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Abstract: With the continuous development of smart cities, intelligent transportation systems (ITSs)
have ushered in many breakthroughs and upgrades. As a solid foundation for an ITS, traffic flow
prediction effectively helps the city to better manage intricate traffic flow. However, existing traffic
flow prediction methods such as temporal graph convolutional networks(T-GCNs) ignore the dissim-
ilarities between lanes. Thus, they cannot provide more specific information regarding predictions
such as dynamic changes in traffic flow direction and deeper lane relationships. With the upgrading
of intersection sensors, more and more intersection lanes are equipped with intersection sensors to
detect vehicle information all day long. These spatio-temporal data help researchers refine the focus of
traffic prediction research down to the lane level. More accurate and detailed data mean that it is more
difficult to mine the spatio-temporal correlations between data, and modeling heterogeneous data
becomes more challenging. In order to deal with these problems, we propose a heterogeneous graph
convolution model based on dynamic graph generation. The model consists of three components. The
internal graph convolution network captures the real-time spatial dependency between lanes in terms
of generated dynamic graphs. The external heterogeneous data fusion network comprehensively
considers other parameters such as lane speed, lane occupancy, and weather conditions. The codec
neural network utilizes a temporal attention mechanism to capture the deep temporal dependency.
We test the performance of this model based on two real-world datasets, and extensive comparative
experiments indicate that the proposed heterogeneous graph convolution model can improve the
prediction accuracy.

Keywords: lane-level traffic flow prediction; temporal–spatial correlation; graph convolution neural
network; attention mechanism

1. Introduction

As a significant part of smart city construction, an intelligent transportation system
(ITS) acts as a powerful tool to enhance the quality of city transportation. Benefiting from
the rapid development of the Internet of Things [1], the ITS can provide key information
to aid in managing traffic through the connection between traffic sensors and the Internet.
For instance, traffic police can inspect illegal parking and allocate traffic resources more effi-
ciently with the deployment of automatic license plate recognition (LPR) infrastructure [2]
or identify potentially illegal or dangerous driving behaviors by assessing driving style [3].
Moreover, with the vigorous development of mobile applications and intelligent vehicle
terminals, every driver can easily obtain information about traffic congestion location pre-
dictions [4] and recommended driving routes. In addition, the traditional service industry
relying on the road network has also been benefited in a variety of ways, such as the birth
of crowdsourced logistics in the express industry, which could coordinate taxi passenger
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and express delivery services [5], and the location planning of business districts in the
urban layout [6]. Therefore, ITS benefits not only traffic managers but also all participants
including drivers, pedestrians, and so on. For the purpose of strengthening the foundation
of ITSs, more researchers have funneled study into the field of traffic flow prediction.

Based on different methods, traffic flow prediction analyzes and generalizes the traffic
characteristics of both common and special areas (e.g., schools and hospitals) in both
general and special periods (e.g., during congestion or after accidents) and generates
accurate predictions of future traffic states [7]. Current traffic prediction methods fall into
two types: model-driven methods and data-driven methods [8–10]. However, the former
methods have the disadvantage of being unable to handle cases affected by special factors
or events such as weather conditions and traffic accidents.

Thus, in order to take special situations into account, current studies mainly adopt
data-driven deep learning methods, which are capable of analyzing multi-dimensional data.
Lint et al. [11] modeled time series with a recurrent neural network (RNN). However, the
RNN has the defects of gradient disappearance and long-term dependence, and therefore
Ma et al. [12] used a long short-term memory (LSTM) method to conduct a predictive analysis
of the data collected from microwave sensors. By making use of a gate recurrent unit (GRU),
an effective variant of LSTM, Fu et al. [13] improved the speed forecast effectiveness. The above
three studies only focused on either the temporal dependence or spatial dependence; they did
not consider both comprehensively. Although Yao et al. [14] focused on temporal–spatial
correlation, and the proposed spatial–temporal dynamic network (STDN) model combined the
dynamic change in spatial correlation with the periodicity of time correlation, Yao’s study had
the same disadvantage as the previous research, i.e., lanes at an intersection were considered
as a whole and their differences were not distinguished [15].

At different intersections and in different flow directions, owing to the high mobility
of vehicles, lanes often show diverse traffic patterns [15,16]. As shown in Figure 1, in the
morning, represented by red arrows, the traffic flow directed from right to left has a
larger scale, and the opposite is true in the evening peak. In view of the ever-increasing
development of smart cities, traffic flow prediction technology should detect dynamic
changes in lanes more quickly and efficiently, with multiple trajectory data. Accordingly,
from a data-driven perspective, a technology of traffic prediction at the lane level emerges
and becomes one of the most vital parts of an ITS.

Figure 1. Different traffic conditions of lanes in morning and evening peaks.

The lane-level traffic prediction method has attracted the attention of researchers
mainly because it can be applied to a variety of complex dynamic prediction scenarios.
Based on the improvement of the existing prediction method, it could play a huge role in
the future in applications such as unmanned driving, lane-level positioning [17], and cloud
video surveillance traffic detection [18].

In order to focus on the temporal and spatial characteristics of traffic flow, Gu et al. [19]
used an entropy-based gray correlation method to analyze the correlation between lanes
and an LSTM-GRU model to derive the spatial–temporal information matrix which is iter-
ated to output the speed prediction. Ke et al. [20] proposed an innovative two-stream multi-
channel convolutional neural network (TMCNN) model, based on the view that different
lanes at an intersection can be equated with diverse channels in an image. By introducing
a theory of lane-changing behavior, Xie et al. [21] established a model for lane-changing
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and its implementation based on a deep belief network (DBN) and LSTM. In addition,
Lu et al. [22] and Ma et al. [23] utilized a convolutional LSTM network (ConvlTM) model
to process temporal–spatial information.

All the above authors carried out in-depth studies on the temporal and spatial charac-
teristics of traffic flow, but excessive emphasis on these characteristics will inevitably lead
to the neglect of other heterogeneous data; for example, some time-varying characteristics
are not taken into account. Consequently, in our work, considering static and dynamic
road network structures, we propose a heterogeneous graph convolution model that takes
advantage of the road occupancy rate, minimum visibility, and other data to minimize the
deviations in prediction results caused by a single data source.

Inspired by some of the latest research on dynamic graphs [24,25], we propose generat-
ing dynamic graphs in an internal graph convolution network to determine the correlation
between lanes. Since the impact of weather conditions and road occupancy on flow pre-
diction cannot be ignored, we fuse other heterogeneous data in an external data fusion
network. In addition, in order to mine the time-dependence of traffic flow, we deploy a
codec network with a temporal mechanism.

In summary, regarding lane-level prediction, this study mainly demonstrates innova-
tion and progress in the following three respects:

• We propose a heterogeneous graph convolution model based on dynamic graph
generation. In order to discover the spatial dependence of dynamic graphs, a graph
convolutional network (GCN) is introduced into this model, and a temporal attention
mechanism is applied to further study the time-dependence.

• We analyze other heterogeneous data to obtain more potential information that has
not been previously considered. That is, by incorporating multivariate data such as
occupancy and minimum visibility into heterogeneous data fusion networks, we can
reduce the loss of accuracy.

• We conduct extensive experiments on two real-world datasets, and the results show
that our proposed model can increase the precision of lane-level traffic state prediction.

2. Methodology

Figure 2 exhibits the model architecture of the heterogeneous graph convolutional
network. The network consists of three main components: (1) an internal graph convolution
network based on dynamic graphs; (2) an external heterogeneous data fusion network;
and (3) a codec network based on an attention mechanism. The internal convolution
network is integrated with the external heterogeneous data fusion network, and they are
represented as an association convolution block (ACB). Here, x̃sp

T represents the output of
the internal graph convolution network and x̃out

T represents the final result of the external
heterogeneous data fusion network.

The process shown in the whole frame starts from the internal convolution network of
the ACB, i.e., the left part of the ACB shown in Figure 2. The participating lanes are divided
into two categories according to their relationship with the target lane: (1) for lanes at
different intersections, the internal convolution network combines a dynamic graph matrix
and a static adjacency matrix and (2) for lanes at the same intersection, only a dynamic
graph matrix is generated, with no static adjacency matrix. Graph convolutional operations
are performed according to the above conditions, and the outputs are fused into the final
internal graph convolution result.

Regarding the external fusion network of the ACB, by adopting an attention mecha-
nism, reasonable weights are allocated to the various parameters and then the results are
fused with the convolution result of the internal graph to produce the outputs of the ACB.

In the last part of the whole framework, the encoder assigns the temporal weights to
the hidden layers in the GRU units by utilizing the attention mechanism. After obtaining
the context vector constructed in the encoder, the decoder outputs the final prediction result
through iterative processing.
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Figure 2. Architecture of the heterogeneous graph convolution model.

2.1. Internal Graph Convolution Network

Since traffic information can be regarded as graph signals, many researchers apply
graph neural networks in traffic flow prediction to capture spatial characteristics in road net-
works. In this paper, we utilize the graph convolution network based on a spectral domain
to mine the deep spatial dependency in static adjacency graphs and dynamic graphs.

First, according to the road topology, we define an undirected and weighted graph
G = (V, E), where V = {v1, v2, · · · , vN} is the set of nodes, N is the number of nodes,
and E is the set of links, representing the connectivity between nodes. The weights and
static adjacency matrix of G are calculated as follows:

AI
i,j = AI

j,i =

{
1

di,j
, di,j 6= 0

0, di,j = 0
(1)

where dij denotes the distance between i and j. AI ∈ RN×N is the static adjacency matrix,
which has only two types of values: zero represents the fact that two nodes do not correlate
and a non-zero value represents the correlation degree (i.e., the weight) between two
nodes. Thus, AI means that the smaller the distance between two nodes, the greater the
correlation degree.

We apply Chebyshev polynomials to greatly reduce the operation convolution time:

gθ(Λ) =
K−1

∑
k=0

∂kTk(Λ̃) (2)

where ∂k is the coefficient of the Chebyshev polynomials and Λ̃ is the maximum eigenvalue
of the Laplace matrix. The recursive form of Chebyshev polynomials can be expressed as
Tk(x) = 2Tk−1(x)− Tk−2(x), where T0 = 1 and T1 = x.

Graph convolution networks based on Chebyshev polynomials help to improve the
efficiency but cannot sense dynamic changes in traffic patterns through the static adjacency
matrix in Equation (1). Taking the change in traffic flow in the morning and evening peaks
as an example, during the early peak, the traffic flow on main roads between the suburbs
and cities tends to increase sharply, and the traffic direction is from the suburbs to the cities.
In contrast, during the evening peak, the number of vehicles driving from cities to the
suburbs shows a growth trend. The static adjacency matrix only focuses on the influence of
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the distance between two nodes and ignores the dynamics caused by the change in vehicle
flow at different times. Figure 3 shows the correlation degree between nodes changing over
time, where different colors denote different correlation degrees.

Figure 3. Association between nodes. Subfigure (A) shows the distribution of each sensor in a road
network. Subfigure (B) shows the correlation degree changing over time.

Apart from ignoring temporal variability, Equation (1) also overlooks the impact of
similar traffic patterns between nodes. As shown in Figure 4, S3 is closest to S1, S2, and
S4, and in consequence these links have higher weights in subfigure A. We assume that
after the analysis of traffic patterns, the pattern of S3 is the most similar to that S6, i.e., their
traffic flows are related during the morning and evening peaks, and congestion at S6 will
spread to S3 in a short time. Then, we are able to draw the dynamic graph in subfigure B.
Although S3 is far away from S6, they have the highest link weight.

Figure 4. Static and dynamic links between nodes. Subfigure (A) shows the static graph calculated
by node distances. Subfigure (B) shows the dynamic graph calculated by similarity of traffic patterns.

Considering the dynamic changes with time and traffic patterns, we innovatively
propose the internal graph convolutional network based on dynamic graph generation.
Figure 5 shows the architecture of the network.

Figure 5. Internal graph convolutional network based on dynamic graph generation.

Before model training, in terms of the adjacency relationship with the target lane,
we divide all participating lanes into same-intersection adjacency lanes Xs and different-
intersection adjacency lanes Xd. Traffic flow parameters have the ability to reflect the
congestion degree of the road network and the probability of accidents occurring. Therefore,
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we select the traffic flow as the metric and calculate the correlation degree of each node,
using the Pearson correlation coefficient to generate the dynamic graph:

ps
i,j =

Z ∑ xs,i
l xs,j

l −∑ xs,i
l ∑ xs,j

l√
Z ∑ (xs,i

l )
2 − (∑ xs,i

l )
2
√

Z ∑ (xs,j
l )

2
− (∑ xs,j

l )
2

(3)

As,c
i,j = As,c

j,i =

{
ps

i,j , ps
i,j 6= 0

0 , ps
i,j = 0

(4)

Equation (3) shows the formula for the Pearson correlation coefficient, where xs,i
l and

xs,j
l are the parameters of lane i and lane j at moment l, respectively, and Z is the amount of

data for each lane. As,c in Equation (4) is the dynamic graph matrix of the same-intersection
lanes and ps

i,j is the correlation degree between lane i and lane j at the same intersection.

Similarly, we can derive the dynamic graph matrix Ad,c for different-intersection lanes.
When performing a graph convolution operation on same-intersection lanes, we utilize

the dynamic matrix As,c to generate a convolution kernel gs,dy
θ (Λ) and convolute Xl

s at
moment l:

Fs = gs,dy
θ (Λ)Xs

l =
K−1

∑
k=0

∂kTs,dy
k (Λ̃)Xs

l (5)

When performing a graph convolution operation on different-intersection lanes, we
utilize the convolutional kernels gd,dy

θ (Λ) and gd,st
θ (Λ) generated by the dynamic matrix

Ad,c and the static adjacency matrix, respectively, to convolute Xl
d:

Fd =
(
(gd,dy

θ (Λ) + gd,st
θ (Λ))Xd

l

)
�W (6)

gd,dy
θ (Λ) + gd,st

θ (Λ)=
K−1

∑
k=0

∂k

(
Td,st

k (Λ̃) + Td,st
k (Λ̃)

)
(7)

where W is the trainable weight matrix and � denotes the element-wise product.
The final result of the internal graph convolution network is calculated by the fusion

of Fs and Fd at moment l:

x̃sp
l =relu

(
Fs ∗Wsp

l + bsp
l + (Fd ∗Vsp

l + c)
)

(8)

where Wsp
l and Vsp

l are convolution kernels and bsp
l and c are biases corresponding to

the kernels.

2.2. External Heterogeneous Data Fusion Network

Through previous experiments, it was found that one of the main reasons for the
low accuracy of traffic flow prediction results is the fact that multi-source heterogeneous
data are left out of consideration and data of only one type are acquired. According to
the speed–flow equation for traffic, the nonlinear relationship between speed, flow, and
road occupancy rate is so complex that we cannot confirm one variable by any other single
variable. For instance, when at a flat peak, the speed of the vehicle is high but the road
occupancy is low, so the flow is quite low. However, in traffic congestion, though the
occupancy rate is high, the speed stays at a low level and the flow remains at a small value.
Therefore, the current traffic flow condition cannot be analyzed according to only one
aspect of the traffic status, as the forecast result will have a large initial difference from the
actual data.

Furthermore, weather is a significant factor that affects the traffic conditions to a great
extent. Whether the weather is sunny or not affects the driving safety factor, which leads to
higher vehicle speeds when the weather is sunny, and the saturation flow of the lane can
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be higher at this time. In the case of bad weather such as snowstorms and fog, the driver
takes the initiative to slow down due to the low visibility, and reaching the saturation level
is unlikely.

The above shows that there are many determinants of traffic conditions. Considering
only single-source traffic flow parameters leads to the traffic conditions being oversimplified
and the complexity being ignored. To be rigorous, the model requires vehicle speed, road
occupancy, minimum visibility, and other data as a supplement.

We apply an external heterogeneous data fusion network to solve the problem of
analysis error caused by a lack of information. Figure 6 shows the architecture of the
network. The neural network adopts an attention mechanism and reasonably allocates the
weights of various heterogeneous characteristic parameters.

Figure 6. External heterogeneous data fusion network.

Attention scores are calculated as:

ep
l = Vin

l · σ(W
in
l1 · [d

en
l−1; sen

l−1] + Win
l2 ·m

p
l + bin

l ) (9)

α
p
l =

exp(ep
l )

∑
f
j=1 exp(ej

l)
(10)

where Win
l1 , Win

l2 , and Vin
l are trainable weight matrices, bin

l is the bias, [den
l−1; sen

l−1] is the
result of connecting hidden layers with cell state layers in the GRU units of the decoder,
mp

l is the p-th heterogeneous characteristic parameter at moment l , and ap
l is the allocated

weight. The final result x̃out
l is calculated as:

x̃out
l =

(
α1

l m1
l , α2

l m2
l , . . . , α

f
l m f

l

)T
(11)
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2.3. Codec Network Based on Attention Mechanism

As shown in Figure 7, the final result of the ACB is fused with the internal and
external networks:

x̃l =
[
Wl1 · x̃

sp
l + bl1; Wl2 · x̃out

l + bl2

]
(12)

where Wl1 and Wl2 are trainable weight matrices and bl1 and bl2 are biases corresponding
to the matrices.

Figure 7. Fusion of internal network and external network.

In spite of the deep spatial dependency between nodes in the result of the ACB,
temporal dependency must be further mined to improve prediction accuracy. In traffic
flow prediction, extensive experimental studies have proved that LSTM and GRU models
have the advantage of effectively processing time series by collecting historical information
and referring to previous scenarios. Based on this conclusion, in order to ensure our model
obtains this advantage, we construct the codec network with the GRU. Due to the limited
storage space, the length of the context vectors is fixed, which restricts the expression ability
of the codec network.

For the benefit of finding long-term dependencies in sequences, we combine the codec
network with a temporal attention mechanism. The temporal attention mechanism allocates
reasonable weights to each period efficiently via self-learning and parallel computing.
Temporal attention weights are calculated as follows:

kp = Ven
l · σ

(
Wen

l1 · [d
en
l−1; sen

l−1] + Wen
l2 · x̃l + ben

l
)

(13)

`p =
exp(kp)

∑T
i=1 exp(ki)

(14)

where Wen
l1 , Wen

l2 , and Ven
l are trainable weight matrices, [den

l−1; sen
l−1] is the result of con-

necting hidden layers with cell state layers in the previous GRU units of the decoder, x̃l
is the output of the ACB at moment l, and ben

l is the bias. Then, the context vectors are
calculated as:

hen
l = Gen(hen

l−1, x̃l
)

(15)

C =
T

∑
l=1

`l · hen
l (16)

where Equation (15) derives the output hen
l of the GRU units at moment l, Gen denotes

the GRU units of the encoder, hen
l−1 is the output of the previous GRU unit, and x̃l is the

output of the ACB at moment l. Equation (16) derives the context vector C, and `l is the
temporal weight.

Then, the context vectors are decoded as follows:

dde
l = Gde

(
dde

l−1, [ŷl−1; C]
)

(17)

ŷl = Vde
l · σ

(
Wde

l · [d
de
l ; C] + bde

l

)
(18)
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where Gde denotes the GRU unit of the encoder, dde
l−1 is the previous hidden layer of the

decoder, dde
l is the current hidden layer of the decoder, Wde

l and Vde
l are trainable matrices,

ben
l is the bias, and ŷl is the final prediction result.

3. Experiments and Results
3.1. Experimental Data

Aiming at conducting a dynamic analysis, we performed prediction tests on heteroge-
neous data, including traffic flow data and weather information as follows:

• Traffic data: PEMSD4 and PEMSD8 are two real-world datasets from the Caltrans
Performance Measurement System (PeMS). The detailed information is shown in
Table 1.

• Weather information: We collected weather data for the San Francisco Bay area and
for San Bernardino during the periods shown, selected the visibility metric, and then
integrated the data into the test as a special factor.

In order to facilitate the test in the internal convolution network of the ACB, we
preprocessed the data in advance. First, we classified the data according to whether they
referred to the same intersection or the same lane. Then, we obtained the total traffic flow,
average occupancy rate of lanes, and average speed every five minutes. According to the
road speed limit and actual situations, we removed unreasonable data, smoothed burr
points, and utilized the sliding window method with fixed length to estimate missing data.
To verify the comparison of the accuracy of traffic flow prediction, we split each dataset
and selected 47 days as the training set and 15 days as the test set.

Table 1. Traffic data details.

Area Sensors Time Range

PeMSD4 29 roads of the San Francisco Bay 307 sensors 56 days: 1 January 2018—28 February 2018
PeMSD8 8 roads of the San Bernardino 170 sensors 62 days: 1 July 2016—31 August 2018

3.2. Prediction Task

In the preprocessing of the dataset, the traffic flow and weather data were recorded
every five minutes. Our prediction task was to use the first five records to predict the sixth
datum. That is, the traffic flow datum for the next five minutes was predicted based on the
information from the first sixty minutes of data. Finally, our proposed lane-level traffic flow
prediction algorithm was evaluated by comparing the real data with the predicted data.

3.3. Experimental Setting

To demonstrate the superiority of the proposed model, we compared it with seven
other algorithms, including parametric methods, non-parametric methods, and deep
learning methods:

• HA (historical average): this method is based on statistics and calculates the average
value of traffic flow parameters to derive the prediction results.

• SVM (support vector machines): this is a supervised learning method and classifies
data by binary methods. The optimal hyperplane can maximize the distance between
multiple categories.

• ARIMA (autoregressive integrated moving average): this is a time series prediction
method, composed of an autoregressive block and a moving average block.

• GRU (gate recurrent unit): this model is a variant of LSTM that removes forgetting
gates and only consists of update gates and reset gates. It requires fewer parameters
and converges more easily.

• T-GCN [26]: this model is a time series neural network with a GRU-GCN struc-
ture, where the GCN deals with spatial dependency and the GRU deals with
temporal dependency.
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• ST-AFN [27]: this model represents our previous work and mainly has a temporal–
spatial attention mechanism construction. The network consists of a speed processing
network, a spatial encoder, and a temporal decoder.

• ASTGCN [28]: this model is graph convolution network that divides a temporal
sequence into three parts, i.e., recent, daily-periodic and weekly-periodic dependencies.
Prediction results are derived by fusing the outputs of the three parts.

All experiments were run on the same computer, where the OS was Ubuntu 18.04,
the memory capacity was 64 GB, the CPU was an Intel Xeon Silver, and the GPU was an
NVIDIA Quadro M4000. We used Pytorch 1.6.0 and set a series of hyperparameters as
follows: 0.0001 for the learning rate; 128 for the batch size; 64 for the size of the hidden
layers and cell states in the GRU; and 12 for the step length for historical data. Moreover,
we selected the mean absolute error (MAE), the root mean squared error (RMSE), and the
mean absolute percentage error (MAPE) to evaluate the prediction performance.

3.4. Performance Comparison

First, we compared the accuracy of our proposed algorithm with seven other predic-
tion algorithms. Then, a comparison experiment was conducted considering the difference
in traffic flow characteristics between weekdays and weekends. After verifying the ef-
fectiveness of our proposed algorithm, ablation experiments were conducted in order to
investigate whether the internal graph convolutional network or the external heteroge-
neous data fusion network in the algorithm played a more important role. Finally, the time
consumption of our algorithm was compared with three other algorithms.

3.4.1. Overall Comparison

Table 2 shows the results of the overall performance comparison. The smaller the
values of MAE, RMSE, and MAPE, the better the prediction effect. Although the HA method
based on statistics showed higher efficiency than the other methods and the evaluation
indicators were not all larger than the others, this simple algorithm has an inability to
process complex, changeable, real-time traffic flow data. The ARIMA method focuses
on the regularity and stability of traffic flow data in the time dimension, and therefore it
performed better than the traditional machine learning method SVM, but the accuracy was
still low. The performance of GRU was superior to ARIMA, but both of them lack spatial
dependency, which is exactly what T-GCN has to help it perform better. Although ST-
AFN and ASTGCN both take the spatio-temporal characteristics of the data into account,
the latter method is more accurate for constructing a multi-branched structure. The results
show that the proposed heterogeneous graph convolution network performs best overall
and that that MAE, RMSE, and MAPE reached 16.1654, 24.656, and 12.413% in PeMSD4
and 15.486, 22.513, and 13.641% in PeMSD8, respectively.

Table 2. Overall performance comparison.

PeMSD4 PeMSD8

MAE RMSE MAPE MAE RMSE MAPE

HA 35.428 51.144 25.156% 28.438 48.367 30.579%
SVM 42.924 48.843 22.511% 30.546 48.645 28.647%
ARIMA 32.540 42.596 20.168% 33.726 45.286 25.213%
GRU 29.120 40.603 18.551% 28.863 41.565 27.226%
T-GCN 25.842 31.457 14.657% 24.643 30.665 15.691%
ST-AFN 22.293 28.032 16.195% 21.156 25.562 18.532%
ASTGCN 19.531 26.924 14.522% 18.685 27.651 16.650%
Ours 16.165 24.656 12.413% 15.486 22.513 13.641%

In order to visualize the difference between the test performances of different methods,
we constructed a bar chart and box chart according to Table 2, as shown in Figure 8.
Through detailed analysis and graphical presentation of the experimental results, it can be
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determined that the the new proposed algorithm outperformed the other seven methods in
the overall performance of the prediction task.

Figure 8. Performance comparison charts. The left subfigure is the bar chart, and the right subfigure
is the box chart.

3.4.2. Comparison of Weekends and Workdays

As a result of people’s different travel intentions, the fluctuation range of traffic flow
is more obvious on weekdays than on weekends. The main difference is that traffic flow
increases more rapidly during the morning and evening peaks on weekdays. In order to
compare the differences between algorithms regarding the prediction for these two periods,
we divided the prediction results into working days and non-working days for the statistics.
Table 3 shows the metrics of T-GCN, ASTGCN, and the heterogeneous graph convolution
network for workdays and weekends. The prediction results of all these three algorithms
for non-working days were better than those for working days. Among them, our proposed
model reached the optimal prediction results, and the accuracy for non-working days was
higher than that for working days.

Table 3. Performance comparison of working days and nonworking days.

Working Days Non-Working Days

MAE RMSE MAPE MAE RMSE MAPE

T-GCN 27.546 32.135 16.165% 23.348 30.398 14.418%
ASTGCN 20.125 25.972 17.214% 17.835 28.142 14.186%
Ours 17.981 25.031 14.155% 14.013 22.489 12.410%

In order to better reveal the prediction accuracy and distinction of the heteroge-
neous graph convolution model on different types of days, we selected a working day
from PeMSD4 and a non-working day from PeMSD8 for in-depth analysis. As shown in
Figures 9 and 10, the heterogeneous graph convolution model obtained good traffic flow
prediction results. It can be seen from the curve overlap degree of Figures 9 and 10 that
the prediction effect for non-working days was slightly better than that for working days.
The prediction effect in the morning and evening peaks was not good enough, which means
that stability of traffic conditions also affects the final prediction results, i.e., the prediction
accuracy is high when the traffic conditions are relatively stable but the gap between the
prediction result and the real value becomes large when fluctuation occurs in the traffic
flow. In addition, it can be observed that the prediction error at noon was large, as the
fluctuations and interleaving of the curves are quite different. Furthermore, the model has
the defects of failing to predict the maximum flow value in the morning and evening peaks.
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Figure 9. Prediction results for the working day in PeMSD4.

Figure 10. Prediction results for the non-working day in PeMSD8.

3.4.3. Ablation Comparison

To determine whether the internal graph convolutional network or the external het-
erogeneous data fusion network played a key role in the heterogeneous graph convolution
network in improving the accuracy, we conducted ablation experiments by removing a
certain portion of the proposed network. The experimental results are shown in Table 4,
where Ours* is the prediction result of the static graph convolution network without the
internal graph convolution network and Ours** is the prediction result without the external
heterogeneous data fusion network. Since the accuracies of Ours** and Ours* are similar
and much lower than for the full structure, this indicates that both structures play an
important role in the whole framework, and they are both indispensable in improving
the accuracy.

Table 4. Performance comparison for ablation experiment.

PeMSD4 PeMSD8

MAE RMSE MAPE MAE RMSE MAPE

Ours** 26.221 37.542 14.468% 26.462 38.403 19.135%
Ours* 25.437 35.416 16.105% 25.154 35.168 20.896%
T-GCN 25.842 31.457 14.657% 24.643 30.665 15.691%
ASTGCN 19.531 26.924 14.522% 18.685 27.651 16.650%
Ours 16.165 24.656 12.413% 15.486 22.513 13.641%
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3.4.4. Training Cost Comparison

As well as focusing on the accuracy of the algorithms, we compared the training
costs as an indicator of the computational efficiency of T-GCN, ASTGCN, ST-AFN, and
the heterogeneous graph convolution network. As shown in Table 5, the ST-AFN method
showed the fastest training speed due to its efficient attention mechanism, and ASTGCN,
with a multi-branched network, took the most time. Since the network structure of T-
GCN is relatively simple, it also performed well with respect to time cost, though it was
slightly inferior to ST-AFN. Regarding the heterogeneous graph convolution network,
the performance was also good in terms of time consumption, and not too much time
was expended.

Table 5. Training cost comparison.

PeMSD4 PeMSD8

ST-AFN 182.17 s 158.29 s
ASTGCN 310.65 s 275.12 s
Ours 276.48 s 220.14 s
T-GCN 238.26 s 194.31 s

4. Discussion

As smart cities are developing by leaps and bounds, traffic flow management is re-
quired to improve prediction accuracy. Therefore, researchers have intensified research
into lane-level traffic flow prediction, as it can capture urban road conditions and dynamic
changes in the objective environment more accurately than existing prediction methods.
We proposed a heterogeneous graph convolution network based on dynamic graph genera-
tion, which generally adopts the codec structure. The ACB consists of the internal graph
convolution network and external heterogeneous data fusion network, fusing the outputs
of both networks. The encoder allocates reasonable weights to each period through a
temporal attention mechanism to construct context vectors. Finally, the decoder decodes
context vectors and implements the traffic flow prediction. We experimented with two
real-world datasets from PeMS and demonstrated the effectiveness of the proposed net-
work. Although the codec structure and attention mechanism improved the efficiency,
the network still had defects with respect to real-time computing in changeable traffic
conditions. In order to better coordinate the overall framework, we will probe more deeply
into edge computing methods, to unload heavy computing tasks to the road-side unit (RSU)
and enhance the efficiency of data transmission to improve the quality of service [29,30].
In addition, the idea of model pre-training in transfer learning also provides a new direction
for improving real-time learning effectively in the future.
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