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Abstract: A real-time streaming feedforward active-noise-cancellation (ANC) system for an in-ear
headphone was demonstrated in a real application scenario, by implementing a 10-layer dilated
convolutional-neural-network (CNN) on a field programmable gate array (FPGA). A 16 × 16 systolic
array was used in the FPGA, to speed up the model computation. The system latency was 170.6 µs,
at the system clock frequency of 120 MHz. The CNN model used 3232 parameters. Due to the large
input receptive field, of 327 ms, this work achieved total power reduction, of 14.8 dB and 14.3 dB
at the noise incident direction of 0◦ and 90◦, respectively, and the noise attenuation bandwidth was
2000 Hz at both angles; all results were superior to those of the conventional FxLMS algorithm.

Keywords: applying deep learning in active noise control; causality constraints; new techniques in
active noise control in-ear headphones; nonlinearity; real-time implementation of the novel active
control technique

1. Introduction

Noise cancellation is desirable in many places. An active noise cancellation (ANC)
system uses a microphone to sense noise, then uses a speaker to generate complementary
waveforms (anti-noise), which are combined with the noise to cancel it by destructive
interference [1–5]. Initially, analog ANC was used to generate the anti-noise, with a
microphone and a speaker; this method cannot track environmental changes, such as
change of the position of the microphone or speaker in the ear canal [6–8]. Digital ANC
devices use digital signal processor (DSP) chips, to adaptively minimize noise, despite such
environmental changes. The devices adaptively adjust coefficients of the finite impulse
response (FIR) filter, to minimize noise.

Digital ANCs are classified into feedback [8–14] and feedforward [14–20] types. A feed-
back digital ANC uses a microphone (error) and a speaker. A digital feedforward ANC
uses two microphones (reference, error) and a speaker. The frequency range of the ANC
operation is limited to ∼600 Hz [12] in the feedback ANC, to maintain loop stability, but is
1500 Hz [15] in the feedforward ANC, for in-ear headphones [15–19]. The requirement
for convergence of the adaptive algorithm is tighter in the feedback ANC than in the
feedforward ANC [8]. Due to the advantages in frequency range and convergence re-
quirement, feedforward digital ANCs have become widely used. The feedforward ANC
has an additional requirement, to satisfy the causality constraint [21,22], i.e., the delay
DSE of the electrical processing circuit should be smaller than the primary path delay DP
minus the acoustic secondary path delay DSA. DP refers to the acoustic propagation delay
from the reference microphone input to the error microphone input. The secondary path
refers to the combined electrical delay DSE and the acoustic delay DSA (Figure 1a). DSE
includes the delays of the reference microphone circuit, the electrical processing circuit,
and the speaker driver circuit. DSA includes the speaker delay of electrical-to-acoustic
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conversion and the acoustic propagation delay from the speaker to the error microphone
input. The electrical processing circuit includes an analog-to-digital converter (ADC), FIR
filters, and a digital-to-analog converter (DAC); this circuit adds an additional delay, to
match the secondary path delay to the primary path delay (Figure 1b). Thus, the causality
constraint requires,

DSE < DP − DSA. (1)

(a) (b)

Figure 1. Feedforward ANC (a) time delay and (b) block diagram. Blue: Primary path, Red:
Secondary path.

The causality constraint problem does not occur in a large-scale feedforward ANC
system, where the distance between speaker and microphone is on a scale of meters
and DP − DSA ≥ ∼3 ms, but in a small-scale feedforward ANC system, such as in-ear
headphones [15], the distance between speaker and microphone is tens of millimeters or
smaller, and DP − DSA is tens of microseconds; since this interval is so short, the algorithm
thatis used in the electrical processing circuit of the ANC system must react quickly,
and, therefore, cannot be too complex, to run within that interval. In in-ear headphones,
where two microphones and a speaker are mounted in a small enclosure, the relative arrival
times of the sound depend on the direction of the noise source, so the causality constraint,
also, depends on this direction (Figure 2). DP − DSA is smaller when the noise is incident
from the front (90◦) than from the side (0◦). The electrical processing circuit must finish
operation within DP − DSA, so this causality constraint is harder to meet, when the noise
is an incident from the front rather than from the side.

Figure 2. Dependency of causality constraint on the direction of noise source in in-ear headphones.
Blue: reference microphone, Green: error microphone, Red: speaker.

Feedforward ANC that uses the least mean squares (LMS) algorithm suffers from insta-
bility in convergence [5]. To solve this problem, a filtered-x LMS (FxLMS) algorithm is used



Appl. Sci. 2022, 12, 5300 3 of 13

for the feedforward ANC, by including the estimated secondary path model S′(z) (Figure 3)
in the algorithm; this inclusion, also, reduces the convergence time. The digital-filter trans-
fer function W(z) is adjusted to minimize the noise inside the ear canal. To mitigate the
causality constraint in the feedforward ANC, which uses the FxLMS algorithm, the sam-
pling rate is increased to 96 kHz, but for 90◦ incidence, the causality constraint is difficult
to meet in in-ear headphones; this complication degrades the noise attenuation bandwidth
to 850 Hz at 90◦ incidence, compared to 1500 Hz at 0◦ incidence. This degradation is
considered to be due to the limitation of the FIR filter, with its finite number of 24 taps, to
predict future sounds [15].

Figure 3. Conventional feedforward ANC system, using the FxLMS algorithm for an in-ear head-
phone. Estimated S′(z): secondary path model. Blue: reference microphone, Green: error microphone,
Red: speaker.

In this work, a convolutional neural network (CNN) is used, instead of the FxLMS
algorithm in the feedforward ANC, to solve the causality constraint. A dilated convolution
enables observation of the previous 327 ms of data (=(15,355 samples in the input receptive
field)/(sample rate 46,875 S/s)), whereas the FxLMS algorithm [15] observes only the
previous 250 µs of data (24/96 k); this increase in the observation of previous data increases
the noise attenuation bandwidths to 2000 Hz ,for both 0◦ and 90◦ incidence, and reduces
the total power to 14.8 dB at 0◦ and 14.3 dB at 90◦.

The rest of this paper is organized as follows. Section 2 explains the proposed archi-
tecture for in-ear headphones. Section 3 describes its hardware implementation. Section 4
demonstrates the measurement results, while Section 5 discusses them. Section 6 concludes
the paper.

2. Architecture of This Work

A feedforward ANC that uses a CNN is proposed in this work, to relax the causality
constraint; the digital filter of the conventional feedforward ANC (Figure 3) is replaced by
a hardware CNN block (Figure 4). The adaptive algorithm is not used in this work. Hence,
the transfer function CNN(z) of the CNN block is trained to meet

P(z) + S(z) = 0, (2)

where P(z) is the transfer function of the primary path, and

S(z) = CNN(z)z−DSE SA(z) (3)
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is the transfer function of the secondary path. The electrical delay of the CNN block is
included in DSE.

To train the CNN block, the transfer functions (P(z), SA(z)) and the time delay DSE
must be evaluated a priori. To, accurately, model the inherently nonlinear nature of the
primary path, at the noise incidences of 0◦ and 90◦, the impulse response p(t) of the primary
path is calculated for the CNN model, which contains nonlinear activation function (ReLU)
from the input and output waveforms R(t), E1(t) (Figure 5a); a broadband white noise was
applied to a loudspeaker, which was placed about 60 cm away from an in-ear headphone
attached to a human left ear. Similarly, sA(t) of the acoustic secondary path is calculated
from the input and output waveforms (Figure 5b, SPIN(t), E2(t)). DSE is 8.0 sample periods
in this work (1.5, 5.0, and 1.5 sample periods for ADC1, CNN, and DAC, respectively)
(Figure 4). Since the ADC1 is composed of a second-order delta sigma modulator (DSM),
followed by a third-order sinc filter, and the processing delay is dominated by the group
delay of the sinc filter, the processing delay of ADC1 is 1.5 sample periods. Similarly,
the processing delay of DAC is 1.5 sample periods, since it is composed of a third-order
interpolation filter, followed by a third-order DSM, and the interpolation filter dominates
the delay time. The CNN accelerator takes 5702 clock cycles at a 120 MHz clock (47.5 µs,
∼2.2 sample periods), to process an input signal of three samples. The latency of the CNN
accelerator is ∼4.2 sample periods, including the waiting delay of the two sample periods
spent to collect the three-sample data at the input buffer. Since the DAC accepts input at
every sample period, the processing time of the CNN accelerator is five sample periods.
The transfer functions of the primary path and the acoustic secondary path are presented
in Figure 6 and Figure 7, respectively.

Figure 4. Proposed feedforward ANC of this work, using a CNN accelerator in FPGA. Blue: Primary
path, Green: Electrical secondary path, Red: Acoustic secodnary path.
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(a) (b)

Figure 5. (a) Measurement of the primary path P(z), (b) measurement of the acoustic secondary path
SA(z). Blue: Primary path, Red: Acoustic secondary path.

(a) (b)

Figure 6. Transfer function of the primary path P(z), with the noise incidence angle of (a) 0◦, (b) 90◦.

Figure 7. Transfer function of the acoustic secondary path SA(z).

To relax the causality constraint in the proposed feedforward ANC and enable stream-
ing operation, the CNN model should look up as much past data as possible, without
the future data. To achieve this goal, a dilated CNN model [23] is used in this work, by
increasing the input receptive field to 15,355 samples, without much increase in the latency
or the hardware size. The latency of the CNN model is five samples at the sample rate
of 46,875 S/s, and the system clock frequency is 120 MHz for the hardware CNN block.
The model consists of 10 layers of resnet, followed by a 512-tap FIR filter; the n-th layer
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includes a dilated 1-D CNN operation (16 kernels, dilation factor of 2n−1) and a fully
connected (FC) operation (Figure 8). The dilated structure is employed in this work, to
predict the future well by increasing the input receptive field. The kernel size of the dilated
CNN was chosen to be 16, to maximize the input receptive field and to use a 16 × 16
systolic array hardware for a parallel multiply and accumulation (MAC) operation, while
minimizing the number of layers to reduce latency. The total number of parameters used in
the proposed model is 3232 = (256 + 16) × 10 + 512.

Figure 8. Propsed CNN model.

To train the proposed CNN model, the CNN model code was combined with two
pre-trained CNN blocks, p(t) and sA(t) as well as the delay block of DSE (delay of the
electrical secondary path, eight sample periods in this work). A 10 s audio input (AIN(t))
was used for the training. The model was trained using ambient (“daily”) noise. Sixty
hours of such noise (in an airplane, bus, street, cafe, and other places) was collected from
YouTube sites and divided into t1-long segments. For training, each input clip consisted of a
t1-long daily noise, followed by a single-tone sine wave, where 0≤ t1≤ 10 s, randomly, and
the sine-wave frequency was 0 ≤ f ≤ 2000 Hz, randomly, with an amplitude 0 ≤ A ≤ 1.0,
randomly; all random distributions were uniform. The sine wave was added because
the daily noise, mostly, has low frequency. For the primary path impulse response p(t)
(Figure 9), either the 0◦ p(t) or the 90◦ p(t) was selected, randomly, with equal probability
for a 10 s input data. A mean absolute error of e(t) (Figure 9) was used as the loss function.

Figure 9. Training scheme of the proposed CNN model.
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3. Hardware Implementation

To achieve the real-time streaming operation, the proposed ANC system was imple-
mented using a hardware CNN accelerator (Figure 10); it receives a differential analog
signal from the reference microphone R and generates an anti-noise audio signal, through
a class-D amplifier and an internal speaker in the in-ear headphone. The analog signal
from R is converted to a 16-bit digital signal, at the sample rate of 46,875 S/s; the digital
signal is applied to the hardware CNN accelerator, the delta-sigma modulator DAC [24]
accepts the 16-bit CNN accelerator output and generates a 1-bit 6-Mbps pulse density mod-
ulation signal, which goes through a class-D amplifier, an LC low pass filter (inductance
L = 220 µH, capacitance C = 470 nF, −3-dB cutoff frequency = 15.7 kHz), and the internal
speaker (32 Ω).

Figure 10. The proposed ANC system, using the hardware CNN accelerator.

The proposed hardware CNN accelerator was implemented in a field programmable
gate array (FPGA), for the inference operation. The operations of the proposed CNN
model (Figure 8) are divided into 10 one-layer operations and a 512-tap FIR operation;
the one-layer operation is further divided into four steps (dilated 1-D CONV, ReLU, FC,
residual/skip add). The number of input samples to the n-th layer (n = 1, 2, 3,. . ., 10),
approximately, doubles as n increases by 1 (Equation (4)):

2n−1(kernel size− 1) + time samples (4)

where the kernel size is 16, and the number of time samples is three; three adjacent time
samples are taken from the dilated buffer (Figure 11), in a fetch cycle, and are processed,
sequentially, in the one-layer operation, to achieve real-time operation, with the processing
time of the CNN accelerator (Figure 12a,b) of 47.5 µs (∼2.2 samples), at clock frequency
120 MHz. For real-time streaming operation, the real-time factor should be less than 1.
The CNN accelerator takes around the same time, 2.2 sample periods, to process an input
unit of one or three samples. The real time factor is 2.2 and 0.74, for the input unit of one
and three samples, respectively. Hence, an input unit of three samples is used in this work
for the real time operation. The first layer (n = 1) fetches 18 samples L1 [1:18] from the
dilated buffer, performs the four step operations, generates an output sample for L1 [1:16],
and stores the one-sample output in L2 [49]; the output sample for L1 [2:17] is stored
in L2 [50], and the output for L1 [3:18] is stored in L2 [51] (Figure 11). The dilated 1-D
CONV operation takes 149 clock cycles to fetch 16 samples from the dilated buffer and
perform the dilated 1-D CONV operation, then it stores the 16-bit output to the systolic
array (SA) output buffer and repeats this procedure twice. The ReLU operation takes nine
clock cycles to move data from the SA output buffer through Demux, RELU, and Mux,
to the SA input buffer. The FC operation takes 93 clock cycles to move data from the SA
input buffer, through the systolic array, to the SA output buffer. The residual-add and
skip-add operations are performed, simultaneously, and take the same time of 14 clock
cycles (Figure 12a). After the four-step operations are performed for all 10 layers, the output
data of three samples are registered, as the newest data of the 514 samples in the FIR buffer.
The FIR filter performs a 512-tap operation on the 512 samples of the FIR buffer, stores one
sample output to the final buffer, and repeats this procedure twice (Figure 12b); this process
takes 2653 clock cycles (Table 1). The total processing time of the three adjacent input
samples is 5702 clock cycles (47.5 µs). The clock cycles of every operation in Table 1 were
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measured by monitoring the state change at the master controller in the Verilog simulations.
The system latency is eight samples (170.6 µs), including the waiting delay of collecting
three samples at the input buffer. The buffers require 41 kB memory, to store the data and
the 3232 parameters of the CNN model. The FPGA utilization of the proposed ANC is
tabulated in Table 2.

Figure 11. Dilated buffer address used for the dilated 1-D convolution.

(a) (b)

Figure 12. Proposed CNN model accelerator implementation (a) layer operation and (b) 512-tap FIR
filter operation.
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Table 1. Operation cycles of the proposed CNN model, to process three samples.

Operation Measured Cycles Measured Time (µs)

1 Dilated 1-D CONV 1490 12.4
2 ReLU 90 0.7
3 FC 930 7.8
4 Residual/skip add 140 1.2
5 512-tap FIR 2653 22.1
- Others 399 3.3
- Total 5702 47.5

Table 2. FPGA utilization of the proposed ANC system.

FF LUT DSP BRAM

Proposed CNN Model 68,811 94,011 261 20

4. Measurement Results

In the measurement setup (Figure 13), the Verilog design of the proposed CNN ANC
model (Figure 12) is, first, downloaded from a personal computer to the FPGA, along
with the 3232 trained parameters (16-bit floating point numbers). Then, a reset switch
starts the ANC operation in the FPGA; it accepts a mono audio input from the reference
microphone, performs the CNN ANC operation on the mono audio input, generates an
anti-noise signal, and sends it to the speaker of the in-ear headphone, to cancel noise.
The FPGA includes a USB 2.0 link, to communicate with a smartphone through a USB
2.0 PHY chip. The smartphone monitors the output data, from the reference and error
microphones of the in-ear headphones.

(a) (b)

Figure 13. Measurement setup (a) block diagram and (b) photo.

Frequency spectra (Figure 14) of the output data were obtained from the reference and
the error microphones, at noise incidence directions of 0◦ (Figure 14a) and 90◦ (Figure 14b);
a band-limited (100∼2000 Hz) pink noise was applied to a loud speaker. Without the ANC
operation, the error microphone output shows a high frequency attenuation, beyond 300 Hz,
at both 0◦ and 90◦, due to the mechanical structure of the in-ear headphone. With the
ANC operating, the error microphone output demonstrates a large attenuation at low
frequency (>20 dB at f < 300 Hz), and total power reduction of 14.8 dB at 0◦ and 14.3 dB
at 90◦, compared to the case in which the ANC is not used. With the ANC operating,



Appl. Sci. 2022, 12, 5300 10 of 13

the attenuation bandwidth was 2000 Hz at both 0◦ and 90◦; the attenuation bandwidth
is defined to be the cross-over frequency of the error microphone spectrum, between the
ANC on and off cases.

(a) (b)

Figure 14. Frequency spectrum of the error microphone output in the in-ear headphone for the ANC
of this work. Blue: reference mic, green: error mic (ANC OFF), red: error mic (ANC ON). (a) Noise
incident from 0◦ direction, (b) noise incident from 90◦ direction.

Since the dilated CNN model of this work predicts the future signal well, by observing
a long previous data, it does not need to satisfy the causal constraint; this work observes
327 ms-long previous data, whereas the FxLMS algorithm [15] observes only 250 µs-long
previous data. The in-ear headphone presented here achieved greater power reduction,
attenuation bandwidth, and maximum noise reduction, than previous noise-cancellers that
used the FxLMS algorithms (Table 3), and it, especially, achieved an excellent total power
reduction of 14.8 dB at 0◦ and 14.3 dB at 90◦, whereas they were 12.2 dB at 0◦ and 5.6 dB at
90◦ in [20].

Table 3. Comparison of system capabilities.

System Total Power Reduction [dB] Attenuation Bandwidth [Hz] Maximum Noise Reduction [dB]

0◦ 90◦ 0◦ 90◦ 0◦ 90◦

FxLMS:
ear-muff

headphone [20]
12.2 5.6 1500 1000 20 12

FxLMS: in-ear
headphone [15] n/a n/a 1500 850 15 12

This work:
in-ear

headphone
14.8 14.3 2000 2000 24 21

5. Discussion

The conventional real-time ANC, usually, uses the adaptive FxLMS algorithm, to
obtain optimum coefficients for the control filter. However, the slow convergence of the
adaptive algorithm, perceptibly, limits its reduction of dynamic noise and its overall noise
reduction. In addition, the conventional FxLMS algorithm would need to operate at a
higher sampling frequency than it does, to avoid violating the causality constraint in ANC
headphones. Due to these high processing demands, the fixed-filter method has become the
main choice for portable devices or hearables [25,26]. The fixed-filter approach [25] selects
a pre-trained control filter, to attenuate the noise instantaneously, and is effective to reduce
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real-world noise. Therefore, selecting a suitable pre-trained control filter is essential to the
ANC system’s noise-reduction effectiveness. The selective fixed-filter ANC method, which
uses a CNN, successfully classified noise types in the time domain. The CNN, running
in a coprocessor, such as a mobile phone, returns the index of the most-suitable control
filter, for each distinct noise type. Subsequently, the controller can update the coefficients
of the control filter, according to the filter index [26]. The task of the CNN [26] is to find the
optimal fixed filter index, depending on the primary noise types, but the control filter itself
is an FIR filter.

This paper successfully demonstrates a real-time streaming hardware feedforward
ANC system, for in-ear headphones, by implementing a 10-layer dilated CNN on an FPGA.
A 16 × 16 systolic array was used in FPGA, to speed up the model computation. In the
offline pre-training stage, the primary and acoustic secondary paths are extracted, using a
CNN model. The CNN model consists of 10 layers of resnet, which contain a nonlinear
activation function (ReLU) that can effectively model the, inherently, nonlinear nature of
the primary path. Then, to train the other CNN model that acts as a control filter, the CNN
model code was combined with the above pre-trained CNN blocks, (p(t) and sA(t)), as well
as the delay DSE of the electrical secondary path. Similarly to [25,26], the CNN model of
this work is a fixed filter, in that fixed pre-trained CNN coefficients are used in this work.
However, this work uses a non-linear CNN model, while [25,26] uses a linear FIR filter
as the processing engine; the FIR filter coefficients of [25,26] are computed by using an
algorithm [25] or a CNN model [26].

6. Conclusions

A real-time streaming hardware feedforward ANC system was implemented in an
FPGA, for in-ear headphones, by using a deep-learning model. The effectiveness of the
conventional FxLMS algorithm degrades in in-ear headphones because the electrical-
processing delay is long, compared to the short acoustic propagation delay, due to the
small size of the headphones. The system presented here uses an enhanced prediction
of future data, by using a 10-layer dilated CNN model, with the input receptive field of
327 ms, and, as a result, achieves better noise-power reduction than the FxLMS algorithm.
The CNN model has 3232 trained parameters (16-bit floating point). The feedforward ANC
consists of an internal speaker and two microphones, the external reference microphone
and the internal error microphone; an electrical processing circuit accepts the output signal
of the reference microphone, generates an anti-noise signal, and sends it to the internal
speaker, to cancel noise. To maintain numerical stability for training, the transfer functions
of the primary path and the secondary path are added to the CNN model; the primary path
refers to the acoustic propagation path, from the reference microphone input to the error
microphone input, and the secondary path includes the sum of the electrical signal path of
the electrical processing circuit and the acoustic propagation path, from the internal speaker
to the reference microphone input. The transfer function of acoustic propagation paths
changes with the change of the incident direction of noise. A 60 h sample of daily noise,
acquired from YouTube, and a single-tone sine wave with frequency <2000 Hz are combined
to form the input data for the training of the CNN model; the incident direction of the input
data was chosen to be 0◦ or 90◦, with equal probability. The CNN model was implemented
in an FPGA that had a system clock frequency of 120 MHz; a 16 × 16 systolic array was
used for speedup. The operation of the feedforward ANC system was demonstrated,
successfully, in a real application scenario, by combining the FPGA, an analog board, and
an in-ear headphone. The measured system latency was 170.6 µs. For a band-limited pink
noise input (100∼2000 Hz), the noise-power reduction was measured to be 14.8 dB and
14.3 dB at 0◦ and 90◦ incident direction, respectively, and the attenuation bandwidth was
2000 Hz, at both incident directions.
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