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Abstract: Automatic garment size measurement approaches using computer vision algorithms have
been attempted in various ways, but there are still many limitations to overcome. One limitation is
that the process involves 2D images, which results in constraints in the process of determining the
actual distance between the estimated points. To solve this problem, in this paper, we propose an
automated method for measuring garment sizes using computer vision deep learning models and
point cloud data. In the proposed method, a deep learning-based keypoint estimation model is first
used to capture the clothing size measurement points from 2D images. Then, point cloud data from a
LiDAR sensor are used to provide real-world distance information to calculate the actual clothing
sizes. As the proposed method uses a mobile device equipped with a LiDAR sensor and camera, it
is also more easily configurable than extant methods, which have varied constraints. Experimental
results show that our method is not only precise but also robust in measuring the size regardless of
the shape, direction, or design of the clothes in two different environments, with 1.59% and 2.08% of
the average relative error, respectively.

Keywords: garment measurement; LiDAR, point cloud data; deep leaning; convolutional neural
networks; keypoint estimation

1. Introduction

Measuring clothes is essential for both sellers and buyers in the fashion industry, but it
also incurs many unwanted costs. Such costs include labor costs (from manually measuring
the size of a garment) and costs surrounding exchanges and refunds due to sizing is-
sues [1,2]. For example, on the seller’s side, apparel manufacturers regularly measure their
products for quality control, and retail and thrift stores size their garments again to provide
consumers with the size labels and accurate measurements. Although information is pro-
vided, many consumers still experience much inconvenience in exchanging and refunding
products because of the sizes being different from their expectations [3–5]. This is because
the sizing standards created for the mass production of clothes are inadequate to cover a
wide range of consumers [6,7]. Such repetitive and inefficient work is pervasive throughout
the industry and, consequently, it leads to high cost increases in the apparel market.

In this paper, we propose a novel method for automating garment size measurements
using a mobile device equipped with a camera and a LiDAR sensor. A LiDAR sensor
projects a laser pulse to store point cloud data representing spatial information in the real
world in three dimensions. Since the point cloud data are points with distance (so called
depth) information from the LiDAR sensor, it is possible to calculate the distance between
specific points in the scanned space. Moreover, mobile devices equipped with LiDAR
sensors and cameras have recently become common, making it possible to simultaneously
scan the real world with 2D and 3D data. With this advantage, we succeed in measuring
the sizes of clothes using 2D images and 3D point clouds to detect the size measurement
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points and to calculate the distance between the points, respectively. As shown in Figure 1,
the proposed method consists of three steps.

Figure 1. Three steps of the automatic garment size measurement approach. (a) We used a mobile
device equipped with cameras and a LiDAR sensor to collect images and point clouds of clothes taken
from the same viewpoint. (b) The deep learning-based point detector detects the two-dimensional
coordinates in the picture of the measurement points. (c) The points pa in the depth map are in
2D coordinates (cxa, cya) that match the RGB image, and each has a distance da from the sensor.
(d) Finally, the program calculates the size dab with da and db and the angle rab between two points.

First, we capture clothes lying flat on the floor using a mobile device equipped with a
camera and a LiDAR sensor. With a single capture, a dataset consisting of an image, depth map,
and point cloud data are created, as shown in Figure 1a. Next, the deep learning-based point
detector detects the locations of the size measurement points corresponding to the clothing
categories in the 2D image, as exhibited in Figure 1b. A computer vision deep learning model
is used as a measurement point detector to determine the pixel coordinates of the multiple
measurement points. Finally, we calculate the sizes based on the depth information of the
point cloud. The depth map represents the depth information of each point, which is in the 2D
coordinates, the same as the 2D image. As illustrated in Figure 1c, each point that is detected in
the previous step is mapped to a point in the point cloud and assigned the distance from the
LiDAR sensor. Based on the actual distance information between the device and the scanned
space, we can find the actual sizes using the depths and contained angle.

Our method succeeds in measuring the clothing size (as precise as manual sizing) by
simply combining the advantages of the deep learning model and point cloud data. Section 2
introduces the deep learning algorithms our team apply and how we utilize the advantages of
LiDAR sensors to minimize intervention from human factors. We also present the details of the
proposed method in Section 3 and outline the conducted experiments to verify the method’s
accuracy, tolerance, and robustness in Section 4. Finally, the benefits of the suggested procedure
and further studies are summarized in Sections 5 and 6, respectively.

Overall, our contributions are as follows:

• We introduce a novel method for automating garment sizing using a mobile device
with cameras and LiDAR sensors without environmental controls.

• We illustrate how we can successfully measure sizes by exploiting 3D point cloud
features, as precise as manual measurements.

• We present how robust the proposed method is by examining experimental results
(with and without backgrounds) using deep learning-based point detectors.
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2. Related Work

We examine the proposed methods and the limitations of previous research in this
field and introduce applicable computer vision deep learning technology and the use of
LiDAR sensors as solutions to overcome these issues.

2.1. Automatic Measurement of Garment Sizes

In the past few decades, some methods [8–11] for automating garment size measure-
ments using 2D image recognition have been proposed based on two perspectives: (1) exter-
nal environment (workbench) control and (2) varied contour extraction algorithm [12–14].
Because the two-dimensional image itself cannot preserve the physical distance information
(e.g., cm, in) in the real world, these studies, which rely solely on two-dimensional images,
have the following problems.

First, the workbench environment must be strictly devised because of the distance
conversion from the pixel-level to the actual measure. To calculate the actual size from
the image, delicate camera calibration [15] is required to convert the actual distance for
each pixel. Since the camera calibration must take into account all components related
to the device and workbench, it must be premised that many factors (e.g., the distance
between the clothes and the camera, the image resolution, the lens alignment, etc.) must
be strictly controlled. The various and rigorous controls of workbench specifications are
impractical because they are extremely difficult to reproduce in other environments; even
small inadvertent changes can lead to significant errors.

In addition, contour extraction algorithms [12–14] for point detection are susceptible to
image quality and shape variations of clothing. Paler [12] and Davies [13], respectively, proposed
a mask-matching method and the generalized Hough transformation as methods for detecting
edges. However, these algorithms do not work properly when image processing is complex
or when the edges are relatively blunt. Chunxiao et al. [8], inspired by Serge’s work [14],
used predefined contour templates to match garment contours. However, for this process, one
template must be prepared for each clothing type. This is ’unsound’ in the fashion industry,
as various designs exist (even for one clothing type). Above all, in both approaches, different
colored backgrounds are essential to find the outlines of the clothes.

2.2. Deep Learning-Based Keypoint Estimation Model

To train a deep learning model to detect size measurement points, numerous clothing
images in which pixel-level coordinates of measurement points are annotated for clothing
items are necessary. In 2019, the DeepFashion2 dataset [16] published by The Chinese
University of Hong Kong and SenseTime Research consisted of 491,000 images with a total
of 294 annotated landmarks and 13 clothing categories. Landmarks are key characteristics
of the outlines of clothes and the markers include size measurement points that are unique
according to the type of clothing (e.g., left and right armpits and hem), as shown in
Figure A1. This dataset contains much richer clothing types and keypoint information than
previously known fashion datasets [17,18].

Regarding the point estimation problem, a high-resolution network (HRNet) [19] is a
state-of-the-art deep neural network architecture. In 2019, it proved its effectiveness in the
human pose estimation problem that predicted unique marked keypoints for each part of
the human body. This model architecture is suitable for detecting different sizing points for
each clothing type. In the landmark estimation competition hosted in the DeepFashion2
dataset, the models using HRNet architecture ranked first [20] and third [21], proving its
potential as a sizing point detector. Inspired by the approaches, our team also adopted a
HRNet-based keypoint detection model as a sizing point detector.

HRNet has advantages over previous architectures [22–29] through two different ap-
proaches. First, HRNet connects high-to-low-resolution subnetworks in parallel instead of in
series. It efficiently preserves high representations, whereas previous approaches used low-level
resolution to restore high representation. In addition, this architecture uses repeat multi-scale
fusions. Unlike previous fusion schemes that simply aggregated low and high representations,



Appl. Sci. 2022, 12, 5286 4 of 15

this method keeps both representations at a similar scale. The high-resolution representations
learned from HRNet are spatially precise.

2.3. LiDAR Applications

With the advancement and spread of LiDAR devices, various applications and stud-
ies [30–34] using LiDAR technology are appearing in our daily lives. In these studies, it is
possible that distances (owing to LiDAR sensors) can convert spatial information in the real
world into data. It is now viable to measure the distance reliably close to the actual distance,
but there are still several obstacles: (1) to measure the distance, human intervention is
required to pick the points; (2) on mobile devices, measurement errors may occur due to
slight movements while scanning the space.

Considering these issues, we designed an approach that minimizes human factor
errors by automating two procedures, as follows:

• The sizing point detector locates the detected sizing points without human intervention.
• We captured the image and the point cloud simultaneously to remove calculation

errors caused by hand movements while scanning the clothing area.

3. Proposed Method

The purpose of this study was to show that precise clothing size measurements are
possible with a single shot of an image and point cloud data through a device equipped with a
camera and LiDAR sensor. Size measurements can be divided into two steps, as follows. First,
we find the measurement points corresponding to the desired sizes. The distance between the
measurement points is then calculated. As a solution for each step, our team (1) finds the pixel
coordinates of each size measurement point in the 2D image by applying the HRNet-based
keypoint estimation model, and (2) maps each sizing point to the corresponding point in the
point cloud through matching the coordinates of the image and depth map. Because the point
cloud represents the spatial information of the real world, the actual size can be calculated
based on the depth information derived by the 3D space coordinates of the point cloud.

3.1. Sizing Point Detection
3.1.1. HRNet-Based Sizing Point Detector

We applied an HRNet [19]-based keypoint estimation model as a sizing point de-
tector. HRNet maintains high-resolution representations and simultaneously connects
multi-resolution subnetworks, showing excellent comprehensive performance in learning
information around keypoints in images. This architecture proves effective in restoring
low-resolution features to high-resolution representations [35]. This feature has the same
advantage in the problem of keypoint detection for clothes, as the visual features around
keypoints are more diverse than those of humans [36].

Regarding the architecture of the point detector, we adopted HRNet-W48. W48
denotes the widths of the subnetworks in the third stage, which is relatively larger than
the other variant of HRNet, HRNet-W32. The structure of the network consists of four
parallel stages of subnetworks (Nsr). In the diagram below, N represents the subnetwork,
the subscript s and r denote the stage and the resolution index, respectively. As shown
in the diagram below, it begins with a high-resolution subnetwork (N11) in the initial
stage. Each subnetwork is branched into two subnetworks: a multi-resolution subnetwork
(N11 → N21) and a high-to-low resolution subnetwork (N11 → N22). As a result, parallel
multi-resolution subnetwork processes maintain the same resolution-level representations
among the same r networks.

N11 → N21 → N31 → N41

↘ N22 → N32 → N42

↘ N33 → N43

↘ N44

(1)
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All parallel subnetworks repeatedly exchange the information from other stages.
According to Sun et al. [19], this repeated multi-scale fusion process allows the subnetwork
to have rich representation by bidirectional information exchange of high-to-low and
low-to-high resolutions, rather than restoring from low to high.

At the last stage, the high-resolution representation output at the final stage estimates
heat maps of each keypoint. The loss of estimation error is the Euclidean distance (d2

i )
between the ground truth coordinates (cxi, cyi) and the estimated coordinates ( ˜cxi, ˜cyi) of
the keypoints. The loss function uses the mean square error as follows,

Mean Squared Error =
1
n

n

∑
i=1

d2
i

=
1
n

n

∑
i=1

√
(cxi − ˜cxi)2 + (cyi − ˜cyi)2

(2)

meaning the problem of finding the shortest straight line distance from the ground truth
coordinates of the keypoint.

3.1.2. Data Augmentation

Our team applied a data augmentation scheme to train a sizing point detector inspired
by the high-ranking (first, third [20,21]) HRNet models in a landmark estimation compe-
tition. Qian [21] presented a clever approach that uses data augmentation for training
by swapping symmetrical points (e.g., left and right armpits). Lin [20] pointed out that
poor learning with insufficient data on certain types of clothing reduces the overall per-
formance. Reflecting on these two ideas, we trained the sizing point detector by applying
data augmentation to the left–right symmetry points, excluding the clothing types that lack
training data.

3.2. Physical Distance Calculation

To calculate the actual size, the spatial information corresponding to each detected
measurement point should be provided. In order to accomplish this process, as shown in
Figure 1c, we mapped a two-dimensional image and a depth map taken from the same
viewpoint and angle. The depth map contained data recorded by the LiDAR sensor(ToF
sensor with 10 µm pitch px, Sony Group Corp.), which recorded point-by-point distance
information between the real space and the device. We filed clothes images, depth maps,
and point clouds simultaneously using iPad Pro(A2228, Apple Inc., assembled in China)
device equipped with a camera and LiDAR sensor. The camera and LiDAR sensor simulta-
neously shoot at the same region and viewpoint; we could map the image and the depth
map without errors.

As a final step, the target size is calculated using the distance between two detected
points and the angle between them, as illustrated in Figure 1d. Each point in the LiDAR
sensor is projected at equal angular intervals. Therefore, the angle between two points is
equal to the unit angle of points multiplied by the point interval between the two points.
In this case, dab in Equation (3) is the straight line distance between the two points. It is the
same as the manual size measurement method with a tape measure.

dab =
√
(db · sin θab)2 + (da − db · cos θab)2

dab = Distance between pointa and pointb

da = Distance o f pointa f rom a LiDAR sensor

θab = Angle between pointa and pointb

(3)
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4. Numerical Experiments
4.1. Dataset
4.1.1. DeepFashion2 Dataset

We trained a point detector with five clothing categories (short sleeve top, long sleeve
top, shorts, trousers, and skirt) from the DeepFashion2 dataset [16]. For the accurate
detection of the sizing points for each clothing type, the deep learning model requires
sufficient data for each type to learn and generalize the visual features. Although the Deep-
Fashion2 dataset was large enough to correspond to 13 clothing types and 491,000 images,
the amount of data varied depending on the clothing category. Therefore, it was reasonable
to select five clothing categories with at least 50,000 images in our experiment.

4.1.2. Experiment Data

For the size measurement experiments, we collected 33 pieces of clothing from the
five clothing types, as described in Table 1. Regarding the clothing, there were varieties of
designs, colors, and shapes, and they were all used clothes. Our team manually measured
each garment size independently three times and recorded the minimum, maximum,
and median values to validate the experimental results. To collect the data, we laid out
each piece of clothing on the floor and collected a set of data (consisting of an image, depth
map, and point cloud) with a single capture using iPad Pro (A2228, Apple Inc., assembled
in China) device. In this manner, the process carried out 10 independent captures for each
garment by collecting and replacing. With every capture, the position and shape of the
clothes slightly changed. We also collected data in the same way in two experimental
conditions with different backgrounds. As a result, we constructed a total of 660 sets of
data (330 sets per experiment) with two different background settings.

Table 1. Descriptionof garments in the dataset. For the experiments, we gathered 33 different designs
of clothes from five clothing types. The dataset consists of 10 independent sets * (: image, depth map,
and point cloud) for each garment. As shown in Figures A2 and A3, experiments 1 and 2 ** were
conducted on a white background plate and a floor without a background plate, respectively.

Dataset *Clothing
Type Size Design Pieces

Experiment. 1 ** Experiment. 2 **

Short
sleeve

top

Total length
Chest width
Waist width

Cuff opening

V neckline
Printed

3/4 sleeve
etc.

10 100 100

Long
sleeve

top

Total length
Chest width
Waist width

Cuff opening
Sleeve length
Collar width

Printed
Sweatshirt
Plain white

Banded
Stripped

etc.

6 60 60

Shorts
Waist width

Outseam
Leg opening

Bending
Floral

etc.
7 70 70

Trousers

Waist width
Outseam

Leg opening
Front rise

Jeans
Chinos
Ripped

etc.

4 40 40

Skirts
Waist length
Total length

Pleated
etc. 6 60 60

330 330
Total 19 33

660
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4.2. Experiment Results

As presented in Table 2, the results of the experiments showed that the average relative
errors were (a) 1.59%, (b) 2.08%, respectively. The relative error indicates the magnitude of
the error compared to the actual length, as illustrated in Equation (4).

Relative error =
Absolute error

Actual size
=

abs(Actual size− estimated size)
Actual size

(4)

Table 2. Experimental results. ’Abs. Err.’, ’Rel. Err.’, and ’S.E’ are abbreviations for absolute error,
relative error, and standard error, respectively. In experiments 1 and 2, the relative errors were
(a) 1.59% and (b) 2.08%, respectively, lower than the (c) 3.25% of the manual measurement.

Manual Measurement Exp. 1: White Background Exp. 2: Raw Floor
Clothing

Type Abs. Err. Rel. Err.
Abs. Err.

(S.E.)
Rel. Err.

(S.E.)
Abs. Err.

(S.E.)
Rel. Err.

(S.E.)

Short
sleeve top

1.4000 0.0309
0.5000

(0.0376)
0.0126

(0.0009)
0.5552

(0.0424)
0.0143

(0.0011)

Long
sleeve top

1.3417 0.0412
0.6001

(0.0546)
0.0180

(0.0017)
0.6229

(0.0700)
0.0197

(0.0022)

Shorts 0.9524 0.0254
0.5041

(0.0461)
0.0143

(0.0013)
0.6139

(0.0525)
0.0168

(0.0015)

Trousers 1.3150 0.0366
0.6571

(0.0728)
0.0195

(0.0021)
1.2123

(0.1038)
0.0357

(0.0031)

Skirts 1.4583 0.0285
0.5511

(0.0492)
0.0114

(0.0009)
0.6784

(0.0648)
0.0131

(0.0013)

Total 1.2935 (c) 0.0325
0.5707

(0.0529)
(a) 0.0159
(0.0015)

0.7371
(0.0680)

(b) 0.0208
(0.0019)

These results corresponded to errors of 0.79 cm and 1.04 cm, at a length of 50 cm.
Compared to the relative error of the manual size measurement (3.25%, value (c) in Table 2),
the experimental results showed that it was sufficiently accurate to replace manual mea-
surements in terms of precision. In addition, the standard errors of both experiments were
less than 0.0020 (0.20%), indicating that our design of the size measurement was tolerant
even if the positions or arrangements of the clothes were slightly different.

The average relative error was mainly inflated by some sizes with large relative errors
(e.g., cuff opening and leg opening in Table A1); there were two main reasons for this. First,
when the actual length was small, the relative error was overestimated. This is explained
by the fact that the absolute errors were all less than 1 cm regardless of the sizes, except for
the front rise in Experiment 2. On the other hand, when the detected measurement point
deviated slightly from the position, the error increased proportionately. We observed that
at certain points with relatively poor visual features (e.g., points on the back of the neck of a
T-shirt, the crotch point of shorts and trousers in Table A1), the detection performance also
deteriorated. Because the DeepFashion2 dataset [16] contained mostly images of people in
clothes, some points were obscured by the human skin. In this case, the detection locations
of the points could be slightly different due to the lack of data for these specific points.

5. Discussion

Our proposed method exhibited precision and tolerance performance comparable to
that of manual sizing, as presented in Table 2 above. In addition, it had practical and robust
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advantages over the previous methods [8,9] that used only 2D images in two respects:
(1) no external workbench constraints and (2) direct sizing point detection.

One of the major benefits of using a LiDAR sensor to measure clothing size is that
it does not require any environmental controls, as described in Table 3. Because past
methods [8–11] relied solely on 2D images, they required delicate environment controls
and camera calibration to map the spatial information for each pixel. For these approaches,
the external environment has to be designed by considering all components (e.g., the dis-
tance between the clothes and the camera, the angle and curvature of the camera lens,
the lighting plate under the clothes, etc.) related to the clothing and the camera. In other
words, they require allotted space for equipment installation and preparatory work, which
is impractical to apply in small businesses and with consumers. By contrast, the proposed
method technically does not require these constraints. The operator who wants to measure
the sizes does not need to know about the information, such as camera specifications or
distance to the clothes. It is because the LiDAR sensor can record the distance to the target
space at the level of 0.00001 cm with the same viewpoint as the 2D image. In summary,
with a single mobile device, anyone, anywhere, can measure size instantly.

Table 3. Comparison table with previous garment sizing methods. Since the previous methods
derived the actual sizes from the images, all environmental factors between the camera and the
clothes had to be strictly controlled. On the other hand, our method (using the LiDAR sensor) does
not require any of these setups.

Garment Size Measurement By 2D Image Recognition By Using Deep Learning-Based
Point Detector and LiDAR Sensors

Data 2D image
2D RGB image

Depth map
Point cloud

(a) Point detection Point detection from
extracted garment contour

Direct point detection

Contour extraction Necessary None

Image processing
or contour template

Necessary None

Shape variation Partly available Available

Folded/twisted part Unavailable Available

Rotated Unavailable Available

(b) Size measurement Distance conversion using
calibrated pixel distances

Distance calculation based on
depth information of each point

Device installation Necessary Not necessary

Background plate Necessary Not necessary

Camera calibration Necessary None

Relative errors Approximately 2% With background: 1.59%
without background: 2.08%

Standard errors Not provided With background: 0.0015
without background: 0.0019

A point detector based on vision deep learning is robust to shape, orientation, and
color [35] because it finds the size measurement point directly without a contour extraction
process. As shown in Figure 2, we succeeded in measuring the sizes of clothes of various
colors and designs in an environment with and without a background. Moreover, our
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experimental results prove its tolerance to errors that may be caused by human factors. In
the fashion industry, where designs are diverse, it is difficult to fit multiple clothing images
on a predefined template. Because there are various shapes within the same clothing
types (e.g., three-quarter sleeve shirt and pleated skirt), it is not feasible to prepare all
outline templates in advance to respond to these various shapes. These approaches also
require lighting plates of colored backgrounds to determine the outlines of the clothes in the
image. By contrast, as shown in Table 3, the deep learning-based point detector identifies
the visual features of the area around the measurement points. Therefore, regardless of
the arrangement, orientation, or color of the clothes, measurements can be made directly
without contour extraction.

Figure 2. Some examples of size measurement results. These results show the robustness of the point
detector model to the shape, orientation, color, and background. The left arm of the long sleeve top
(2, 7) and left leg of the shorts (3, 8) were folded, and the skirt (10) had a different front/back shape.
The trousers (4, 9) rotated 90° counterclockwise and the white long sleeve top (2) were the same color
as the background; all parts were successfully sized.

6. Conclusions

Although there have been remarkable advances made in artificial intelligence technol-
ogy, it was developed with a focus on specialized algorithms that are still highly dependent
on the format of the data. Despite the development and widespread use of devices, this
aspect makes it difficult to converge and utilize the capabilities of different data, thus the
applicability to other fields is low. Our study shows that even a simple connection between
a deep learning model and point cloud data can exceed the performance of previous sizing
methods that required delicately controlled environments and algorithms. Additionally,
this method exploits the capabilities of a device that is readily available and it easy to use
in various small businesses.

In our approach, the point cloud is simply used to find the distance between two points,
but the size measurement method using the point cloud has greater potential for advancement.
A point cloud has many points projected at a uniform angle; therefore, there can be more points
between the sizing points. It is possible to find not only the distance between two distant points,
but also the distance between all adjacent points, and the size can be obtained by summing
all these distances. A garment has different curves that are not flat; therefore, we can estimate
a more precise size measurement by segmentalizing the arch shapes. In this manner, even a
slight wrinkle or clothing hanging on a hanger can be sized by calculating the distance to the
surface. We believe that this approach will allow size measurements in various situations. We
will elaborate on this method in a future study that is currently in progress.
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Table A1. Experimental results. Each value on the left side represents the average value and the
corresponding value in brackets indicates its standard error *.

Manual Measurement Exp. 1: White Background Exp. 2: Raw Floor
Clothing Type Size

Absolute Error Relative Error Absolute Error (*S.E.) Relative Error (*S.E.) Absolute Error (*S.E.) Relative Error (*S.E.)

Total Length 1.8000 0.0257 0.5665 (0.0411) 0.0081 (0.0006) 0.6119 (0.0539) 0.0088 (0.0008)

Chest width 1.9700 0.0348 0.5524 (0.0444) 0.0099 (0.0008) 0.6292 (0.0439) 0.0113 (0.0008)

Waist width 1.0600 0.0191 0.4594 (0.0344) 0.0082 (0.0006) 0.4536 (0.0292) 0.0082 (0.0005)

(a) cuff opening 0.7700 0.0438 0.4217 (0.0304) 0.0241 (0.0018) 0.5261 (0.0428) 0.0290 (0.0023)

Short
sleeve top
(10 pieces)

Total 1.4000 0.0309 0.5000 (0.0376) 0.0126 (0.0009) 0.5552 (0.0424) 0.0143 (0.0011)

Total length 1.5833 0.0224 0.6407 (0.0530) 0.0090 (0.0007) 0.6559 (0.0602) 0.0093 (0.0009)

Chest width 1.1500 0.0190 0.7644 (0.0712) 0.0130 (0.0012) 0.7221 (0.0969) 0.0119 (0.0016)

Waist width 1.3000 0.0244 0.5400 (0.0435) 0.0100 (0.0008) 0.6415 (0.0647) 0.0122 (0.0013)

(a) cuff opening 1.0333 0.0892 0.4668 (0.0456) 0.0402 (0.0041) 0.6049 (0.0589) 0.0510 (0.0050)

Sleeve length 1.8000 0.0285 0.7325 (0.0698) 0.0117 (0.0011) 0.6806 (0.0834) 0.0109 (0.0014)

(b) Collar width 1.1833 0.0636 0.4561 (0.0444) 0.0241 (0.0023) 0.4323 (0.0559) 0.0228 (0.0029)

Long
sleeve top
(6 pieces)

Total 1.3417 0.0412 0.6001 (0.0546) 0.0180 (0.0017) 0.6229 (0.0700) 0.0197 (0.0022)

Waist width 1.1143 0.0279 0.4681 (0.0404) 0.0120 (0.0010) 0.5903 (0.0460) 0.0155 (0.0013)

Outseam 0.8714 0.0164 0.4279 (0.0429) 0.0081 (0.0008) 0.6314 (0.0611) 0.0119 (0.0012)

(a) leg opening 0.8714 0.0318 0.6162 (0.0551) 0.0229 (0.0022) 0.6202 (0.0503) 0.0228 (0.0019)
Shorts

(7 pieces)
Total 0.9524 0.0254 0.5041 (0.0461) 0.0143 (0.0013) 0.6139 (0.0525) 0.0168 (0.0015)

Waist width 1.1600 0.0306 0.7329 (0.0783) 0.0191 (0.0021) 0.5781 (0.0734) 0.0149 (0.0020)

Outseam 1.4400 0.0147 0.5695 (0.0738) 0.0058 (0.0008) 0.7001 (0.0796) 0.0071 (0.0008)

(a) leg opening 1.0600 0.0556 0.6207 (0.0657) 0.0329 (0.0035) 0.7325 (0.0616) 0.0394 (0.0035)

(b) Front rise 1.6000 0.0456 0.7054 (0.0736) 0.0201 (0.0021) 2.8385 (0.2008) 0.0814 (0.0060)
Trousers
(4 pieces)

Total 1.3150 0.0366 0.6571 (0.0728) 0.0195 (0.0021) 1.2123 (0.1038) 0.0357 (0.0031)

Waist width 1.1833 0.0330 0.5234 (0.0392) 0.0149 (0.0011) 0.5115 (0.0529) 0.0145 (0.0015)

Total length 1.7333 0.0240 0.5789 (0.0591) 0.0078 (0.0008) 0.8453 (0.0766) 0.0117 (0.0011)Skirts
(6 pieces)

Total 1.4583 0.0285 0.5511 (0.0492) 0.0114 (0.0009) 0.6784 (0.0648) 0.0131 (0.0013)

Total 1.2935 0.0325 0.5707 (0.0529) 0.0159 (0.0015) 0.7371 (0.068) 0.0208 (0.0019)
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Figure A2. Samples of Experiment 1 (on white background) results with 33 pieces of clothing.
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Figure A3. Samples of Experiment 2 (without background) results with 33 pieces of clothing.
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