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Abstract: Encryption of visual data is a requirementof the modern day. This is obvious and greatly
required due to widespread use of digital communication mediums, their wide range of applications,
and phishing activities. Chaos approaches have been shown to be extremely effective among many
encryption methods. However, low-dimensional chaotic schemes are characterized by restricted
system components and fundamental structures. As a result, chaotic signal estimation algorithms
may be utilized to anticipate system properties and their initial values to breach the security. High-
dimensional chaotic maps on the other hand, have exceptional chaotic behavior and complex structure
because of increased number of system parameters. Therefore, to overcome the shortcomings of the
lower order chaotic map, this paper proposes a 5D Gauss Map for image encryption for the first time.
The work presented here is an expansion of the Gauss Map’s current 1D form. The performance
of the stated work is evaluated using some of the most important metrics as well as the different
attacks in the field. In addition to traditional and well-established metrics such as PSNR, MSE, SSIM,
Information Entropy, NPCR, UACI. and Correlation Coefficient that have been used to validate
encryption schemes, classification accuracy is also verified using transfer learning. The simulation
was done on the MATLAB platform, and the classification accuracy after the encryption-decryption
process is compared.

Keywords: chaotic map; Gauss map; image encryption; pretrained models; transfer learning

1. Introduction

Communication transmission system, such as wireless networks including the Internet,
has advanced significantly in recent years. They are, although, public networks, but are
not appropriate for the delivery of sensitive information. Cryptographic algorithms must
be used to take advantage of the previously built telecommunication infrastructure while
maintaining confidentiality. Conventional symmetric crypto algorithms, such as DES and
AES, are intended to have common confusion and diffusion. These two characteristics
may also be observed in chaos-based systems, often ergodic and vulnerable to system
components and initial values [1].

A chaotic phenomenon is a fast-growing area with significant applications in various
artificial technologies, sociology, biochemical functions, and computer engineering [2].
Visual encryption or cryptography is one such significant topic that is gaining pace.

In reality, a chaotic map is at the heart of a chaos-based cryptographic algorithm,
and it is categorized as single and multi-dimensional. In general, 1D chaotic maps have
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fewer parameters and variables, and their phase space trajectories are straightforward.
Thus, chaotic signal estimating technologies can anticipate their beginning circumstances,
characteristics, and trajectories.

On the contrary, a high-dimensional (H.D.) chaotic map, particularly a Hyper chaotic
map, does have more system parameters, a much more complicated structure, and more
incredible chaotic performance. As a result, the H.D. chaotic map has the potential to be
the ideal model for picture encryption [3]. Numerous chaotic maps are employed in image
encryption; including the Logistic [4], Lorenz system [5], Arnold, Tent [6,7], Baker [8],
Henon [9], Piecewise [10], and Gauss map [11]. Furthermore, chaotic maps create random
values used as secret keys in encryption. These maps aid in the encryption process by
utilizing confusion and diffusion.

Because of the recent pace in data science, chaotic cryptography based on artificial
neural networks (ANNs) has been widely developed and also extensively researched due
to the following attributes: high fault tolerance, associative memory, massive parallelism,
and nonlinear computing [12]. These characteristics have a critical role in enhancing chaotic
security. A discrete Hopfield network is also used to produce a nonlinear consecutive
cipher generation that can construct a quasi-stochastic series to develop the standard image
when given a small number of stochastic parameters as cipher codes. ANN models were
also used to encrypt the data [13].

The Sparse Auto Encoder (SAE) model is a sort of ANN model that provides an
unsupervised learning baseline technique. It also retrieves a significant set of feature
parameters simultaneously required for batch visual cryptography [14]. They first provide
a secure method for generating the chaotic system’s initial value in the proposed method of
double image encryption. They then use the plaintext associated control pointers, employed
as the CNN’s kernel to affect duplicate image scrambling [15]. Another method is a bit-
level split-fusion technique. Two images are represented in binary form because the higher
four-bit image has a substantial amount of image information. The lower four-bit contains
a modest amount of information. The high four bits are combined to make a new picture;
here, two images are merged, and the lower-four bits are used.

At last, two encryption channels are used to encrypt the split pictures. The benefits
of optical technology in parallelism and more significant computation of complex two-
dimensional data are self-evident. The optical-based encryption is used for the portion of
the split image that has to be encrypted quickly. In contrast, the digital image encryption
network is used for the remaining part. A dynamic adaptive diffusion strategy is provided
in this literature to ensure the security of the digital encryption channel. Experiments and
performance assessments have revealed that the strategy outperforms the competition.

The Gauss map is one of the chaos-based technique types that generate random
numbers well. When coupled with substitution and permutation, it produces an encryp-
tion technique that is more resistant to hackers [16]. The topologies of low-dimensional
chaotic maps are simple because of the fewer system parameters. System characteristics
and starting values may be anticipated using chaotic signal estimating methods. On the
other hand, high-dimensional chaotic maps have outstanding chaotic performance and a
complicated structure [17]. Therefore, a high dimensional system is required to overcome
this shortcoming.

The significant contribution of this paper lies in its first-ever proposed 5D Gauss Map
application for image encryption. Moreover, the method shows some encouraging results
as far as structural similarity and correlation are concerned.

2. Background and Index Terms
2.1. One Dimensional Gauss Map

Carl F. Gauss [18] invented the Gauss or Gaussian map, which is a non-linear it-
erated function of accurate intervals with real parameters as α and β that is expressed
mathematically, as shown in (1):
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yn+1 = e−α×yn×yn + β (1)

Here real space in the characteristics can be chaotic. The map is also known as the
mouse map because its bifurcation diagram is shaped like a mouse, as shown in Figure 1.

Figure 1. Bifurcation diagram of Gauss map.

2.2. Classification of Encrypted Images

Because of the fast-growing field of artificial intelligence and data science, the proposed
digital algorithms must be learning-friendly, meaning the algorithms should have good
results in the machine learning environment. Therefore, the deep learning classification is
demonstrated with a brief overview of the pre-trained network and transfer learning to
testify to the proposed novel method.

2.3. Transfer Learning vs. Machine Learning

A typical hypothesis in classical machine learning is that the training and testing data
have the same feature space and data distributions, as shown in Figure 2a. When a new job
arrives with a different data distribution than the prior one, a new model should be built
from the ground up using the current data. Such solutions necessitate tremendous effort
and thus are, in most situations, extremely expensive.

The concept of transfer learning was developed to speed up the learning process
and acquire better alternatives [19]. It was influenced by the fact that human beings may
intelligently use the knowledge obtained in the past when dealing with a problem they have
never encountered previously [20,21]. In contrast to typical machine learning approaches,
transfer learning sustains data distribution differences. It applies the knowledge collected
from other sources to the target task, as shown in Figure 2b.

Different tasks

Task 2Task 1 Task 3

Learning
system

Learning
system

Learning
system

Task 1 Task 2

(a) Source tasks Target task

Task 1 Task 2 Task 3

Learning
systemKnowledge

(b)

Figure 2. Typical (a) Machine Learning and (b) Transfer Learning processes.
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Deep learning implementations frequently employ transfer learning. A pre-trained
network can be used as a preliminary step for learning a new task. Transfer learning
is often considerably quicker and more efficient than training a network from the start
with randomly initialized weights for fine-tuning [20]. With a reduced number of training
images, it is possible to feed learned characteristics to a fresh, swiftly

The following are the key benefits of transfer learning over machine learning:

• It allows you to train systems with less labeled data by reusing popular models that
have previously been trained on massive datasets, making transfer learning a popular
approach;

• It has the potential to cut down on training time and computer resources. The weights
are not learned from starting with transfer learning since the pre-trained model has
previously learned them based on earlier learning;

• You can use model topologies produced by the deep learning scientific community,
such as AlexNet, GoogLeNet, and ResNet, which are popular designs

The Transfer Learning Workflow of Figure 3 is as follows:

1. Selecting a pre-trained model: It is simpler to function with pre-trained models
since there are many of them accessible on multiple platforms such as Googlenet,
Squeezenet, and others;

2. Replacement of final layers: The final layers of the chosen pre-trained model are
changed to retrain the network and to categorize a fresh batch of images and classes.
The final wholly linked layer is changed to get a similar number of nodes as the
number of new classes and a new classification layer that will provide an output
based on the probabilities estimated by the layer. The final wholly linked layer will
describe the new number of network classes that will it learn after the layers have been
modified. The classification layer will select outputs from the new output categories
accessible after modifying the layers;

3. Freezing the weights (Optional): By limiting the learning rates in such layers to
zero, the weights of earlier layers in the network may be frozen. As a result, the
characteristics of frozen layers are not modified throughout training; this significantly
accelerates network training. In addition, freezing weights can help the network
prevent overfitting if the new data set is tiny;

4. Retraining the model. The network will be retrained to understand and recognize the
attributes associated with the new data and categories. Retraining usually needs less
data than training a model from the start;

5. Predicting and assessing network accuracy. For example, one may classify fresh im-
ages and evaluate how well the network works once the model has been retrained [22].

Select a  
pre-trained

network

Replace final
layers

Train network

Predict network
accuracy

Deploy results

Improved network

Optionally freeze the weights

Figure 3. Classification with pre-trained deep network.
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2.4. Deep Network Designing with MATLAB

Deep network designer, which is available across many frameworks, may be used
to develop, create, and apply pre-trained models using transfer learning for deep neural
networks. For this, MATLAB Deep Network Designer is utilized in this article. With a
convolutional neural network, one may do numerous classification and regression tasks on
various types of data such as text, numbers, and images. It may be used in a wide variety
of applications such as;

• Time Series Forecasting;
• Classification of Sequences;
• Regression from one sequence to the next;
• Classification of Text Data;
• Classification of Image Data;
• Semantic Segmentation of Multispectral Images;
• Speech Recognition;
• Image Deblocking;
• Removing noise from a Color Image Using Pretrained models, and so on.

In this article, the classification application is employed over encrypted decrypted
images to testify to the suitability of the proposed encryption algorithm for the classification
problem.

2.5. Transfer Learning Using AlexNet

Pretrained image classification networks, such as AlexNet, can classify pictures into
1000 item categories using the datasets provided and can be trained on over a million
photographs. The networks have developed rich feature representations for a wide variety
of pictures.

The network takes an image as input and generates labels for each object in the image
and probabilities for each object category [23]. The network’s convolutional layers extract
visual features, then employed by the final learnable and classification layer to categorize
the input picture. The training process using AlexNet is shown in Figure 4.

Early layers that 
learned 

low-level features 
(edges, blobs, colors)

Last layers that  
learned 

task specific 
features

1 million images 

1000s classes

Load pre-trained network

New layers 
to learn feature 

 specific to 
the dataset

Fewer classes 

Learn faster

Replace final layers

100s of images 

10s of classes

Train network

Training 
options

Training 
images

Predict and assess 
network accuracy

Trained network

Test images

Deploy results

Boat

Plane

Car

Train

Figure 4. Transfer Learning using AlexNet.

3. Proposed Method
3.1. 5D Gauss Map Equation and Plot (Iteration)

A chaotic map generates pseudo random values, and is then utilized in the encryption
operation. The input parameters influence the pseudo-randomness of the outcomes pro-
duced by chaotic maps. In this paper we developed the idea of the five dimensions Gauss
map by using (1), which is as follows:

xi+1 = e(−cx2
i ) + d + by2

i xi + az3
i (2)
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yi+1 = e(−cy2
i ) + d + bz2

i yi + ax3
i (3)

zi+1 = e(−cz2
i ) + d + bx2

i zi + ay2
i (4)

wi+1 = e(−cw2
i ) + d + bs2

i wi + az2
i (5)

si+1 = e(−cs2
i ) + d + bx2

i si + aw2
i (6)

Here, x, y, z, w, and s are intervals, and a, b, c, and d are real parameters. 5D Gauss
map is more complicated and secure because of quadric, cubic, quadratic coupling, and
four constant terms. Plotting of x, y, z, w, and s components are shown in Figure 5. These
plots describe the value range of x, y, z, w, and s. Plots horizontal axis shows a number of
iterations, and the vertical axis shows the components range.

Figure 5. Individual plot for x, y, z, w, and s dimensions.

3.2. Algorithm for Image Encryption
3.2.1. 5D Gauss Generator

The Generator creates a 5D Gauss Map throughout this procedure. By the virtue of
Equations (2)–(6), and starting values of x1 = 0.3250, y1 = 0.4250, z1 = 0.5250, w1 = 0.4350,
s1 = 0.5350, a = 0.0135, b = 0.0177, c = 4.9, and d = −0.58, it creates chaotic sequences.
Any value between zero and one for the initial values of the variables can be chosen here.

3.2.2. Permutation

• Random numbers are selected to achieve pixel permutation, P, Q, and R;
• With the help of these numbers, five sequences or indexes A, B, C, D, and E are

generated;
• A pixel is shuffled in a row with sequence A and in a column with sequence B to create

confusion;
• Here two times shuffling is done with row and column, the first time with A, B

sequence and the second time with C and D sequence;
• The XOR process is the final stage in this encryption procedure. When using the XOR

technique, the pixel intensities are changed to a new one, which cannot be inverted
unless having the chaos key.
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The flow diagram in Figure 6 expresses the above-stated encryption algorithm, which
is detailed in the following steps:

• Step 1: Read plaintext image I (the image size is set to 256× 256 pixels);
• Step 2: The chaotic sequences are constructed iteratively using the Gauss chaotic

Equations (2)–(6) and the initial values of x, y, z, w, and s;
• Step 3: Using random numbers and chaotic sequences, generate index sequences A, B,

C, D, and E;
• Step 4: To produce a confusion matrix, bring the index sequence A from Step 1 and

shuffle the pixels in rows and columns with sequence B;
• Step 5: Pixels are shuffled in the row with sequence C and in the column with sequence

D once more, resulting in scrambled image IS;
• Step 6: The index sequence E is then XORed with the scrambled image IS, resulting in

the encrypted image.

Plane image

Pixel shuffling in row
with A

Pixel shuffling in
column with B

Pixel shuffling in row
with C

Pixel shuffling in
column with D

Calculate A, B, C, D
and E

5D Gauss map
generator

XOR E index with
shuffled image Encrypted image

Figure 6. Flow diagram of the encryption process with a 5D Gauss map.

4. Results and Facts

The simulations are performed in the Matlab environment to evaluate the algorithm’s
effectiveness and validate it. Figures 7 and 8 illustrate the original, encrypted, and de-
crypted 256× 256 test images and histograms, respectively.
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Original image Encrypted image Decrypted image
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Figure 7. Results of encrypted and decrypted test images.

4.1. Information Entropy

Information entropy serves as an indicator and technique of unpredictability in infor-
mation theory. The quantity of entropy can always be utilized to characterize the outcome
of plaintext and ciphertext confidentiality. The greater information entropy shows better
security. For example, a value of 8 for the information entropy of the cipher image sug-
gests that pictures are exceptionally near to random distribution, and the security is more
remarkable [24]. Mathematically it is expressed as shown in (7).

IE =
n

∑
i=1

P(Y = yi) log P(Y = yi) (7)

where Y is a discrete random variable with values {y1, y2, · · · , yn}, and i is an integer
variable with values ranging from 1 to n.
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In the equation, P(Y = yi) is the probability of Y taking the value of yi, this denotes
the fraction of all Y occurrences with the value yi.

Histogram of original image Histogram of decrypted image

Ba
bo

on
Le

na
C

am
er

am
an

Ba
rb

ar
a

Histogram of encrypted image

Figure 8. Histogram of encrypted and decrypted test images.

4.2. Correlation Coefficient (CC)

The horizontal, vertical, and diagonal correlation between the two input images before
and after encryption can be determined at various levels. The correlation coefficients (CC)
are shown in Figures 9 and 10, implying that there is essentially no relationship between the
two. This shows that the key in this article is sensitive to the parameters and the security of
the encryption scheme [25].
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Figure 9. Correlation coefficients of original images, (a) Barbara, (b) Baboon, (c) Cameraman, (d) Pep-
per, and (e) Lena.
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Figure 10. Correlation coefficients (H, V, and D components) of all encrypted test images.
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4.3. PSNR, MSE, and SSIM

PSNR and SSIM should be higher for encryption reliability, but MSE must be lower.
The equation of the PSNR, MSE, and SSIM are represented as (8)–(10), respectively.

PSNR = 10 log10[
256× 256

MSE
] (8)

MSE =
1

MN

M−1

∑
i=0

N−1

∑
j=0

[ f ′(i, j)− f (i, j)]2 (9)

SSIM( f , g) = l( f , g)c( f , g)s( f , g)


l( f , g) =

2µ f µg+C1

µ2
f +µ2

g+C1

c( f , g) =
2σf σg+C2

σ2
f +σ2

g+C2

s( f , g) =
σf g+C3

σf σg+C3

(10)

4.4. Differential Attack

A differential attack is a method of attacking an encryption scheme by comparing and
analyzing specific variations in plaintext in relation to changes conveyed during encryption.

The ability to withstand differential attacks is tightly linked to the plaintext image’s
sensitivity. Computing the encoded image’s pixel change rate (NPCR) and the unified
average change intensity (UACI) may also be used to assess the method’s capacity to
withstand differential attacks. NPCR and UACI analysis are the most frequent methods for
determining plaintext sensitivity. The NPCR and UACI mathematical structures are stated
as shown in (11) and (12).

NCPR =
1

M× N

M

∑
i=1

N

∑
j=1

K(i, j)× 100% (11)

UACI =
1

M× N

M

∑
i=1

N

∑
j=1

|a1(i, j)− a2(i, j)|
255

× 100% (12)

Table 1 displays distinct test scores such as, peak signal to noise ratio, mean square
error, similarity index, and entropy. Table 2 shows NPCR, and UACI results for the input
test images, and Table 3 depicts correlation coefficients. Finally, comparisons with other
works of literature are shown in Table 4.

Table 1. PSNR, SSIM, MSE, and Entropy values for the input test images.

Images PSNR SSIM MSE Entropy
Plain Image

Entropy
Encrypted Image

Lena ∞ 1 0 7.5694 7.9621
Man ∞ 1 0 7.0097 7.8529

Peppers ∞ 1 0 7.5487 7.9533
Barbara ∞ 1 0 7.3410 7.9043
Baboon ∞ 1 0 7.3705 7.9578

Boat ∞ 1 0 7.1894 7.8794
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Table 2. NPCR and UACI test results for different test images.

Images NPCR (%) UACI (%)

Lena 99.62 33.42
Man 99.59 33.35

Peppers 99.58 33.34
Barbara 99.57 33.33
Baboon 99.61 33.41

Boat 99.64 33.43

Table 3. Correlation Coefficient (CC) Horizontal (H), Vertical (V), and Diagonal (D) values for the
input test images.

Images
Original Encrypted

CC (H) CC (V) CC (D) CC (H) CC (V) CC (D)

Lena 0.9502 0.9712 0.9282 0.1100 −0.0664 −0.0752
Man 0.9416 0.9630 0.9136 0.0843 −0.0591 −0.0682

Peppers 0.9682 0.9725 0.9425 0.0007 0.0155 −0.0042
Barbara 0.8262 0.8942 0.8501 0.0061 −0.0159 −0.0123
Baboon 0.6940 0.6039 0.6027 0.0391 0.0131 −0.0080

Boat 0.8864 0.9204 0.8400 0.1569 −0.1549 −0.1117

Table 4. Correlation Coefficient and entropy comparison with state-of-the-art methods.

Images Horizontal Vertical Diagonal Entropy

Proposed 0.1100 −0.0664 −0.0752 7.9621
[26] −0.0414 −0.0342 0.1083 7.4077
[27] 0.0039 0.0059 −0.0050 7.9994
[28] 0.0008 0.0004 0.0020 7.9995

4.5. Keyspace

Typically, the keyspace of an image cryptosystem should be large enough to make the
brute-force search attacks difficult. Following is a formula for calculating the size of the
keyspace.

Before that, it is necessary to determine which parameters were utilized as the key.
The keyspace of this approach is theoretically unlimited. However, when the actual value
is taken, the accuracy will be reduced due to the limitations of computational performance
and precision in practical applications. Multiple cryptographic keys in the proposed system
are as follows: a, b, c, d, x1, y1, z1, w1, and s1. It is helpful to quantify the entire keyspace
using the IEEE floating-point norm [29].

Keyspace = 1015 × 1015 × 1015 × 1015 × 1015 × 1015 × 1015 × 1015 × 1015 = 10135 ≈ 2448 (13)

From the preceding equation, it is clear that the keyspace of the system is large enough
to withstand a crypto attack.

4.6. Noise and Cropping Attack

The cipher pictures can be corrupted by noise and cropping attacks when transmitted
over the Internet or any other transmission method, making it impossible to extract the
plain images. As a result, the performance of the proposed algorithm must be evaluated
against various assaults to determine its effectiveness.

Accordingly, Lena’s 256× 256 pixel cipher picture has been changed by adding Crop-
ping (data loss 6.25%) and Salt-Pepper noise (noise density 0.005), respectively, as illustrated
in Figure 11. However, because of the slight PSNR variation reported in Table 5, the results
suggest that the assaults had little impact on the image and visual quality of the image.
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Table 5. PSNR values of the cropped encrypted images.

Images PSNR of the Cropped
Encrypted Image

PSNR of the Noisy
Encrypted Image

Lena 16.707916 32.354713
Man 17.296258 31.669253

Peppers 17.900450 32.064819
Barbara 16.708817 31.032769
Baboon 18.526831 32.952549

Boat 18.855763 33.389143

(a) Cropped encrypted image (b) Decryped cropped image

(c) Noisy encrypted image (d) Decryped noisy image

Figure 11. Results of encrypted and decrypted Lena image with cropping and noise attack.

4.7. NIST Test

The National Institute of Standards and Technology (NIST) test is the most widely
used method for determining if a time series is random. In the NIST test, we investigate
the unpredictability of the chaotic sequences created by the Gauss map using 12 random
test techniques. Table 6 shows the NIST test results for the proposed method.
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Table 6. NIST test results for the 5D Guass Map.

Test Values Results

Frequency 0.8315 Pass
Block Frequency 0.2888 Pass

Cumulative Sums Forward 0.5120 Pass
Cumulative Sums Reverse 1.0000 Pass

Runs 0.6572 Pass
Longest Run 0.1339 Pass

Rank 0.1885 Pass
FFT 0.6250 Pass

Overlapping Template 0.3525 Pass
Approximate Entropy 0.9875 Pass

Linear Complexity 0.1045 Pass
Serial 0.1514 Pass

5. Validation of Classification Accuracy

In this section, the classification accuracy of the proposed encryption algorithm is
tested through deep learning classification using transfer learning. Figure 12 shows the
Original, Encrypted, and Decrypted buttercup and iris images, which are further used to
test the classification accuracy. The AlexNet transfer learning model on the deep learning
designer of MATLAB 2021 is used here for the simulation. Figure 13 shows the classification
of buttercup images before and after encryption. Furthermore, it is advent from the results
that the images encrypted through the proposed method were classified accurately.

Original image Encrypted image Decrypted image
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Figure 12. Original, encrypted, and decrypted Buttercup and Iris Images.

Figures 14 and 15 show the accuracy versus iteration graph, and the loss versus
iteration graph for the buttercup image, respectively.

Figure 16 shows the classification of iris images before and after encryption. Further-
more, it is advent from the results that the images encrypted through the proposed method
were classified accurately.

Figure 17 shows the accuracy versus iteration graph, and Figure 18 shows the loss
versus iteration graph for the iris image. The validation accuracy of buttercup and iris
image is 90.62% and 91.35%, respectively.

It is advent from the results of this section that the method not only works well with
color images but also has decent classification accuracy too.
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Figure 13. Classification of Buttercup image before and after encryption.
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Figure 14. Accuracy versus iteration graph for buttercup image.
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Figure 15. Loss versus iteration graph for Buttercup image.
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Figure 16. Classification of Iris image before and after encryption.

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

0 50 100 150 200 250 300 350 400

Iterations

Figure 17. Accuracy versus iteration graph for Iris image.
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Figure 18. Loss versus iteration graph for Iris image.

6. Conclusions

This article presented a modified 5D version of an existing 1D Gauss map for image en-
cryption. The method’s significant benefit is essential, nonlinear, but has a high-dimensional
structure, which is simple to build but highly complex in real behavior due to the increased
number of parameters and extensive shuffling operation of rows and columns. The PSNR
value and the attacks validate the proposed system’s efficacy. The algorithm performs
admirably in the face of attacks. The classification accuracy of the encryption algorithm
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is also validated with transfer learning. Through the NIST test, it is proved that the 5D
Gauss generation scheme presented can provide substantial assurances for image security
and advances the new five-dimensional idea of image security research. This experiment
also provides some information on how to create additional 5D chaotic maps that can be
used to add high security to image and visual data. Further, the classification experimenta-
tion with transfer learning recommends that the encryption algorithm is also suitable for
classification problems.
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The following abbreviations are used in this manuscript:

5D Five Dimensional
1D One Dimensional
AES Advanced Encryption Standard
ANN Artificial Neural Network
CC Correlation Coefficients
CNN Convolutional Neural Network
D Diagonal
DES Data Encryption Standard
H Horizontal
HD High Dimensional
MSE Mean Square Error
PSNR Peak Signal to Noise Ratio
SAE Sparse Auto Encoder
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V Vertical
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