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Abstract: The presented article investigates the biomechanics of the calcaneal nail C-NAILTM by
numerical calculations and, partially, experimentally. This nail is widely used in trauma and or-
thopaedics. A numerical model of implants directly interacting with the bone tissue model obtained
from CT scans was calculated. The material properties of the bone tissue can be described by several
models; in this work, a non-homogeneous material model with isotropic elements and prescribed
elastic modulus was used to provide a more accurate model of the applied force distribution on the
individual parts of the implants. The critical areas of the nail and its fixtures were investigated using
finite element strength calculations to verify their strength and reliability, contributing to the safety
and faster and easier treatment of patients. These analyses suggest that the strength of the calcaneal
nail C-NAIL, as well as the stabilization of bone fragments resulting from its use, are sufficient for
clinical practice.

Keywords: traumatology; orthopaedics; calcaneus C-NAIL; osteosynthesis; biomechanics; finite
element analysis

1. Introduction

The calcaneus or heel bone (Figure 1) is the biggest bone in the human foot, giving it
its shape and functionality. In the foot skeleton, the heel bone forms the rear and bottom
parts that bear the body weight through the talus bone. Therefore, the upper part of the
heel bone joins the talus bone and forms a part of the ankle joint (talocrural joint) (Figure 2);
the front part is adjacent to the cuboid bone (Figure 2) and in the rear part, the Achilles
tendon attaches to it [1,2].
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Figure 1. X-ray of the foot. 

 
Figure 2. Anatomy–joint surfaces of the heel bone. 

A dislocated heel bone fracture counts among the most complicated injuries of the 
lower limb and, usually, is associated with permanent damage. Such a fracture also rep-
resents a major trauma for the patient. Patients have great difficulty walking, and the 
damage can lead to the development of arthrosis and pain; in most cases, it is impossible 
to walk at all. Therefore, osteosynthesis is often used as the treatment of choice. In addi-
tion, the bone is directly under the skin and is not covered by muscles but rather only by 
a fat pad, which (in the case of damage to the superficial structures) leads to additional 
complications in the healing of both the skin cover and the bone itself [2,3]. 

The first references to the treatment of calcaneal fractures date back to the time of 
Hippocrates (460–385 BC). The first recorded resting-based treatment leading to the sta-
bilization of the bone fragments comes from French Petit and DeSault in 1720. In one of 
the earliest editions of the American medical journal (1880), Bailey described the treatment 
by rest, bandage, and saline solution. A major breakthrough in the treatment came with 
the discovery of X-rays, when the understanding of these fractures fundamentally 
changed and the first efforts at anatomical repositioning appeared. In 1913, the French 
physician Lerich performed the first osteosynthesis using a splint with screws and bone 
grafts. Throughout the 20th century, the development of new methods and approaches 
for open repositioning and internal fixation continued but for most surgeons, conservative 
treatment (administration of solutions and analgesics, immobilizing casts) still repre-
sented the method of choice. The truly massive use of internal and external fixation begun 
in the 1980s. Together with the development and widespread use of CT (computed to-
mography) scanning, more accurate diagnosis and classification of these fractures (e.g., 
according to Sanders) was made possible [2–4]. 

Figure 1. X-ray of the foot.
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A dislocated heel bone fracture counts among the most complicated injuries of the
lower limb and, usually, is associated with permanent damage. Such a fracture also
represents a major trauma for the patient. Patients have great difficulty walking, and the
damage can lead to the development of arthrosis and pain; in most cases, it is impossible to
walk at all. Therefore, osteosynthesis is often used as the treatment of choice. In addition,
the bone is directly under the skin and is not covered by muscles but rather only by a
fat pad, which (in the case of damage to the superficial structures) leads to additional
complications in the healing of both the skin cover and the bone itself [2,3].

The first references to the treatment of calcaneal fractures date back to the time of
Hippocrates (460–385 BC). The first recorded resting-based treatment leading to the sta-
bilization of the bone fragments comes from French Petit and DeSault in 1720. In one of
the earliest editions of the American medical journal (1880), Bailey described the treat-
ment by rest, bandage, and saline solution. A major breakthrough in the treatment came
with the discovery of X-rays, when the understanding of these fractures fundamentally
changed and the first efforts at anatomical repositioning appeared. In 1913, the French
physician Lerich performed the first osteosynthesis using a splint with screws and bone
grafts. Throughout the 20th century, the development of new methods and approaches for
open repositioning and internal fixation continued but for most surgeons, conservative
treatment (administration of solutions and analgesics, immobilizing casts) still represented
the method of choice. The truly massive use of internal and external fixation begun in the
1980s. Together with the development and widespread use of CT (computed tomography)
scanning, more accurate diagnosis and classification of these fractures (e.g., according to
Sanders) was made possible [2–4].

Today, open repositioning combined with internal fixation using a calcaneal plate is
the standard method of treatment; however, it is occasionally complicated by problems
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with healing of the surgical wound and possible infection. For this reason, new approaches
to internal fixation (e.g., mini-invasive approach using nails that do not need such an
extensive skin cover opening during insertion into the fracture, thus minimizing the risk
of infection) have been developed. The success of heel bone treatment also depends on
the strength of the used plates and calcaneal nails; in case of their failure, it is necessary
to perform a new osteosynthesis. Despite the best efforts of the surgeons, the success
rate of the treatment is not 100% (e.g., infection, osteolysis, etc.); however, modifications
and improvements of these implants have led to a reduction in the probability of their
failure [2–4].

Widely accepted methods of internal fixation include the method of fixing the plate
with screws directly to the bone (Figures 3 and 4). This method is used for fractures of the
body of the bone. However, fractures often occur in the neck. In such cases, other methods
are used, such as nailing, i.e., driving a nail into the bone cavity. Leading manufacturers of
external and internal fixators for the heel bone include, for example, the Turkish Normmed,
see [5], which specializes in the treatment of small bones, the Swiss Medartis [6], GPC
Medical Ltd., see [7], the Czech manufacturer Medin a.s. [8], etc.
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Figure 4. Lateral incision and plate application during heel bone osteosynthesis (alternative method
of treatment).

The latter company, Medin a.s. [8], developed a calcaneal nail for angular stabilization
under the commercial name C-NAIL (Figure 5). This calcaneal intraosseous nail is used
for the mini-invasive fixation of intraarticular and extraarticular fractures of the heel bone,
stabilizing the fragments of the heel bone by the nail in conjunction with seven locking
screws; this leads to the formation of angularly stable fixation. To achieve maximum
stability, the sustentacular fragment (i.e., part or whole broken sustentaculum tali) is fixed
into the nail with two locking screws guided by a targeting device [8]. Mini-invasiveness is
one of the major advantages of using C-NAIL. A small lateral approach of about 3 cm from
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the apex of the outer ankle towards the base of the 5th metatarsal is sufficient for fragment
repositioning; further, just a few mini-incisions are needed for introducing Kirschner guide
wires, the actual nail, and the individual screws. This mini-invasiveness significantly
reduces the risk of possible infection. The stability of the implant and, thus, the firm
fixation of the fragments constitute additional advantages.
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The lower age limit for using this treatment is given by the closure of the growth cleft
of the child’s heel bone, which closes at the age of 16–17 years. The upper age limit is not
specified, it depends on the biological condition of the patient. From doctoral experiences:
the youngest patient was 17 years old, and the oldest patient was 75 years old.

Presently, two types of materials are compatible with human tissue (titanium alloy
Ti6Al4V and surgical stainless steel AISI 316L) are most widely used for osteosynthetic
plates and nails [9], and locking screws are also from the same materials. The diameter
of the screws is 3.5 mm, but the length varies from 22 mm to 70 mm [8]. Here, the
finite element (FE) analysis of a calcaneal nail made of titanium alloy will be performed.
A homogeneous isotropic linear elastic material model will be used for the actual analysis.
The material constants were determined by tensile testing [10]. The modulus of elasticity E
was determined to be 105 666 MPa, and the Poisson’s number, which indicates the ratio
between longitudinal and transverse elongation, for this titanium is alloy µtitanium = 0.342,
see [11].

2. Numerical Bone Modelling

The acquisition of a series of consecutive images forms the basis for creating a correct
geometrical and numerical bone model. CT (computed tomography) or MRI (magnetic
resonance imaging) are the methods most commonly used for imaging internal organs and
bones. For soft tissue imaging, MRI imagery is preferable because of the use of magnetic
fields and high-frequency electromagnetic waves (i.e., zero radiation load for both the
doctor and the patient) [12].

CT images of the lower limb were used to create good quality models of the heel
bone (Figure 6). The Materialise Mimics software [13] was used to subsequently obtain a
CAD model of the calcaneus. The proper calculation of the bone model needs to separate
the dense bone tissue from other soft tissues in the individual CT sections. The Mimics
software performs this separation based on the Hounsfield units (HU), which is the density
of individual pixels.
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HU can be perceived as the level of grey on the X-ray. CT images can be subsequently
used to create a 3D model of a bone, organ, or soft tissue. The difficulty of this process
largely depends on the quality of the CT imagery—where the CT quality is low, the soft
tissues must be distinguished from the bone manually. The CAD model of the heel bone
presented in Figure 7 was prepared from CT images provided by the University Hospital
Ostrava, Czech Republic. This model was subsequently subjected to FE analysis and served
as a basis for the stability analyses of calcaneal nails.
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3. Material Properties of the Bone

Human bone tissue is a non-homogeneous and anisotropic material. The mechanical
properties of bone tissue, which are genetically determined, are therefore strongly depen-
dent on the direction of loading, age, sex and health of the person. Under compressive
loading, the ultimate strength is higher than under bending loading [14]. Therefore, the
search is on for suitable models describing the complicated mechanical properties of bone
tissue that are as close to reality as possible. According to the literature, the use of a
non-homogeneous isotropic material model described by the elastic modulus E and the
Poisson number µ for each element of the finite element mesh seems to be a sufficient
approximation to the real bone.

The magnitudes of the elastic modulus are calculated from the magnitude of HU in
the tissue volume. The density of the zone of interest according to HU can be further
determined from the CT images. Using the Materialise Mimics software and mathematical
and physical relationships, material properties can be assigned to each element. There is a
large body of literature and scientific articles dealing with the conversion of Hounsfield
units to densities ρ and elastic moduli E, see [14–19] and others. The mechanical properties
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of bone tissue vary depending on gender, age, health status (smoker, diabetic), tissue type,
genetics, etc. A method discussed in the literature [18] was used for recalculation of the
density and the elasticity modulus (Figure 8).
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This approximation of reality is sufficient for the presented research as it primarily
focuses on the analysis and optimization of the calcaneal nail; in this paper, therefore, the
bone itself is not in the spotlight of interest here.

As a function, The calcaneal density ρ = ρ(x, y, z)/kg·m−3/can be expressed as:

ρ = x + HU × y (1)

where x, y and z are coordinate axes with a suitably selected origin of the coordinate system.
Values of HU = HU (x, y, z) are acquired via CT snapshots.

Similarly, the elasticity modulus E = E(x, y, z) can be expressed by constants A, B as:

E = A × ρB
(x,y,z) = 9354 × 10 −7 × ρ3.15

(x,y,z) (2)

The distribution of the elasticity modulus is presented in Figures 9 and 10.
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3.1. Strength Analysis of a Healthy Calcaneus without a C-NAIL

Before the actual FEM calculations of the osteosynthetic implants, a stress–strain
analysis of the whole (healthy) heel bone was performed as below.

The computational model was based on a test machine constructed for static and
dynamic (fatigue) experiments described in [20], where the anterior part of the bone was
supported by a substitute of the cuboid bone (Figure 11), and the load was applied by a
hydraulic test machine through the substitute of the tibial joint to simulate the normal
loading of the foot. For the purpose of the experiment, these cuboid and tibial replacements
were made of veterinary bone cement. This method (i.e., the replacement of the surrounding
skeleton with veterinary or dental cement) has been previously described [21–23] and
therefore will not be described in greater detail here.
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Figure 11. Boundary conditions.

The computational model (Figure 11), similar to an experiment, replaces the interaction
of the heel bone with the other leg bones by finite elements with the mechanical properties
of cured epoxy putty [24]. This proxy (epoxy putty instead of veterinary cement, the
mechanical properties of which were unavailable) was selected on the basis of reasonable
expert estimates of the mechanical properties of the modulus of elasticity of the used
veterinary bone cement (DEMOTEC95-Demotec, Nidderau, Germany), E = 4830 MPa,
µdemotec = 0.3.
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Individual parts of the hydraulic testing machine are modelled as elements with
mechanical properties of common structural steel, E = 210,000 MPa, µ = 0.3. FEM analysis
was performed for a model of the heel bone created from CT images, with a material model
respecting the mechanical properties of a real bone described element by element by the
gradually changing modulus of elasticity according to Equation (2). In this experiment, the
upper (proximal) solid elements representing the talus/upper part of the ankle joint were
loaded with an axial force, see Equations (3) and (4).

G = m·g = 120·9.81 = 1177.2 N (3)

F = Kdyn·G = 1.47·1177.2 = 1722.84 N (4)

where G/N/is the static gravitational force, F/N/is the dynamic force, and Kdyn is the dy-
namic coefficient converting the static problem to a quasi-static problem; g = 9.81/m s−2/is
the gravitational acceleration.

To calculate the healthy (solid) calcaneus using FE analysis, a patient with a mass
of m = 120 kg was considered. Calculations were performed for the maximum dynamic
value that can be transferred to the heel bone, namely the total patient’s dynamic force
F. In addition, a dynamic coefficient Kdyn = 1.47 was introduced as a simple solution to
converting the static problem into a dynamic one (a common engineering approach; the
Kdyn value was established based on our previous measurements of the dynamic load of
the foot). The loading force is therefore equal to the product of the dynamic coefficient
Kdyn and the patient’s gravitational force G.

The elements representing the cuboid bone and the substrate are tightly constrained
at all degrees of freedom on the free end faces (highlighted in blue; Figure 11).

3.2. Strength Analysis of a Healthy Heel Bone without C-NAIL

The distribution of reduced stress under the HMH (von Mises stress) hypothesis for
the solid (healthy) calcaneus generated from CT images and described by a variable linear
homogeneous isotropic material model (distribution of 100 material properties across the
elements in the calcaneus) is shown in (Figure 12). The largest value of the reduced stress is
11.9 MPa, which is still relatively low stress, located at the point of the contact of the bone
model with the veterinary cement (Figure 11).
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Figure 13 shows the distribution of total displacements for the healthy heel bone under
stress created from CT images as described by a variable linear homogeneous isotropic
material model (100 materials). The greatest total displacement of 0.44 mm was detected in
the sustentaculum tali region.
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The areas with greater values of the HMH stress are those that are most susceptible to
fracture (Figure 14; lines between points A-B, B-C). The resulting HMH stress distributions
were presented to medical experts who confirmed that these fracture lines correspond to
the typical fracture lines on a real bone.
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4. Strength Analysis of the Calcaneal Nail C-NAIL in Interaction with the Heel Bone
4.1. Numerical Model

The strength analysis of the C-NAIL calcaneal nail was performed on models of the
heel bone virtually “cut” into seven fragments corresponding to complicated comminuted
fractures (Figures 15 and 16) according to the Sanders IIB classification [25], similar to the
experiment in [23].
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Figure 16. The adjustment of the bone model for calculations.

Further model parameters, including the material and loading, are presented in
Section 3.1.

4.2. Calculation Results

The maximum reduced stress calculated according to the HMH theory (about 390 MPa)
is exerted on the screw passing through the fragments of the heel bone (Figure 17; the
fragment of the calcaneus with sustentaculum tali, Figure 1). The upper central fragment
(the fragment with the posterior facet, Figure 1) of the heel bone tends to move downward,
causing increased stress. Thus, the majority of the load is transferred to the C-NAIL, due to
the lack of adhesion between the heel bone fragments, which is the desired result.
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Figure 17. Distribution of the reduced stress on the calcaneal nail according to the HMH hypothesis/MPa/.

The stress on the heel bone itself, approx. 72.8 MPa (Figure 18), is negligible compared
to the nail; the maximum stress is detected at the site of contact of the bone with the
veterinary cement (Figure 18).
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Figure 18. Distribution of the reduced stress on the fractured heel bone containing C-NAIL according
to the HMH theory/MPa/.

The distribution of displacements on the heel bone is shown in Figure 19. The greatest
displacement is detected on the fragment with the posterior facet (approx. 0.35 mm).



Appl. Sci. 2022, 12, 5265 12 of 14

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 15 
 

 
Figure 18. Distribution of the reduced stress on the fractured heel bone containing C-NAIL accord-
ing to the HMH theory/MPa/. 

The distribution of displacements on the heel bone is shown in Figure 19. The greatest 
displacement is detected on the fragment with the posterior facet (approx. 0.35 mm). 

 
Figure 19. Total displacements on the broken heel bone/mm/after C-NAIL application. 

Figure 20 shows the total displacements on the calcaneal nail. The size of the greatest 
displacement was about 0.146 mm. The overview of the calculated values of stresses and 
displacements is presented in Table 1. 

Figure 19. Total displacements on the broken heel bone/mm/after C-NAIL application.

Figure 20 shows the total displacements on the calcaneal nail. The size of the greatest
displacement was about 0.146 mm. The overview of the calculated values of stresses and
displacements is presented in Table 1.
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Table 1. Results of the displacements and stress on the C-NAIL calcaneal nail.

C-NAIL Displacement/mm/ Calculated Stress
σHMH/MPa/(C-NAIL) Yield Stress (TiAl4V)/MPa/

0.146 390.9 912

5. Conclusions

Thanks to the development of implants, it is now possible to treat even very severe
and complicated fractures more effectively than in the past. The use of numerical models
of bone tissue as well as the osteosynthetic material helps in developing and optimizing
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implants thanks to more accurate information about the load distribution on the given
implant. Such improved reliability of implants brings the desired improvement in the
quality of medical care. Models created in the Materialise Mimics software can also be used
to develop medical instruments and implants.

Based on the numerical strength analyses, the authors recommend that the strength
of the calcaneal nail C-NAIL as well as the stabilization of bone fragments resulting from
its use is sufficient for clinical practice. Similar results were obtained from physical ex-
periments performed in Germany, see [22], as well as in finite element models where the
interaction of the calcaneus and the C-NAIL was simulated by an elastic foundation [25].

In the future, the modelling of C-NAIL can be improved through explicitly dynamic
analyses, application of probabilistic approaches, enhanced materials and new experiments,
e.g., [26–33].
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26. Čajka, R.; Labudková, J. Dependence of Deformation of a Plate on the Subsoil in Relation to the Parameters of the 3D Model. Int.
J. Mech. 2014, 8, 208–215.

27. Hrabovský, L.; Fries, J. Transport Performance of a Steeply Situated Belt Conveyor. Energies 2021, 14, 7984. [CrossRef]
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