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Abstract: There have been steadily growing requirements from the academia and industry, demand-
ing non-invasive methods and reliable measurement systems of research devoted to operational mode
analysis (OMA). Due to the simplicity of performing only structures surface vibration measurements,
OMA is frequently applied in machine fault diagnosis (MFD) and structure health monitoring (SHM).
OMA can handle big structures, such as bridges, buildings, machines, etc. However, there is still an
open question: how to properly handle the harmonic effects of rotating components and the difficulty
of closely estimating space modes are still a nightmare to deal with. Therefore, the main objective of
this paper is to identify the structure of natural frequencies by the regeneration of frequency response
functions (FRFs) for complex structures based on OMA. The novelty of our approach is to use the
random decrement technique (RDT), correlation function estimation (CFE), and enhanced Ibrahim
time method (EITM) to overcome OMA’s difficulties and limitations. To reduce further rotational
harmonics effects, gear mesh and side band frequencies, digital signal processing techniques based
on notching filters, and liftering analysis techniques were also used. All the experiments were
performed at the laboratory test rig and conducted by using three accelerometers, one impedance
hammer, one force sensor, and one data acquisition board. To reduce data’s variabilities, each test was
measured three times for 5 min. The data sampling frequency for all the experiments was 25.6 kHz.
To validate the proposed methodology, extensive OMA tests were performed for the generation of
FRFs. The measured objects were a steel bar, induction motor, and gearbox. Five structural natural
frequencies for the induction motor and eight structural natural frequencies for the gearbox were
generated, respectively.

Keywords: operational mode analysis (OMA); vibration analysis; experimental modal analysis; cep-
strum analysis; machine diagnosis; random decrement (RD); enhanced time Ibrahim method (ETIM)

1. Introduction

OMA is also known as ambient modal identification, ambient modal analysis, and
output modal analysis. No matter the name, the main idea is the same: it aims to identify
the structure’s dynamical parameters, based only on the vibration measurements, when
the machines are under its operating conditions.

Scopus, Elsevier, IEEE, and SpringerLink were selected for the bibliography studies.
Due to a widespread literature, research related to the OMA’s development was restricted
to the last 19 years. Initially, let us introduce that OMA’s techniques can be classified
by mainly two properties [1]: (1) time-domain and -domain, (2) non-bayesian (stochastic
subspace identification), and bayesian (correlation function and spectral density). In our
case, the literature review will be focused, especially, on the selected methods RDT, CFE,
and EITD.

In this regard, one important tasks was carried out by P. Mohanty et al. in 2004 [2];
they studied the OMA in the presence of harmonic excitation. One difficulty was that, if the
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structure’s natural frequency is closed with the harmonic excitation, it fails to accurately
identify the modal parameters. To properly identify the natural frequencies, they proposed
a modification of the least-square complex exponential (LSCE), to identify the procedure
to include explicitly harmonic signals. The measurement object was a beam with random
excitation and several multi-harmonics loads. The applied system was a SIMO system,
and they used an enhanced variant of Ibrahim time method (ITM) and LSCE. By applying
OMA, it was still a major challenge to handle the MIMO systems and close spaced modes.
The reduction of harmonics was studied by P. Mohanty et al. in 2004 [3]; they further
studied the inclusion of harmonic excitation in OMA, using a new approach of EITM.
In this case, they know a priori the harmonic excitation, and it was able to successfully
detect the natural frequencies and damping data. The study’s object was a steel plate.
J. Rodrigues et al. in 2005 [4] studied the application on OMA based on RD, ITD, and
frequency domain decomposition (FDD). The outcomes of their studies were the generation
of natural frequencies of a civil structure. At present, however, there is a somewhat limited
validation process to quantify the obtained results.

A new approach, introducing OMA’s technique, based on non-bayesian (stochastic
subspace identification), was developed by Z. Lingmi et al. 2005 [5]; they performed an
overview of OMA, with further analysis with four time approaches, i.e., ARMA model-
based, NEXT, stochastic realization-based, and stochastic subspace approaches, as well as
frequencies approaches, i.e., frequency domain decomposition (FDD).

The researchers developed a new approach, concerning blind source separation, for the
detection of modal parameters for OMA applications. J. Antoni et al. in 2013 [6] studied the
OMA and blind source separation, also known as the blind signal separation method, for
the identification of modal parameters. The second-order blind source separation (SOBSS)
was applied for the analysis procedure, and the applicability of the framework of SOBSS in
OMA was established. It was also established that the theoretical connection of SOBSS and
stochastic subspace identification (SSI) stays as one of the aims of reference in OMA.

The OMA’s research took a new turn with the application of maximum likelihood
estimation (MLE), as data preprocessing by estimating modal parameters by F.J. Cara et al. in
2012 [7]. The experimental modal analysis is an iterative method to find maximum likelihood
estimation (MLE), which can handle, in this case, the state space model’s parameters. However,
the above method has two drawbacks: (a) slow convergence and (b) high dependence on the
initial conditions. To solve the difficulties, a stochastic subspace and the initial conditions with
random points were used. The research work performed by Si-Da Z et al. in 2014 [8] presented
the maximum likelihood estimator (MLE) for its ability to identify the structural modal
time–frequency domain parameters. The obtained results were based on two time–frequency
functions: the bivariate orthogonal and bivariate power polynomials.

The eigensystem realization algorithm (ERA) is used to identify dynamical structure
parameters, which is commonly used with natural excitation technique (NEXT) to identify
modal parameters from ambient vibration. Zhang Y et al. in 2014 [9] applied the ERA,
which is one of the most popular methods in civil engineering for dynamical structural
identification parameters. These papers focused on spurious mode, mode energy estimat-
ing, and analysis of the stabilization diagram. A new criterion was proposed, the modal
similarity index (MSI), to measure the reliability of the modes. The mode energy content
was used to define the dominant mode.

The finite element method (FEM) was used by M.L. Aenlle et al. in 2013 [10], in order
to determine the modal scaling in OMA, who introduced the modal scaling in OMA using
the mass matrix of a finite element model (FEM). The developed algorithms were validated
by numerical simulations on a planar bridge and cantilever beam.

Y Zhang et al. [11] in 2015, applied a non-overlapped (RDT) for parameters identifica-
tion with OMA. There was a drawback using RDT—due to averaging the raw data time
segments, triggering the signal at the initial points of segmentation causes an overlap dur-
ing triggering, which causes a residual excitation peak at the natural frequency. To solve the
above difficulty, the following paper presented a non-overlapping technique to eliminate
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the peaks. R.B. Randall et al. in 2016 [12] studied a paper with the title, “Repressing the
effects of variable speed harmonic orders in OMA”. This paper illustrated the machine
shaft orders effects, which can disturb the OMA. To reduce difficulties, they studied three
alternatives: (a) applied the time synchronous averaging (TSA), (b) the signals were trans-
formed to order domain and applied a cepstral notch method to reduce speed harmonics
and transformed it back to time-domain for OMA, (c) applied the raw vibration signal of an
exponential short pass lifter to enhance the modal information. M. Salehi et al. in 2017 [13]
performed a research study to extract modal parameters and compared them using various
OMA methods, such as the frequency decomposition domain (FDD), enhanced frequency
decomposition domain (EFDD), and stochastic subspace identification (SSI). A commercial
software, PULSETM, was also used for validation proposes. The measured object was a
four-stage centrifugal compressor. The identification of the of shaft harmonics were based
on the values of the enhanced kurtosis analysis, However, the harmonics eliminations were
not clear.

An extensive survey of cepstrum’s applications for structural dynamical identification
parameters was presented by R.B. Randall et al. in 2019 [14]. The major idea of this method
was to detect and remove periodic discrete frequency components. The main difficulty
in OMA is to handle the periodic discrete frequency components, i.e., modulation side
bands and harmonics. In some cases, the harmonics and side bands can be mistaken for
slightly damped modes. In this case, a notch liftering technique was used, combined with
an exponential lifter to remove/reduce the aforementioned difficulty.

There is an interesting and well-developed method for OMA’s applications, with
locally preserving projections (LPP) and principal components analysis (PCA) methods,
respectively. C. Wang et al. in 2019 [15] developed a new online operational method, based
on vibration analysis, for the control of linear-time varying structures. The main idea was to
overcome the limitations of resonance uncertainties of the OMA analysis by combining the
idea of “forgetting factor weighting”, locally preserving projections (LPP), and eigenvector
recursive PCA. The authors claimed that the methodology works faster, requires less
memory space, and archives higher identification accuracy. In W. Fu et al.’s 2021 paper [16],
further findings were developed. In [15], the method based on moving windows and
locally preserving projection algorithms was proposed, in order to successfully identify the
modal parameters with the OMA method.

F.B. Zahid et at. (2021) [17] carried out an extensive review of OMA techniques for
in-service modal identification. The OMA studied techniques are: peak picking (PP), the
basic assumption the modes are well-separated, and the damping is separated; frequency
domain decomposition (FDD) can estimate the natural frequencies and closed space modes
accurately; time-domain decomposition (TDD)—computationally efficient, but difficult
to extract close spaced modal parameters; natural excitation technique (NEXT)—good
ground to extend EMA into OMA, but difficulties in data processing; autoregressive
moving average (ARMA)—output measurements can be used directly; the computationally
intensive method; stochastic subspace identification (SSI)—high parameters estimation
and accuracy; and the mathematically complex method. This paper performs an extensive
literature review; however, there are methods that were not included in the analysis, such
as the RDT and ITD methods, respectively.

We can draw some remarks, related to the literature review. OMA techniques showed a
lot of potential, due to the simplicity in performing vibration measurements. It can perform
under running conditions. There are no necessary extra requirements for measurement
conditions, such as EMA. It can handle big structures, such as bridges, buildings, machines,
etc. However, there are still open questions. What kind of algorithm can be used? How is it
related the structure complexity of the algorithm election choice? Is there any framework
for applying a certain algorithm to a certain type of structure? There is still a lot of research
to cover the state-of-the-art of OMA. Therefore, this research paper aims to put two of
most popular methods, RDT [1,4,11,18] and EITM [3], into perspective, applying them in
steel plate in the early stage of development. The validation process was carried out in a
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steel beam, induction motor, and gearbox. The windowing technique was also applied,
similar to that which was used in paper [15]. However, in this case, a liftering technique
was used to eliminate the harmonic effects. Different frequency bands were also used as a
pre-processing technique to reduce noise.

Due to the simplicity of performing only surface structure vibration measurements,
OMA is frequently applied in machine diagnosis and health condition monitoring [1,2,7,19,20].
However, there is still a lot of research to cover OMA’s major drawbacks, i.e., the reduction
of harmonic’s effects, accurate handling of MIMO systems, and difficulty in estimating close
space modes. Therefore, our research approach intends to overcome OMA’s difficulties with
three of most popular methods: RDT, CFE, and EITM. The measured raw data was pre-
processed by the RD technique to obtain free decay responses before they were introduced
to EITD.

The rest of this paper is structured as follows: Section 2 presents the methods and
procedure analysis (EMA, RDT, CFE, EITM, and measurement set up). Section 3 contains the
results and analysis. Section 4 presents the discussions. Finally, the Section 5 is presented.

2. Methods and Procedure Analysis

In this section, EMA, RDM, CFE, and EITM are presented. This section also includes
the measurement setup and procedure analysis.

2.1. Experimental Modal Analysis (EMA)

The EMA is an effective tool for machine diagnosis and structure health monitoring.
EMA determines the dynamical parameters of the structure by obtaining the frequency
transform function, which contains the resonances, anti-resonances, and damping of the
system. This method was used for the validation process, in order to compare the results
of OMA. This method is well-established in the scientific area, so the readers are directly
referring to [21].

2.2. Random Decrement Technique (RDT)

The RDT is a time-domain procedure, which was developed in the 1960s by NASA. It
works when the structural responses are transformed into random decrement functions,
which can be considered proportional to the free vibrations responses. The main objective
of RDT is to identify the modal parameters of the structure from only the vibration response
under machine running conditions, see Figure 1. This method works by finding a starting
point (trigger) to start segmenting the measured signal. The higher the number of segments
or samples of the signal to estimate the RD-signature, i.e., to get an average, the closer the
RD-signature will be to the actual signal without noise [1].
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2.3. Correlation Function Estimation (CFE)

The CFEs are a measure of the similarity between random signals. The CFE analyses
the correlation function matrix by the well-known, direct method from the data response
matrix [1]. The CFE matrices, at different time lags, are obtained in 3D. In our research work,
the CFEs are used as interface functions to introduce the preprocessed data into EITM.
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2.4. Enhance Ibrahim Time Method (EITM)

To identify the dynamic properties, the Ibrahim time-domain method (ITM) is one of
the first techniques developed, while the systems/machines are under running conditions.
There are several concerns with the OMA method, based on ITM, especially the difficulties
regarding the detection of the resonances (closely to harmonics), due to rotating compo-
nents. The standard ITD was initially developed for a simple input system, and only a
simple decomposition analysis was permitted [1]. EITM was used to reduce the effects
of closely spaced modes and apply for MIMO systems [1]. This limitation of the method
can be evaded if we realize that the matrices can worked as Toeplitz block matrices, which
essentially contain correlation data. This means that the MIMO version of the ITD can be
obtained by EITD by calculating the Toeplitz arrays of all outputs [1].

The following equations describes the ITM’s analysis procedure [1].

y(t) = c1a1eλ1k∆t + c2a2eλ2k∆t = c1a1µ1
k + c1a1µ2

k (1)

where ∆t is the time delay, λn are the continuous time resonances, an are the mode shapes,
and µn are the discrete resonances. The following equation describes the Hankel matrix [1]:

H =


y(1) y(2) . . . y(np − 3)
y(2) y(3) . . . y(np − 2)
y(3) y(4) . . . y(np − 1)
y(4) y(5) . . . y(np)

 =

[
H1
H2

]
(2)

If the free decomposition has np numbers of data in the signal (taking into account
H1), it can be expressed as [1]:

H1 = ΨΛ (3)

where Ψ is a matrix which contains the mode shapes.

Ψ =

[
a1 a2 . . .

µ1a1 µ2a2 . . .

]
(4)

Λ is the matrix containing the discrete time poles raised to different powers and multiplied
by the corresponding modal amplitudes [1].

Λ =


c1µ0

1 c1µ1
1 . . . c1µ

np−3
1

c2µ0
2 c2µ1

2 . . . c2µ
np−3
2

...
...

...

 (5)

The Hankel matrix H2 can be expressed with a delay of two time steps:

H2 = Ψ[µn]
2Λ (6)

In order to eliminate expression Λ, Equations (1) and (3) can be used, and this gives:

Ψ−1H1 = H2Ψ−1[µn]
−2 (7)

Multiplying both sides of Equation (7) with Ψ[µn]
2 gives:

Ψ[µn]
2Ψ−1H1 = H2 (8)

It is defined the system matrix:

A = Ψ[µn]
2Ψ−1 (9)
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Finally, the ITD estimation values can be seen in Equations (10)–(13) [1].

AH1 = H2 (10)

Â1 = H2HT
1 (H1HT

1 )
−1

(11)

Â2 = H2HT
2 (H1HT

2 )
−1

(12)

Â =
(

Â1 + Â2

)
/2 (13)

The standard ITD was initially developed for a simple input system, and only a
simple decomposition analysis was permitted. This method’s limitation can be evaded
if we realize that the matrices can worked as Toeplitz block matrices, which essentially
contain correlation data. This means that the MIMO version of the ITD can be obtained by
calculating the Toeplitz arrays of all output. For obtaining the EITD method, the readers
may refer to more details in [1].

2.5. Measurement Set Up and Procedure Analysis

This section describes and illustrates the experimental set up and analysis procedure
for all the experiments. The vibration data recording was carried out at our laboratory’s
test rig for industrial innovation technology and robotics. One motor (WEG 2hp), one
impact hammer (PCB 086c03), one force sensor, and three piezoelectric accelerometers
(PCB 353B17) were also used to conduct the experiments. All the vibration signals were
simultaneously digitized by using a NI-DAQ 9775. Experimental data were generated
from a steel bar, gearbox, and induction motor. To have enough analysis data and reduce
measurement variabilities, each test was measured three times for 5 min. The sampling
frequency for all the experiments was about 25.6 kHz.

Figure 2 illustrates the gearbox used for the experiments, and it was a two-stage
compound reverted gear train to be in-line. The spur gear E1 had 17, E2 had 40, E3 had 13,
and E4 had 27 teeth, respectively.
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Figure 3 denotes the measurement set up for EMA for an induction motor and gearbox.
The tests were conducted using the impedance hammer, force sensor, and three accelerometers,
which were mounted firmly on the steel bar, induction motor, and gearbox, respectively. It
can be observed that the measured objects were suspended using soft springs, as shown in
Figure 3. An impulse force hammer is a hammer equipped with a piezoelectric force sensor,
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and it is used in structural and modal analysis to stimulate a structure. Then, the EMA
measured data will be used for validation proposes with OMA data.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 14 
 

 
Figure 2. Experimental set up for gearbox’s measurements: (a,b) show the set of the spur gears, (c) 
denotes the gearbox’s top view, and (d) shows the gear box and mounted accelerometers. 

Figure 3 denotes the measurement set up for EMA for an induction motor and gear-
box. The tests were conducted using the impedance hammer, force sensor, and three ac-
celerometers, which were mounted firmly on the steel bar, induction motor, and gearbox, 
respectively. It can be observed that the measured objects were suspended using soft 
springs, as shown in Figure 3. An impulse force hammer is a hammer equipped with a 
piezoelectric force sensor, and it is used in structural and modal analysis to stimulate a 
structure. Then, the EMA measured data will be used for validation proposes with OMA 
data. 

 
Figure 3. Experimental set up for an induction (a) motor and (b) gearbox, placed for a free–free 
condition and excited by an impedance hammer. 

The second set of measurements were carried out when the machines were running 
in normal conditions. Figure 4 illustrates OMA’s measurement set up for the induction 
motor, with mounted accelerometers. To measure the gearbox, the induction motor was 
connected to gearbox’s shaft for the generation of rotational speed. The gearbox’s meas-
urement set up shows in Figure 5. The measurements were done with three speeds at 
1800, 2400, and 3000 rpm, respectively. Signals were collected from the steel bar, induction 
motor, and gearbox. 

Figure 3. Experimental set up for an induction (a) motor and (b) gearbox, placed for a free–free
condition and excited by an impedance hammer.

The second set of measurements were carried out when the machines were running in
normal conditions. Figure 4 illustrates OMA’s measurement set up for the induction motor,
with mounted accelerometers. To measure the gearbox, the induction motor was connected
to gearbox’s shaft for the generation of rotational speed. The gearbox’s measurement set up
shows in Figure 5. The measurements were done with three speeds at 1800, 2400, and 3000
rpm, respectively. Signals were collected from the steel bar, induction motor, and gearbox.
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3. Analysis and Results

This section describes and illustrates the EMA and OMA methods, respectively. The
overall schematic description, regarding the analysis procedure for regenerating the FRFs
from the vibration responses, can be seen in Figure 7. The analysis part started with the
pre-processing of the vibration data; an extensive reciprocating coherence analysis was
carried out, in order to find out the best measurement points in the structure. The total
measured length for each signal was around 768,000 samples. Thereafter, the RD technique
procedure was applied to the raw signals, in order to obtain a matrix of 25 × 25,600.
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1 

 

 

Figure 7. Flowchart of the overall OMA analysis procedure.

To limit the range of interest, a digital low pass filter was used, and a notch filter was
also applied to eliminate speed rotation harmonics. Furthermore, in order to eliminate the
gear mesh contact frequencies, the cepstrum (filtering) technique was used. CFE, which
has ability to extract interesting information about the modal characteristics of the signals,
was also applied. Therefore, after the CFE, the obtained vectors were 25 × 25 × 16,385.
Finally, the EITM analysis was performed to obtain the structural resonances, based on
Brincker [1].

As it was observed in the development of this research work, to validate the proposed
analysis process, we started from the design of an experiment with a simple structure to de-
velop the final process with experiments using complex structures. The structure’s natural
frequencies of the steel beam, induction motor, and gearbox were obtained through OMA.

The measured and regenerated FRFs of the obtained results on the steel bar of the
EMA and OMA measurements can be seen in Figure 8. It can be pointed out that the
structure resonances are global parameters, which means the resonances do not change
in frequency, due to input force placement. It can also be stressed out that the structure
regenerate natural frequencies have almost the same frequencies as the measured ones;
however, it seems that the anti-resonances have slightly variations or, in some cases, does
not exist.
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The steel bar’s regenerate structure natural frequencies for EMA and OMA are shown
in Table 1. The obtained results have high accuracy, except at 8 Hz. It was difficult to
generate a FRF for that specific resonance frequency with precision.

Table 1. Steel bar’s regenerate structure natural frequencies.

Mode Number

1 2 3 4 5

EMA [Hz] 8 59 165 326 534
OMA [Hz] - 59 165 326 535

Figure 9 illustrates the obtained results of the regenerated natural frequencies of the
induction motor at 1800, 2400, and 3000 rpm, respectively. The obtained results showed
an overall consistency. However, it was quite difficult to regenerate the structure’s natural
frequencies, between 600 to 900 Hz at 1800 rpm, with high precision.
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Five generated natural structure frequencies for the induction motor were detected. To
quantify the precision of the obtained OMA’s results, Figure 10 denotes the comparison of
the induction motor’s FRFs, with five modes at varying speeds (1800, 2400, and 3000 rpm).
The highest accuracy was shown by mode one.

A typical gearbox’s regenerated transfer function at 3000 rpm can be seen in Figure 11.
Figure 12 illustrates the obtained results of the gearbox structure’s natural frequencies

with varying speeds. The first three regenerated modes have the highest precision; they
can be used for machine diagnostics. In order to reduce the frequency dispersion for higher
modes, we could determine a calibration curve to use to adjust the measurement values. An
advanced equalization process and scaling of the generated FRFs [14], in order to increase
the precision, could be the subject of future research.
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3000 rpm).

4. Discussion

There is considerable growing interest in OMA, due to the modal dynamical properties
that can be estimated from the response vibration measurements data. Modal parameters
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play an important role in structural health monitoring and fault detection. In any case,
it will be impossible to apply standard EMA for ambient vibration testing. It is well-
known that EMA is carried out under complete machinery shut down. EMA measurement
requirements include that the measured object has to be suspended on soft springs to
reduce the initial conditions’ effects.

OMA’s major advantages are: the testing procedure can be affordable, cheap, and easy
to measure directly on the structure’s surface; testing does not interfere with the machine or
structure operation process; the method can be used for large and heavy structures, there is
no need for shakers; and there is no need to lift the measurement objects up or hang them
up on soft springs.

The OMA also assumes that the structure excitation is on the broadband frequency;
however, it can also contain discrete components, such as shaft speed harmonics and gear
mesh components. Discrete frequency components can disturb the operation of OMA
algorithms. It is quite important to perform a pre-processing of the response signals, in
order to remove unwanted excitation components before the application of OMA.

The main objective of our research paper was to determine the structure natural
frequencies, based on two of most popular methods, RDT [1,4,11,18] and EITM [3]. The
methodology was applied in a steel bar, induction motor, and gearbox. Special attention
was paid to closely spaced modes. The CFE and windowing techniques were also applied,
similar to what was used in paper [15] to reduce OMA limitations. However, in this case,
the liftering technique was used to eliminate the harmonic effects. Different frequency
bands were also used as a pre-processing technique to reduce noise. Extensive data
tests were performed for the generation of FRFs. The methodology applied in this paper
could be an interesting alternative for OMA for health monitoring, fault detection, and
machine diagnostics.

5. Conclusions

This paper has sought to highlight the OMA’s properties, in order to determine the
structural natural frequencies from vibration signature responses. A new approach was in-
troduced, based on the random decrement technique (RDT), correlation function estimation
(CFE), and enhanced Ibrahim time method (EITM), to overcome OMA’s difficulties and
limitations. To further reduce the rotational harmonics effects, gear mesh, and side band
frequencies, digital signal processing techniques, based on Notching filters and liftering
analysis techniques, were used.

All the experiments were performed at the laboratory test rig and conducted by using
three accelerometers, one impedance hammer, one force sensor, and one data acquisition
board. To reduce the data’s variabilities, each test was measured three times for 5 min.
To validate the proposed methodology, extensive OMA tests were performed for the
generation of FRFs. The measured objects were a steel bar, induction motor, and gearbox.

As a final remark, five structural natural frequencies for the induction motor and eight
structural natural frequencies for the gearbox were generated, respectively.
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