International
Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019. [CrossRef]

23. Shen, Y.; Gu, J.; Tang, X.; Zhou, B. Interpreting the latent space of gans for semantic face editing. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 9243–9252. [CrossRef]

24. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial
nets. Adv. Neural. Inf. Process. Syst. 2014, 63, 139–144. [CrossRef]

25. Kingma, D.P.; Welling, M. Auto-encoding variational bayes. arXiv 2013, arXiv:1312.6114.

http://doi.org/10.1109/TPAMI.2020.2970919
http://www.ncbi.nlm.nih.gov/pubmed/32012000
http://dx.doi.org/10.48550/arXiv.1809.11096
http://dx.doi.org/10.1109/CVPR.2018.00916
http://dx.doi.org/10.1109/CVPR42600.2020.00821
http://dx.doi.org/10.1109/CVPR42600.2020.00813
http://dx.doi.org/10.5555/3295222.3295294
http://dx.doi.org/10.5555/3294996.3295027
http://dx.doi.org/10.5555/3305381.3305404
http://dx.doi.org/10.1109/TPAMI.2018.2872043
http://dx.doi.org/10.48550/arXiv.1609.03126
http://dx.doi.org/10.1109/CVPR.2017.525
http://dx.doi.org/10.1109/CVPR46437.2021.00158
http://dx.doi.org/10.1007/978-3-030-58539-6_35
http://dx.doi.org/10.48550/arXiv.2108.07668
http://dx.doi.org/10.1109/TNNLS.2018.2852738
http://www.ncbi.nlm.nih.gov/pubmed/30130236
http://dx.doi.org/10.5555/3305890.3305954
http://dx.doi.org/10.1145/3219819.3220114
http://dx.doi.org/10.3390/app12083910
http://dx.doi.org/10.1145/3447648
http://dx.doi.org/10.1109/CVPR42600.2020.00581
http://dx.doi.org/10.1109/ICCV.2019.00584
http://dx.doi.org/10.48550/arXiv.1907.07171
http://dx.doi.org/10.1109/CVPR42600.2020.00926
http://dx.doi.org/10.1145/3422622

Appl. Sci. 2022, 12, 5382 22 of 22

26. Jeewajee, A.K.; Kaelbling, L. Adversarially-learned Inference via an Ensemble of Discrete Undirected Graphical Models. Adv.
Neural. Inf. Process. Syst. 2020, 33, 12660–12672. [CrossRef]

27. Bertran, M.; Martinez, N.; Papadaki, A.; Qiu, Q.; Rodrigues, M.; Reeves, G.; Sapiro, G. Adversarially learned representations for
information obfuscation and inference. In Proceedings of the International Conference on Machine Learning, Long Beach, CA,
USA, 9–15 June 2019; pp. 614–623.

28. Berthelot, D.; Schumm, T.; Metz, L. Began: Boundary equilibrium generative adversarial networks. arXiv 2017, arXiv:1703.10717.
29. Henzler, P.; Mitra, N.J.; Ritschel, T. Escaping Plato’s cave: 3D shape from adversarial rendering. In Proceedings of the IEEE/CVF

International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 9984–9993. [CrossRef]
30. Heusel, M.; Ramsauer, H.; Unterthiner, T.; Nessler, B.; Hochreiter, S. Gans trained by a two time-scale update rule converge to a

local nash equilibrium. Adv. Neural. Inf. Process. Syst. 2017, 30, 6629–6640. [CrossRef]
31. Mirza, M.; Osindero, S. Conditional generative adversarial nets. arXiv 2014, arXiv:1411.1784.
32. Chen, X.; Duan, Y.; Houthooft, R.; Schulman, J.; Sutskever, I.; Abbeel, P. Infogan: Interpretable representation learning by

information maximizing generative adversarial nets. In Proceedings of the International Conference on Neural Information
Processing Systems, Barcelona, Spain, 5–10 December 2016; pp. 2180–2188. [CrossRef]

33. Radford, A.; Metz, L.; Chintala, S. Unsupervised representation learning with deep convolutional generative adversarial networks.
In Proceedings of the International Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015; pp. 2203–2212.
[CrossRef]

34. Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; Courville, A. Improved training of wasserstein GANs. In Proceedings of the
International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 5769–5779.
[CrossRef]

35. Liao, Y.; Schwarz, K.; Mescheder, L.; Geiger, A. Towards unsupervised learning of generative models for 3d controllable image
synthesis. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19
June 2020; pp. 5871–5880. [CrossRef]

36. Hjelm, R.D.; Jacob, A.P.; Che, T.; Trischler, A.; Cho, K.; Bengio, Y. Boundary-seeking generative adversarial networks. In
Proceedings of the 6th International Conference on Learning Representations,Vancouver,BC, Canada, 30 April–3 May 2018.
[CrossRef]

37. Wu, Z.; Lischinski, D.; Shechtman, E. Stylespace analysis: Disentangled controls for stylegan image generation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Online, 19–25 July 2021; pp. 12863–12872. [CrossRef]

38. Härkönen, E.; Hertzmann, A.; Lehtinen, J.; Paris, S. Ganspace: Discovering interpretable gan controls. Adv. Neural. Inf. Process.
Syst. 2020, 33, 9841–9850. [CrossRef]

39. Mildenhall, B.; Srinivasan, P.P.; Tancik, M.; Barron, J.T.; Ramamoorthi, R.; Ng, R. Nerf: Representing scenes as neural radiance
fields for view synthesis. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020;
pp. 405–421. [CrossRef]

40. Singh, K.K.; Ojha, U.; Lee, Y.J. Finegan: Unsupervised hierarchical disentanglement for fine-grained object generation and
discovery. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA,
15–20 June 2019; pp. 6490–6499. [CrossRef]

41. Voynov, A.; Babenko, A. Unsupervised discovery of interpretable directions in the gan latent space. In Proceedings of the
International Conference on Machine Learning, Congress Center, Vienna, Austria, 13–18 July 2020; pp. 9786–9796. [CrossRef]

42. Niemeyer, M.; Geiger, A. Giraffe: Representing scenes as compositional generative neural feature fields. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Online, 19–25 July 2021; pp. 11453–11464. [CrossRef]

43. Hutchinson, M.F. A stochastic estimator of the trace of the influence matrix for Laplacian smoothing splines. Commun. Stat.
Simul. Comput. 1989, 18, 1059–1076. [CrossRef]

44. Salimans, T.; Goodfellow, I.; Zaremba, W.; Cheung, V.; Radford, A.; Chen, X. Improved techniques for training gans. Adv. Neural.
Inf. Process. Syst. 2016, 29, 2234–2242. [CrossRef]

45. Zhu, X.; Xu, C.; Tao, D. Learning disentangled representations with latent variation predictability. In European Conference on
Computer Vision; Springer: Berlin/Heidelberg, Germany, 2020; pp. 684–700. [CrossRef]

46. Karras, T.; Aila, T.; Laine, S.; Lehtinen, J. Progressive Growing of GANs for Improved Quality, Stability, and Variation. In
Proceedings of the International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018;
pp. 2581–2592. [CrossRef]

http://dx.doi.org/10.48550/arXiv.2007.05033
http://dx.doi.org/10.1109/ICCV.2019.01008
http://dx.doi.org/10.5555/3295222.3295408
http://dx.doi.org/10.5555/3157096.3157340
http://dx.doi.org/10.48550/arXiv.1511.06434
http://dx.doi.org/10.5555/3295222.3295327
http://dx.doi.org/10.1109/CVPR42600.2020.00591
http://dx.doi.org/10.48550/arXiv.1702.08431
http://dx.doi.org/10.1109/CVPR46437.2021.01267
http://dx.doi.org/10.48550/arXiv.2004.02546
http://dx.doi.org/10.1007/978-3-030-58452-8_24
http://dx.doi.org/10.1109/CVPR.2019.00665
http://dx.doi.org/10.48550/arXiv.2002.03754
http://dx.doi.org/10.1109/CVPR46437.2021.01129
http://dx.doi.org/10.1080/03610918908812806
http://dx.doi.org/10.5555/3157096.3157346
http://dx.doi.org/10.1007/978-3-030-58607-2_40.
http://dx.doi.org/10.48550/arXiv.1710.10196

	Introduction
	Related Work
	Better Model Structure
	Modifying the Model Architecture
	Alternative Loss Functions

	Disentanglement

	 Theoretical Method and Simplified Calculation Materials and Methods
	Basic Theory and Dynamics of GAN
	Hessian Penalty and Jacobian Penalty
	Hessian Penalty
	Jacobian Penalty

	Association Between the Hessian Penalty and the Jacobian Penalty
	Network Model Structure
	Evaluation Metrics

	Experiments
	Introduction to the Datasets
	Resistance Model Collapse
	Disentanglement Experiments
	Qualitative Experiments
	Quantitative Evaluation

	 Limitation and Discussion

	Conclusions
	Appendix A
	Appendix A.1
	Appendix A.2

	Appendix B
	References

