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Abstract: This study designed an algorithm for the intelligent control of the motion of a mobile
robot with mecanum wheels. After reviewing the model kinematics and dynamics of the robot,
we conducted a synthesis of the neural control algorithm to determine network weight adaptation,
according to Lyapunov stability theory. Using a MATLAB/Simulink computing environment, we
developed a numerical simulation for the implementation of the robot’s motion path with parametric
disturbances acting on the control object. To determine the quality of the implementation of the
desired motion path, a numerical test of the robot’s motion, controlled with the use of a PD controller,
was conducted. The proposed control algorithm was verified on a laboratory stand equipped with a
dSpace DS1103 controller board and a Husarion Panther four-wheeled mobile robot with mecanum
wheels. The conducted research confirmed the improved implementation of the desired motion path
by a robot controlled with the use of an intelligent control system.

Keywords: wheeled mobile robot; intelligent control; tracking control; neural networks; mecanum
wheels; Lyapunov stability theory

1. Introduction

The expanding possibilities of wheeled mobile robots (WMR), such as maneuverability,
communication, battery life, and the possibility of using sensors that enable data collection
from the environment, has led to a growing interest in their industrial, medical, and
scientific applications. The challenge is in designing robots for a dynamic work environment
and meeting the required safety, accuracy, reliability, and maneuverability. Solutions such as
mecanum wheels [1], which enable freedom of movement and advanced intelligent control
systems such as artificial neural networks (NNs) [2–6] that provide real-time approximation
of nonlinearities in a mathematical model of a robot using network weight adaptation, may
prove helpful in this process.

The use of omnidirectional wheels, such as mecanum wheels, in the construction of
a robot allows direct control of all degrees of freedom, which leads to its classification
as a holonomic object. A description of a kinematics model of a holonomic robot with
mecanum wheels can be found, inter alia, in [7–14] These previous studies have resolved
the inverse kinematics problem, determining the angular velocities of the wheels based on
the set velocity of the characteristic point of the robot’s platform in relation to a stationary
reference system [7,8], and in relation to a moving coordinate system [9,10]. The next stage
of the mathematical analysis of an object has involved describing its dynamics [15–20].
This task was performed in [15–17], using Lagrange equations of the second kind [15] and
Lagrange equations of the second kind with multipliers [16,17]; as a result, the simple and
inverse dynamics problems of the WMR were solved. In [21], a description of a WMR
dynamics model using Lagrange equations of the second kind was identified with the use
of a real object. It was confirmed that the WMR could map a desired motion path based
on the values of the wave forms of the driving moment determined by solving the inverse
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dynamics problem. The effect of losing control over the robot was also considered under
conditions of a low friction coefficient, which led to skidding, which has been a typical
problem for the control of vehicles equipped with mecanum wheels.

The control of mechatronic objects had been widely studied [22–26]. Traditional
mechatronic systems have commonly used intelligent control methods [27–37], while for
holonomic mobile robots, traditional control algorithms have often been used [38–43].
A small number of studies have combined both topics by presenting intelligent control
algorithms for holonomic (mecanum) mobile robots [44–50]. The use of intelligent control
enables the synthesis of a control law with the adaptation of the control system parameters.
The implementation of such functionality has been possible due to the use of an NN,
which is a universal approximator of function [51,52]. The studies in [53,54] presented the
concept of WMR control based on a neuro-fuzzy control system with wavelet networks. A
numerical simulation was conducted to confirm that a WMR could implement the desired
motion path. However, these works did not provide information on the quality of control
expressed by the tracking errors or the adopted quality indicators. In addition, the control
method was not compared with other known robot control algorithms. For this reason, it
was not clear to what extent the proposed method differed from known control algorithms.

The study in [55] presented an adaptive sliding control system containing a radial
basis function (RBF) network. The nonlinear function, which is part of the robot dynamics
description, was approximated using a three-layer radial NN. Based on the analysis of the
Lyapunov stability, the law of network weight adaptation was determined. Numerical
simulations and tests were conducted on a real object. The conducted research showed
that the proposed adaptive-sliding algorithm provided the best control quality among the
tested algorithms (e.g., PID controller and sliding control with linearization).

The studies in [56–58] presented methods of motion control of a holonomic WMR
with the use of a fuzzy control algorithm. In [56], the orientation angle of a robot (i.e., yaw
heading) was determined using an inertial measurement unit (IMU LSM303DLH). Then, a
fuzzy WMR motion control algorithm was applied. The fuzzy controller (FLC) contained a
base of 25 rules and had two inputs for the state vector error and the error between current
and the previous iteration of the state vector; a Sugeno model with a Mamdani implication
was used. The output of the FLC control algorithm determined the work cycle of the PWM
signal that controlled the angular velocity of the mecanum wheel motor. A simulation
of controlling the robot’s motion along a path in the shape of a circle, an ellipse, and a
spiral was conducted. The results were presented in the form of a graph of the motion
path implemented by the WMR, using only the solution of the inverse kinematics problem,
and for a waveform using the IMU system and fuzzy control algorithm. Unfortunately,
it was difficult to assess the quality of control due to the lack of state vector error graphs
and quality indicators. Additionally, the presented results did not provide a comparison
between the fuzzy control algorithm and another algorithm.

In [57], a control algorithm with a fuzzy PID controller was used. The authors focused
a significant portion of the research on the description of the hardware structure of the
test platform used and the communication procedures between the components of the
robot. The rules for the behavior of the FLC, in the absence of measurements of the
angular motion parameters of a given mecanum wheel, were considered. There was
no description of the quality of the implementation of the desired motion path. Only
the conceptual implementation of the obstacle avoidance behavior by the WMR and the
possible translation and rotation of the robot platform in the case of controlling the rotation
of two mecanum wheels were presented.

In [58], as opposed to the traditional method of a mathematical description of a
robot model by solving the kinematics and dynamics problems, simulation modelling was
applied. A physical model, built in Solidworks, was transferred to the Adams environment,
where the robot dynamics model was determined by defining constraints, actuators, and
sensors. Then, the simulation was performed using both the Adams program and the
MATLAB/Simulink development environment. A fuzzy control algorithm was used that



Appl. Sci. 2022, 12, 5322 3 of 21

consisted of three FLCs (one controller each for two translations and one rotation), each
using a base of 25 rules with two inputs for error and error difference from the current
and previous iteration, one output, and five membership functions for each variable. To
implement the FLC, the MATLAB fuzzy logic toolbox with the Mamdani implication was
used. The results of the simulation tests were presented; however, no quality indicators
were used to assess the quality of motion implementation by the WMR control algorithm.

To verify the correctness of the operation of the proposed method of intelligent control
for a mobile robot with mecanum wheels and to assess the quality of the motion imple-
mentation, a synthesis of a neural algorithm was conducted. An RVFL (random vector
functional link) NN was used [59–62]; the law of weight adaptation was determined based
on the mathematical model of a robot using the Lyapunov stability theory. Next, numer-
ical simulations and verification tests were conducted, the results of which enabled the
evaluation of the control quality of the tested method in comparison to a PD controller.

Our study evaluated a neural tracking control algorithm of a WMR with the use of the
RVFL NNs, demonstrating the accuracy of the motion via numerical tests and studies on a
real object, particularly when disturbed. The use of the adaptive nonlinearity compensator
for the description of the dynamics of the control object made it possible to adjust the
parameters of the control signal with parametric disturbances affecting the motion of
the control object, which was confirmed by both simulation studies and tests on the real
object. The most unfavorable case of selecting zero initial values of the weights of the
hidden network layer was used, which corresponded to the lack of preliminary knowledge
regarding the controlled process contained in the weights. Moreover, an analysis of the
algorithm’s stability was conducted with the use of the Lyapunov stability theory. This
study confirmed the correctness of the tracking control in verification tests conducted on a
real object, the Husarion Panther four-wheeled mobile robot with mecanum wheels, which
was modified for real-time experiments using the dSpace DS1103 control and measurement
card. In addition, a significant contribution was the comparison of the results of the
proposed algorithm with another algorithm, in this case, the PD controller, both in terms of
simulation tests and verification with a real object.

The control algorithm presented in this study will be used in future research in the
tracking control layer of the hierarchical control system of the four-wheeled mobile robot
with mecanum wheels, which performed the task of a large-size transport in cooperation
with the second robot. The cooperation of robots was necessary for the correct implemen-
tation of transporting large objects in tight storage spaces, where the advantages of the
mecanum wheels and the robots maneuverability could be examined. Considering the
complexity of the parent layer of the control algorithm coordinating the robot formation
and the desired trajectories of movement as well as the forces of the object’s impact on
the assembly points of the robot frame and the distance to obstacles, a neural control
algorithm was used in the tracking control layer. This algorithm, as shown in the research,
ensured accuracy of the movement, measured by the quality indicators used, and had low
computational demand while adapting the control signal to the changing work conditions
of the robot, which is particularly important for transport tasks involving large objects.

2. Description of the Control Object

To synthesize the control algorithm, the mathematical model of the holonomic motion
of the WMR was analyzed. The waveforms of motion parameters were determined and
served as the predicted values in the control algorithm. For this purpose, the inverse
kinematics problem was solved by determining the angular velocities of the mecanum
wheels based on the desired motion path of the selected point of the robot’s frame.

Based on the analysis of the kinematics of the WMR with mecanum wheels in a moving
coordinate system [7], it was possible to determine the robot’s kinematics in a fixed XYZ
system. The WMR diagram is shown in Figure 1.
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The description of WMR kinematics in the stationary coordinate system was for-
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ẋs(cosβ − sinβ) + ẏs(cosβ + sinβ) + β̇(sx + sy) − φ̇2(R + r) = 0 
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Figure 1. Diagram of the wheeled mobile robot.

In Figure 1, the following notation is introduced: β, robot frame rotation angle;
α, angle between instantaneous velocity vector vS and the x-axis; 2sy, robot width,
sy = |O3P2| = |P2O4|; sx, distance between the characteristic point S (platform center
of mass) and the front or rear robot axis, sx = |SP1| = |P2S|; δ, angle between the roller axis
and the mecanum wheel axis (δ = 45◦); xpypzp, moving coordinate system associated with
the frame of the mobile robot at point S; and xyz, stationary coordinate system.

A view of the WMR model in the xpzp plane of the moving coordinate system is
presented in Figure 2.
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The description of WMR kinematics in the stationary coordinate system was formu-
lated in the form of equations [7]:

− .
xs(cosβ+ sinβ) +

.
ys(cosβ− sinβ) +

.
y
(
sx + sy

)
+

.
ϕ1(R + r) = 0

.
xs(cosβ− sinβ) +

.
ys(cosβ+ sinβ) +

.
y
(
sx + sy

)
− .
ϕ2(R + r) = 0

.
xs(cosβ− sinβ) +

.
ys(cosβ+ sinβ)− .

y
(
sx + sy

)
− .
ϕ3(R + r) = 0

− .
xs(cosβ+ sinβ) +

.
ys(cosβ− sinβ)− .

y
(
sx + sy

)
+

.
ϕ4(R + r) = 0

(1)

where
.
xs,

.
ys are the projections of the velocity vector of point S on the x,y axes of the station-

ary coordinate system,
.
β is the angular velocity of the robot frame, R is the wheel radius, r

is the roller radius, and
.
ϕ1,

.
ϕ2,

.
ϕ3,

.
ϕ4 are the angular velocities of the mecanum wheels.

Using the transforming system of Equation (2), the solution of the inverse kinematics
problem was determined using the following:

.
ϕ1 = 1

(R+r)

[ .
xs(cosβ+ sinβ) +

.
ys(−cosβ+ sinβ)−

.
β
(
sx + sy

)]
.
ϕ2 = 1

(R+r)

[ .
xs(cosβ− sinβ) +

.
ys(cosβ+ sinβ) +

.
β
(
sx + sy

)]
.
ϕ3 = 1

(R+r)

[ .
xs(cosβ− sinβ) +

.
ys(cosβ+ sinβ)−

.
β
(
sx + sy

)]
.
ϕ4 = 1

(R+r)

[ .
xs(cosβ+ sinβ) +

.
ys(−cosβ+ sinβ) +

.
β
(
sx + sy

)]
(2)

The system of Equation (2) calculated the angular velocity waveforms of individual
wheels on the basis of the desired motion path and the velocity profile of a selected point
on the robot’s frame.

A robot dynamics model was analyzed in [15]. Lagrange equations of the second kind
were used to describe the WMR dynamics in the form

d
dt

(
∂E
∂

.
qj

)
− ∂E

∂qj
= Qj (3)

where j = 1, 2, . . . , s; s is the number of the object’s degrees of freedom, qj is the value of
the jth generalized coordinate,

.
qj is the value of the jth generalized velocity, E is the kinetic

energy of the solid system, and Qj is the value of the jth generalized force.
The solution of the inverse dynamics problem was determined using the following:

M
..
q + N

( .
q
)
= τ (4)

where τ is the vector of moment of force,
..
q =

..
ϕ is the vector of generalized angular

accelerations, N is the vector of resistance to motion, and M is the inertia matrix.
The values of matrices and vectors were introduced to Equation (4), obtaining the

solution of the inverse dynamics problem for the ith mecanum wheel:

M


..
q1..
q2..
q3..
q4

+


N1f1sgn

( .
q 1

)
N2f2sgn

( .
q 2

)
N3f3sgn

( .
q 3

)
N4f4sgn

( .
q 4

)
 =


τ1
τ2
τ3
τ4

 (5)

where τi is the moment of force acting on the ith wheel,
..
qi =

..
ϕi is the angular acceleration

of the ith mecanum wheel, Ni is the pressure force of the ith wheel, and fi is the coefficient
of rolling friction of the ith wheel.
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The inertia matrix M was determined using the following:

M =


(A + B + C) (−B) B (A − B)

(−B) (A + B + C) (A − B) B
B (A − B) (A + B + C) (−B)

(A − B) B (−B) (A + B + C)

 (6)

where
A =

mpc(R+r)2

8

B =
Ipc(R+r)2

16(sx+sy)
2

C = Ik

mpc = mp + 4mk

Ipc = Ipzp
+ 4Ikzp

(7)

and mp is the mass of the platform, mk is the mass of the mecanum wheel, Ik is the mass
moment of inertia of the wheel in relation to the axis of self-rotation, Ikzp is the mass
moment of inertia of the mecanum wheel in relation to the axis zp of the movable system
xpypzp, and Ipzp

is the mass moment of platform inertia in relation to the zp axis.
In order to solve the simple task of dynamics, the relationship of (5) was transformed

to the form 
..
q1..
q2..
q3..
q4

 = M−1


τ1 −N1f1sgn

( .
q 1

)
τ2 −N2f2sgn

( .
q 2

)
τ3 −N3f3sgn

( .
q 3

)
τ4 −N4f4sgn

( .
q 4

)
 (8)

The matrix M−1 is written in the form

M−1 =


D1 D2 D3 D4
D2 D1 D4 D3
D3 D4 D1 D2
D4 D3 D2 D1

 (9)

where auxiliary variables are described by the following equations:

D1 = 2AB+AC+3BC+C2

(8AB+2AC+4BC+C2)C

D2 = B
(4B+C)C

D3 = (−B)
(4B+C)C

D4 = −(2AB+AC−BC)

(8AB+2AC+4BC+C2)C

(10)

On the basis of relationships in (5), it was possible to determine the driving moments
τi of each of the mecanum wheels for a desired motion path while Equation (8) deter-
mined the generalized accelerations of each of the wheels for the assumed waveforms of
driving moments.

On the basis of the mathematical model of the robot, a synthesis of the robot’s motion
control system was conducted, and the motion of the object was simulated.

3. Synthesis of the Neural Control Algorithm

NNs are used in neural control algorithms and act as universal approximators of
functions. They enable the approximation of the nonlinearity of the control object and its
compensation in the control signal. The output from the network is determined in real
time, which enables NN weight adaptation in response to changes in the parameters of the
robot model. An additional advantage of this method is that it does not require detailed
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knowledge of the parameters of the mathematical model of the controlled object. The
disadvantage of using NNs in the control algorithm is the large number of calculations
that must be performed by the microprocessor robot control system in a given iteration
step of the algorithm, which limits their application in real-time control algorithms. This
problem has been especially visible in extensive network structures, such as those with a
large number of neurons and many input signals.

Adaptive intelligent control was based on the model of the control system resulting
from the combination of nonlinearity compensating control implemented with the use of
NN and the PD controller. The scheme of the algorithm is shown in Figure 3.
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The WMR nonlinearity compensation algorithm consisted of four RVFL NNs, one for
each of the mecanum wheels. A bipolar sigmoidal neuron activation function was assumed
in the form of the following equation:

Φ(x) = S
(

VTx
)
=

2

1 + e−γVTx
− 1 (11)

where γ is the inclination factor of the activation function, V is the constant weight matrix
of the input layer selected randomly in the network initialization process, x =

[
1,

.
v,

.
q,
]

is
the vector of network input values,

.
v =

..
qd − λ

.
e is the auxiliary variable simplifying the

notation, and a value of 1 in vector x represents the constant input signal used to determine
the threshold value.

The output from the NN was described by the relationship

y(x) = WTΦ(x) (12)

where W is the matrix of weights of the output layer with zero initial values.
The control signal of the PD controller had the following form:

uPD = KDs = KD
( .
e + Λe

)
(13)

where KD is a diagonal matrix of the gain coefficients of the derivative term, KP = KDΛ
is a diagonal matrix of the gain coefficients of the proportional term, and Λ is a diagonal
matrix with positive elements λi,i.

The tracking error e and the generalized error s were defined as

e = qd − q (14)
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s =
.
e + Λe (15)

where qd is the vector of desired rotation angles of mecanum wheels, and q is the vector of
implemented rotation angles.

Based on the above model, the law of NN weight adaptation was determined so that
the analyzed system was stable.

The WMR dynamics Equation (4) was adopted in the following form:

M
..
q + N

( .
q
)
+ ηd(t) = u (16)

where ηd(t) is a vector of bounded, time-varying disturbance signals, and u is a vector of
control signals.

By differentiating Equation (15) with respect to time and considering the dynamics of
Equation (16), a description of the closed control system as a function of the generalized
error was obtained as the following:

M
.
s = −u + f(x) + ηd(t) (17)

where f(x) = M
.
v + N

( .
q
)

is the nonlinear function approximated by the NN.
The control law was adopted as the following form:

u = f̂(x) + KDs (18)

where f̂(x) is an estimate of the function f(x).
Assuming an approximation of the nonlinearity of the object dynamics using NN, the

following was obtained:
f(x) = WTΦ(x) + ε (19)

where W is the constant matrix of ideal NN output weights and ε is the approximation error.
The estimate of the function f(x) was determined by the following:

f̂(x) = ŴTΦ(x) (20)

where Ŵ is an estimate of the matrix of ideal weights.
Inserting Equation (20) into (18), we obtained

u = ŴTΦ(x) + KDs (21)

The first part of the equation is implemented by an NN and approximates the function
f(x), while the second part is the PD controller equation according to the notation (13).
Inserting (21) into (17), the following relationship was obtained:

M
.
s = −KDs + f̃(x) + ηd(t) (22)

where
f̃(x) = f(x)− f̂(x) =

(
W− Ŵ

)TΦ(x) + ε = W̃
T

Φ(x) + ε (23)

Using Lyapunov stability theory, the algorithm of weight adaptation Ŵ was deter-
mined. A positively defined candidate for the Lyapunov function was assumed in the
following form:

V(t) =
1
2

sTMs +
1
2

tr
(

W̃
T

F−1W̃
)

(24)

where F−1 is a constant diagonal matrix with positive elements.
The derivative of V(t) over time is the following:

.
V = sTM

.
s + tr

(
W̃

T
F−1

.

W
)

(25)
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Substituting (22) into (25) and simplifying the equation, we obtained

.
V = −sTKDs + tr

{
W̃

T
(

F−1
.

W + Φ(x)sT
)}

+ sT(ε+ ηd(t)) (26)

The law of weight adaptation was adopted using the following:

.
ˆ

W = FΦ(x)sT (27)

Assuming that the ideal weights W = const., the derivative
.

W = 0. Inserting (27) into
(26), we obtained

.
V = −sTKDs + sT(ε+ ηd(t)) (28)

Therefore, for
.

V ≤ 0:

‖s‖ ≥ εmax + ηdmax

KDmin
(29)

The above analysis showed that V was positively defined, and
.

V was negatively
defined for the satisfied condition (29). According to the Lyapunov theory, the signals s
and W̃ were limited, and the analyzed system was stable for the applied control (21) and
the law of NN weight adaptation (27).

4. Numerical Tests of the Operation of the Algorithm

The results of the simulation of WMR motion controlled by the proposed algorithm
are presented below. The use of a robot dynamics model enabled approximate mapping of
the response of the dynamic system to a set excitation, which would verify the accuracy of
the control system. In addition, numerical tests analyzed the quality of the dynamic object
motion with the use of various control methods, using the adopted quality indicators.

The simulation tests were conducted in the MATLAB/Simulink package. The Runge-
Kutta integration with a constant time discretization step equal to td = 0.01 [s] was
used. The disturbances introduced in the simulation were implemented by changes in
the value of the rolling friction coefficient from the initial value fn = 0.046 [m] to the
value fd = 0.055 [m] during 6.5 ≤ t ≤ 11.2 [s]. The coefficient was changed for all of the
mecanum wheels.

In the simulation, the controlled object parameters were used to replicate the real
parameters of Husarion’s Panther mobile robot. The following geometric parameters of the
robot were adopted: R = 0.085 [m], r = 0.0165 [m], sx = 0.22 [m], and sy = 0.351 [m]. Dynamic
parameters of the robot were the following: A = 0.01404

[
kg·m2], B = 0.03767

[
kg·m2], and

C = 0.01193
[
kg·m2].

Numerical tests of the WMR motion were conducted using a PD controller (Test 1)
with the gain of the proportional term KPi,i = 2 and the derivative term KDi,i = 1. In
the intelligent control algorithm test (Test 2), the same PD controller gain values were
used as in Test 1 while in the nonlinearity compensation term of the controlled object,
four NNs were used, each of which consisted of h = 4 inputs (including the threshold
value), m = 10 neurons in the hidden layer, and one output. The choice of m = 10 neurons
in the hidden layer resulted from numerous simulation studies for a different number of
neurons, in which a slight increase in the quality of tracking was observed with more than
10 neurons while the NN complexity increased proportionally to the number of neurons. A
coefficient value of γ = 4 and matrix of learning gain coefficients F = diag(9) were adopted.
The parameters of the PD and NN controllers were selected by trial and error so as to obtain
the best quality of motion execution.
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The waveform of the velocity vector of the characteristic point S of the robot was
adopted in accordance with the following relationship:

vS = vmax

(
1

1 + e−c(t−tr)
− 1

1 + e−c(t−th)

)
[m/s] (30)

where vmax = 0.5 [m/s] is the maximum velocity in steady state, c = 9 [1/s] is the rate
of velocity change in the acceleration and deceleration phases, tr = 2 [s] is the mean
acceleration time, and th = 13 [s] is the mean braking time.

To assess the quality of motion implementation with the use of a given control algo-
rithm, the following quality indicators were adopted:

(a) The maximum value of the rotation angle error of the mecanum wheel:

eimax = max|eik|[rad] (31)

where i = 1,2,3,4 is the mecanum wheel number and k is the number of consecutive
discrete measurements.

(b) The maximum value of the angular velocity error of the mecanum wheel:

.
eimax = max

∣∣ .
eik
∣∣[rad/s] (32)

(c) Root-mean-square error (RMSE) of tracking the desired rotation angle:

εi =

√
1
n

n

∑
k=1

e2
ik[rad] (33)

where n is the number of discrete measurements.
(d) RMSE of tracking the desired angular velocity:

.
εi =

√
1
n

n

∑
k=1

.
e2

ik[rad/s] (34)

(e) The maximum distance between the desired and implemented position of the charac-
teristic point S of the robot on the xy plane:

dmax = maxdk[m] (35)

where dk =
√
(xSk − xdSk)

2 +
(
ySk − ydSk

)2, xS, yS are the coordinates of point S in a
stationary coordinate system xyz, and xdS, ydS are the desired coordinates of point S.

(f) RMSE of the distance between the desired and implemented position of the robot’s
characteristic point S:

ρ =

√
1
n

n

∑
k=1

d2
k[m] (36)

(g) The distance between the desired and implemented point S position after the end of
the motion:

dn =

√
(xSn − xdSn)

2 +
(
ySn − ydSn

)2
[m] (37)

During the implementation of the desired motion path, the orientation of the robot’s
frame remained constant β = 0[rad]. Point S of the robot, in the first stage, moved along
a straight-line path according to the direction of the instantaneous velocity vector vS,
deviating from the x-axis by an angle α = π

2 [rad]. In the second stage, point S moved
along a circular path, traversing 3

4 of a full circle (vector vS changed its direction by an
angle π

2 ≤ α ≤ 2π[rad]). The movement along a curvilinear path of the robot began at
top ≈ 4 [s] and ended when tok ≈ 11 [s] (the mean time of the start and the end of vector vS
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direction change). The shape of the angular velocity profile
.
α, defining the change in the

motion direction of the point S, was analogous to the shape of the velocity profile of point S
(Equation (30)). In the last stage, the robot moved along a straight-line path again, at angle
α = 2π[rad], as shown in Figure 4.
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4.1. Simulation Test 1 (PD Controller)

Figure 5 presents the results of the simulation showing the waveforms of the im-
plemented angles of rotation of individual mecanum wheels (Figure 5a), implemented
angular velocities (Figure 5b), tracking errors of the rotation angles, and angular velocities
(Figure 5c,d, respectively). The control signals generated by the PD controller are shown in
Figure 5e. The diagram of the desired and implemented motion path is shown in Figure 5f.
All of the graphs use the color marking of the mecanum wheel number: red, wheel 1;
yellow, wheel 2; blue, wheel 3; and green, wheel 4.

The values of angular velocity vectors of the wheels (Figure 5b) were the same for the
pairs of wheels, 1, 4 and 2, 3, due to the constant angle of the robot’s frame orientation.
The waveforms of the control signals (Figure 5e) reflected this phenomenon by having the
same values for the aforementioned wheels pairs. The influence of the disturbance on the
waveform of the control signal occurring at tz1 = 6.5 [s] and ending at tz2 = 11.2 [s] was
also noticeable (the time of the occurrence of the disturbance in the images is marked with
a dashed line).

The angular velocity error (Figure 5d) was limited, and after stabilization, it tended
toward zero. The rotation angle error (Figure 5c) in steady states had a non-zero value.
The error value decreased and tended toward zero as a result of the start of the braking
process and the end of the motion. The value of the error of mapping the desired motion
path (Figure 5f) was small.

The obtained values of quality indicators were used to compare the quality of the
control using a neural control algorithm.
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The quality indicators obtained as a result of the simulation are presented in Table 1.
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Table 1. Quality indicators for PD control simulation.

Indicator eimax [rad]
.
eimax [rad/s] εi [rad]

.
εi [rad/s] dmax [m] dn [m] ρ

wheel 1, i = 1
wheel 2, i = 2
wheel 3, i = 3
wheel 4, i = 4
mean value

3.5175
3.5244
3.5244
3.5175
3.5209

2.6729
2.6855
2.6855
2.6729
2.6792

2.0919
1.7741
1.7741
2.0919
1.9330

1.0540
1.2389
1.2389
1.0540
1.1465

0.2740 0.0043 0.1969

4.2. Simulation Test 2 (Intelligent Control)

The same motion path was used from Test 1. The arrangement of the graphs showing
the waveforms of individual motion parameters, errors, and control signals in Figure 6
corresponded to that in Figure 5. Additionally, Figure 6 shows the waveforms of control
signals generated by NN (Figure 6f) and waveforms of total control signals (Figure 6g). The
waveforms of the NN output weights are presented for the first wheel in Figure 6h (for the
remaining wheels, the waveforms of the weights had a similar shape). The diagram of the
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desired and implemented motion path is shown in Figure 6i. For all the graphs (except for
Figure 6h,i), the color markings of the mecanum wheel numbers were used: red, wheel 1;
yellow, wheel 2; blue, wheel 3; and green, wheel 4.
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Figure 6. Results of simulation 2: (a) waveforms of implemented rotation angles ϕ1,ϕ2,ϕ3,ϕ4,
(b) angular velocities

.
ϕ1,

.
ϕ2,

.
ϕ3,

.
ϕ4, (c) tracking errors of the rotation angle e1, e2, e3, e4,

(d) tracking errors of the angular velocity
.
e1,

.
e2,

.
e3,

.
e4, (e) control signals of the PD controller

uPD1, uPD2, uPD3, uPD4, (f) control signals from the NN uNN1, uNN2, uNN3, uNN4, (g) overall con-
trol signals u1, u2, u3, u4, (h) NN output weights for wheel 1, (i) graph of the desired (xd, yd) and
implemented path.

The quality indicators obtained as a result of the simulation are presented in Table 2.
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Table 2. Quality indicators for neural control simulation.

Indicator eimax [rad]
.
eimax [rad/s] εi [rad]

.
εi [rad/s] dmax [m] dn [m] ρ

wheel 1, i = 1
wheel 2, i = 2
wheel 3, i = 3
wheel 4, i = 4
mean value

0.3933
0.6514
0.6264
0.5039
0.5438

0.9179
1.3743
0.8208
0.9180
1.0078

0.1038
0.1359
0.1805
0.1825
0.1507

0.1828
0.2611
0.2529
0.2579
0.2387

0.0442 0.0175 0.0162

The implemented motion parameters had similar waveforms to those obtained in
Test 1 (Figure 6a,b). The tracking errors were limited and had the greatest values at the
beginning and ending phases of motion, when the angular velocity vector of the wheel
changed to the opposite value and, to a lesser extent, at the time of the disturbance. The
error was minimized to the vicinity of zero for both the angular velocity and the angle of
rotation error (Figure 6c,d).

The control signal PD assumed a non-zero value during the beginning of the accelera-
tion and deceleration phases, during changes in the direction of the rotation of the wheels
pairs, and as a result of the disturbance acting on the object (Figure 6e). Neural control
(Figure 6f), after partially determining the output weights of the network, intervened as the
controller. The values of the NN weights were relatively stable after the initial stabilization
(shown as the first wheel in Figure 6h). As found in Test 1, the error of mapping the desired
motion path (Figure 6i) was small.

All quality indicators, with the exception of dn, had lower values for the control
algorithm when the NNs were used, as compared to a PD controller. This difference was
apparent, especially for the RMSE of tracking the desired rotation angle εi, where the index
values decreased by approximately 90% when using intelligent control, as compared to
the PD controller itself. Additionally, the results of the neural control were obtained under
the most unfavorable conditions, during which the NN output weights had zero initial
values. The intelligent algorithm, due to the process of NN weight adaptation, provided
more accurate mapping of the motion path, as compared to a classic PD controller.

5. Verification Tests of the Control Algorithm

The verification tests of the control algorithm were conducted on the laboratory stand,
as shown in Figure 7, consisting of a computer with a dSpace DS1103 control, a measure-
ment card, and a Husarion Panther WMR with mecanum wheels. The dimensions of the
robot were 805 × 840 × 290 mm (length × width × height), its weight was 55 kg, and the
maximum load capacity was 80 kg. The robot control system was built on the basis of an in-
ternal Raspberry Pi 4B control computer with a Broadcom BCM2711 processor (Broadcom,
San Jose, CA, USA) and an additional Intel NUC10i7FNK computer (Intel, Santa Clara,
CA, USA) for the implementation of computationally demanding tasks, such as mapping
the environment, generating collision-free trajectories in an unknown environment, and
the implementation of computationally demanding artificial intelligence algorithms. The
robot was also equipped with a Slamtec RPLIDAR S1 laser 2D scanner (Slamtec, Shang-
hai, China). The robot used four 80 PMB800K.80RBL BLDC motors (rated power 473 W
each) with planetary gears and incremental encoders. The rated torque of each of the
drive modules was 34.5 Nm. The power source was a package of lithium-ion batteries
with a voltage of 36 V and a capacity of 740 Wh. The maximum speed of the robot was
2 m/s. For the purposes of scientific research with the use of the dSpace control and the
measurement card, the design of the robot had been modified by the manufacturer to
provide measurement signals for the robot’s motion parameters and direct control of the
actuator systems, bypassing the internal controller.
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Figure 7. The laboratory stand.

The methods of rapid prototyping of control systems with the use of dSpace control
and measurement cards provided quick and easy testing on a real object. During the
verification tests, the dSpace DS1103 card was used to obtain the measurement data from
the encoders and to generate motor control signals. The control algorithm was programmed
in the MATLAB/Simulink environment, compiled to the level of optimized C code and
then to the machine code and implemented in real time by the dSpace DS1103 card. The
scheme of the laboratory stand is shown in Figure 8.
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The same motion trajectory was used in the verification experiments as in the numeri-
cal tests, and the same settings of the control algorithms were also adopted. The parametric
disturbance of the robot’s motion was introduced by changing the texture of the test track
surface (at t ∈ < 6.5, 11.2 > [s]), generating greater rolling resistance in the robot’s wheels.
The same set of quality indicators (31–37) as in the simulation studies were used to assess
the quality of tracking.

5.1. Verification Test 1 (PD Controller)

Figure 9 presents the results of the verification test, including the waveforms of the im-
plemented angles of rotation of individual mecanum wheels (Figure 9a), the implemented
angular velocities (Figure 9b), the tracking errors of the rotation angles, and the angular
velocities (Figure 9c,d, respectively). The control signals generated by the PD controller are
shown in Figure 9e. The diagram of the desired and implemented motion path is shown in
Figure 9f.
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.
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The individual waveforms were similar to the results obtained in the simulation tests.
Due to the occurrence of unmodeled disturbances, the tracking errors in the verification
tests had higher values than in the numerical test, and the realized path differed to a greater
extent from the desired one.

The quality indicators obtained as a result of the verification are presented in Table 3.

Table 3. Quality indicators for PD control verification.

Indicator eimax [rad]
.
eimax [rad/s] εi [rad]

.
εi [rad/s] dmax [m] dn [m] ρ

wheel 1, i = 1
wheel 2, i = 2
wheel 3, i = 3
wheel 4, i = 4
mean value

5.1201
4.6355
4.6579
5.1606
4.8935

3.1432
3.0982
3.0943
3.2050
3.1352

2.8616
2.1873
2.1949
2.8842
2.5320

1.3841
1.4994
1.4994
1.3841
1.4380

0.3751 0.0124 0.2606

5.2. Verification Test 2 (Intelligent Control)

The arrangement of the graphs showing the waveforms of individual motion parame-
ters, errors, and control signals in Figure 10 corresponds to that in Figure 9. Additionally,
Figure 10 shows the waveforms of the control signals generated by the NN (Figure 10f) and
the waveforms of the total control signals (Figure 10g). The waveforms of the NN output
weights are presented for the first wheel in Figure 10h. The diagram of the desired and
implemented motion path is shown in Figure 10i.

The waveforms of the realized motion parameters and control signals presented in
Figure 10 had a shape similar to the waveforms obtained in the simulation tests. The
tracking error values were slightly higher, which was confirmed by the values of the
determined quality indicators. It may have been a result of the occurrence of unmodeled
phenomena and disturbances during motion. The tracking errors were the highest in the
initial phase of the movement, and then they were minimized to a range close to zero,
which resulted from the presence of an adaptive element in the control system in the form
of an NN. Such a phenomenon did not occur when only the PD controller had been used in
the control system, as in Verification Test 1. The values of the NN weights from zero initial
values changed their values during the adaptation process and stabilized at certain values.
The comparison of the desired and realized trajectory of the selected WMR point indicated
the high accuracy of the tracking and mapping of the desired trajectory.

The quality indicators obtained as a result of the verification are presented in Table 4.

Table 4. Quality indicators for neural control verification.

Indicator eimax [rad]
.
eimax [rad/s] εi [rad]

.
εi [rad/s] dmax [m] dn [m] ρ

wheel 1, i = 1
wheel 2, i = 2
wheel 3, i = 3
wheel 4, i = 4
mean value

0.7718
0.7149
0.9735
1.1244
0.8961

4.1174
3.8033
4.8162
4.0510
4.1970

0.1371
0.2099
0.1834
0.2383
0.1922

0.3763
0.4677
0.4891
0.4718
0.4512

0.0846 0.0319 0.0278

The values of the quality indicators obtained during verification with the use of the
neural control algorithm indicated significantly improved accuracy of the tracking, as
compared to the use of the PD controller alone.
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6. Conclusions

To test the accuracy of a WMR motion implementation with the use of an intelligent
(neural) control algorithm, simulation tests were conducted in a MATLAB/Simulink envi-
ronment, and verification tests were conducted using the presented laboratory stand. The
results of a neural control algorithm and an algorithm with the structure of a classic PD
controller were compared.

Based on the collected data, presented in the form of graphs and designated quality
indicators, an analysis was conducted of the control strategies on the desired robot motion.
The tests confirmed that both control methods provided stability of motion executed by
the object due to limiting tracking errors. In addition, the neural control algorithm, as
compared to PD control, provided better accuracy for the desired motion path under
uncertainty conditions, which were related to the model parameters (disturbances). This
conclusion was drawn based on the values of the quality indicators.

A synthesis of an intelligent neural control algorithm for the motion of a mobile
robot with mecanum wheels was conducted as well as a qualitative analysis of the control
method used. Based on the results, we concluded that neural control increased the quality
of motion execution.
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