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Abstract: Automatic charging for electric vehicles has broad development prospects for meeting the 
personalized service experience of users while overcoming the inherent safety hazards. An 
identification and positioning approach suitable for engineering applications is the key to 
promoting automatic charging. In this paper, a low-cost, high-precision method to identify and 
position charging ports based on SIFT and SGBM is proposed. The feature extraction approach 
based on SIFT is adopted to produce the difference of Gaussian (DOG) for scale space construction, 
and the feature matching algorithm with nearest-neighbor search, which is a kind of machine 
learning, is utilized to yield the map set of matching points. In addition, the disparity calculation is 
conducted with a semi-global matching algorithm to obtain high-precision positioning results for 
the charging port. In order to verify the feasibility of the method, a complete identification and 
positioning experiment of charging port was carried out based on OpenCV and MATLAB. 

Keywords: identification and location of charging port; SIFT feature extraction; nearest neighbor 
search feature matching; semi-global matching method; disparity calculation 
 

1. Introduction 
The rapid development of new energy vehicles in the context of carbon peak and 

neutrality goals provides a new opportunity for the electric vehicle charging facility 
industry. With the increasing number of electric vehicles, the charging facilities for electric 
vehicles (EV) are gradually improving [1]. At present, processes of EV charging, such as 
charging port docking and charging time control of electric vehicles in the charging 
station, need to be completed manually; a large number of complex damage problems to 
the charging port caused by improper operation. At the same time, in view of the long-
term exposure of the charging pile to the outdoors, it is inevitable that the insulation will 
be damaged due to aging, and there is a potential electric shock safety hazard of manual 
operation. With the advent of the era of intelligence, electric vehicle users will inevitably 
pay more attention to the intelligent and humanized experience of services [2–4]. 
Therefore, there is great value in studying the generalized automatic identification 
scheme of charging parts based on image recognition and to further design the automatic 
charging control system. 

In recent years, a large number of studies related to automatic charging have been 
carried out. For example, Tesla has developed a serpentine high-degree-of-freedom 
charging machinery and equipment, but it is limited to the range of motion of the 
mechanical structure, which has high requirements related to the parking position of the 
vehicle, and is only suitable for Tesla models [5]. The E-Smart Connect system developed 

Citation: Li, T.; Xia, C.; Yu, M.; Tang, 

P.; Wei, W.; Zhang, D.  

Scale-Invariant Localization of  

Electric Vehicle Charging Port via 

Semi-Global Matching of Binocular 

Images. Appl. Sci. 2022, 12, 5247. 

https://doi.org/10.3390/app12105247 

Academic Editor: Franz Wotawa 

Received: 12 April 2022 

Accepted: 19 May 2022 

Published: 22 May 2022 

Publisher’s Note: MDPI stays 

neutral with regard to jurisdictional 

claims in published maps and 

institutional affiliations. 

 

Copyright: © 2022 by the authors. 

Licensee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and 

conditions of the Creative Commons 

Attribution (CC BY) license 

(https://creativecommons.org/license

s/by/4.0/). 



Appl. Sci. 2022, 12, 5247 2 of 13 
 

by Volkswagen in Germany uses sensors to trigger cameras to locate vehicles and 
interfaces, and the system controls the KUKA robot for charging [6]. Shi Ying designed a 
robot-based electric vehicle charging system, which used binocular vision sensors to 
locate the coordinates of the charging port to drive the robotic arm, but did not conduct 
high-precision target positioning and experimental research under fuzzy light sources [7]. 
Zhang Hui from Hunan University applied machine vision to detect and locate charging 
ports, but did not obtain the pose in three-dimensional space, and only consider the case 
of round holes [8]. Sun Cheng studied the charging port identification and pose detection 
methods of electric vehicles under multiple disturbance factors, using monocular visual 
identification; although it is economical, it is not able to accurately obtain depth 
information [9]. 

High-precision identification and positioning algorithms are the top priority for 
automatic charging of electric vehicles, and an important prerequisite for ensuring the 
docking of charging devices. This paper proposes a high-precision charging port 
identification and positioning method suitable for different light intensities, backgrounds, 
and charging ports of any shape. First, the SIFT feature extraction algorithm is presented 
with the Gaussian difference pyramid being generated to construct the scale space. Then, 
the FLANN matching algorithm is utilized to obtain a high-precision mapping set of 
matching points. Second, in the process of binocular ranging, the SGBM (semi-global 
block matching) algorithm is used to calculate the parallax. This algorithm can calculate 
the parallax of the left and right camera images, so as to calculate the depth of the charging 
port more accurately. In order to verify the effectiveness of the proposed method, image 
identification and binocular ranging experiments were carried out, respectively, and high-
precision matching and ranging results were obtained. 

2. The Overall Process of Charging Port Identification and Positioning 
First, to identify and locate the charging port through binocular vision, it is necessary 

to establish a binocular camera model. In order to solve the distortion problem in the 
perspective projection of the camera, camera calibration is conducted, through which the 
model parameters and distortion coefficients of the camera can be obtained for image 
correction. Second, based on the binocular vision system, the identification and 
localization algorithm of electric vehicle charging ports is studied, including filtering 
preprocessing of collected images, image segmentation, matching of pre-stored features 
of charging ports, and stereo matching of local graphic features. Finally, the three-
dimensional spatial coordinates of the charging port are reconstructed; that is, the 
positioning of the charging port is completed [10]. The process of charging port image 
identification and positioning system is shown in Figure 1. 

No

Camera 
calibration

Image 
acquisition

Feature 
extraction

Stereo matching and 
depth calculation

Feature matching

End

Three-dimensional 
reconstruction to obtain 

coordinates

Start

Yes

 



Appl. Sci. 2022, 12, 5247 3 of 13 
 

Figure 1. Process flow of charging port image identification and positioning system. 

As the premise of identification and positioning of the charging port, the camera 
calibration process is based on the model of the existing camera. The parameters of the 
camera are calculated and transformed from the coordinates of the feature points. In the 
following, the three-dimensional reconstruction is carried out. Generally, “Zhang’s 
calibration” method can be used, in which the value of the coordinate transformation 
matrix can be solved through more than four sets of points. However, in order to reduce 
errors and acquire stronger robustness, generally, many images should be taken and a 
large number of angle points selected for calibration [10]. 

3. Image Feature Extraction and Feature Matching Based on SIFT 
The problem of charging port identification in the target area must be first solved to 

achieve automatic charging. The charging pile is generally placed outdoor with strong 
electromagnetic field, due to which the collected images are easily affected by noise. 
Therefore, the adopted charging port image identification method should possess good 
anti-interference performance in addition to strong robustness under different ambient 
light backgrounds. The target detection algorithm based on binocular vision is one of the 
most promising, as well as practical, methods in recent years, with its key lying in the 
feature point extraction and feature matching algorithm. SIFT (Scale-invariant feature 
transform), which is a scale-invariant feature transform algorithm, is a local feature 
detection method based on spatial scale extreme points. As the algorithm has invariance 
to rotation operation, scaling operation and brightness change in addition to strong 
robustness to noise and the characteristic of scalability, it can accurately extract the corner 
features in the image [11]. The extracted image features are then matched with the pre-
stored charging port features to complete the identification function of the charging port. 
Figure 2 shows the flowchart of the image identification process of the charging port. 

The extraction of feature points by the SIFT algorithm can be realized by steps such 
as the construction of the scale space, the calculation of the spatial extreme points, the 
positioning of the stable key points, the information distribution of the direction of the 
stable key points, as well as the description of the key points which are shown as follows. 

 
Figure 2. Schematic diagram of charging port feature extraction and matching. 

3.1. Scale Space Construction 
Spatial scale coordinate transformation is performed on the detected image to obtain 

the scale space sequence. In the following, the main spatial contour of the scale space 
sequence is extracted, which is marked as a feature vector to complete the corner feature 
extraction of key points at different resolutions. The scale space constructed is invariant 
to scale changes, which is achieved by blurring and down-sampling the image through 
the Gaussian function [12–14]. In order to make the calculation relatively efficient, the 
Gaussian difference scale space is calculated by the Gaussian difference function, through 
which the Gaussian difference pyramid is generated, as shown in formula (1): 



Appl. Sci. 2022, 12, 5247 4 of 13 
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In the formula, x and y are the scale coordinates. σ  is the image smoothness 

coefficient. 
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and k-1 is a constant. 

3.2. Finding the Extreme Point in Space 
In order to find the extreme point of the Gaussian function, any pixel needs to be 

compared with its adjacent points in the image domain and scale space domain. In the 
two-dimensional space of the image, any pixel is compared with the adjacent 8 pixels, and 
in the scale space of the same group, the center pixel is compared with the 18 pixels of the 
adjacent layer image respectively. In this way, double local extreme points in the scale 
space as well as the two-dimensional space of the image can be obtained [15]. 

3.3. Precise Positioning of Stable Key Points 
Noise and edges are prone to cause mutation of Gaussian values, so the local extreme 

points obtained in Section 3.2 need to be further confirmed and screened to remove un-
stable and falsely detected extreme points. In addition, a downsampled image is used 
when constructing the Gaussian difference scale space, and it is necessary to determine 
the exact position of the extreme points obtained in the image corresponding to the origi-
nal image. 

3.4. Stable Keypoint Orientation Information Assignment 
The stable extreme point extraction based on different scale spaces ensures the scale-

invariant characteristics. Whereas the distribution of the direction information of the key 
points, that is, the gradient of the extreme point, ensures the angular invariance and rota-
tion invariance of the key points to the image. Define L(x, y) as the original image space 
function, with the gradient magnitude of any key point being shown in formula (2), and 
the gradient direction in formula (3). 

2 2( , ) ( ( 1, ) ( 1, )) ( , 1) ( , 1)( )m x y L x y L x y L x y L x y= + − − + + − − , (2)

1 ( , 1) ( , 1)( , ) ( )
( 1, ) ( 1, )
L x y L x yx y tan
L x y L x y

θ − + − −=
+ − − . 

(3)

The direction of the key point is obtained through the gradient direction histogram. 
Firstly, the gradient direction of all pixels in the neighborhood of the key point is calcu-
lated with 10° being used as a unit direction interval for classification. Secondly, the num-
ber of key points that fall within each direction interval is accumulated and represented 
as a gradient direction histogram. Finally, the direction indicated by the maximum value 
of the longitudinal coordinate in the histogram is assigned to the key point as its main 
direction, and the direction with the number of key points equivalent to 80% of the peak 
value is utilized as the auxiliary direction of the key point [16–18]. The application of aux-
iliary directions can improve the robustness of the algorithm and help stabilize feature 
matching. 

3.5. Description of Key Points 
The key point description is the expression of the key point in mathematical lan-

guage, which is a important step in realizing the matching of image feature points. It de-
scribes the key point and the surrounding pixels that contribute to it. The pixel area to be 
solved is first divided into blocks, and the gradient histogram of the corresponding block 
is then calculated to generate the direction vector. Therefore, the image information is 
expressed in an abstract form. As is shown in Figure 3, the gradient value of each block of 
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pixels is Gaussian weighted to obtain eight orientations through which a 32-dimensional 
vector can be generated to be utilized as the mathematical expression of the key point. 
Experiments show that, for each key point, using a 128-dimensional vector descriptor to 
represent the key point can achieve the best effect. 

 
Figure 3. Description of key points: (a) image gradients around key points; (b) keypoint de-
scriptors. 

3.6. Feature Matching 
After extracting the image features, it is necessary to perform feature matching with 

the pre-stored feature point set of the charging port to complete the identification of the 
charging port. Fast Library for Approximate Nearest Neighbors (FLANN) is a collection 
of nearest neighbor search algorithms for high-dimensional features in large data sets, 
optimizing the nearest neighbor search algorithms and high-dimensional features in large 
data sets. The FLANN matching algorithm records the feature points of the target image 
and the image to be matched, according to which a feature vector is constructed. By com-
paring and filtering the feature vectors, a mapping set of matching points is obtained. 
When using the FLANN matching algorithm, it is necessary to select an appropriate near-
est neighbor search algorithm, such as random k-d tree algorithm, priority search k-means 
tree algorithm, hierarchical clustering tree, etc., as well as the number of recursive travers-
als. The more traversal times, the more accurate the results, but the longer the correspond-
ing search time. Therefore, it is necessary to optimize and reasonably select the parameters 
[19]. 

4. Binocular Ranging Algorithm 
According to the parallax theory, binocular vision positioning is based on the geo-

metric relationship between the camera plane and the object to be recognized. The three-
dimensional position information of the object is obtained through “feature matching” 
and “triangulation principle”. In order to reduce the computational load and appropri-
ately ease the matching difficulty, the images captured by the binocular camera need to 
be calibrated in the epipolar direction, making it an ideal binocular vision system. 
Through the stereo multi-dimensional matching technology, the correspondence between 
the points of the left and right images is determined to obtain the parallax, and then the 
depth and three-dimensional information of the image to be recognized is obtained ac-
cording to the projection model. In general, stereo matching has always been a critical, yet 
difficult, question in stereo vision technology due to factors such as distortion, noise, spec-
ular reflection, and projection reduction. 

The stereo matching method usually consists of four processes: the calculation of the 
matching cost, the aggregation of the cost, the acquisition of the disparity, and the refine-
ment of the disparity. Among these steps, the calculation of the matching cost is the basis 
of the whole algorithm, which is the grayscale similarity detection under different paral-
laxes. Common detection indicators include the square or absolute value of the grayscale 
difference, corresponding to the different cost aggregation algorithms are adopted. After 
the matching costs are added, the disparity calculation of the local algorithm selects the 
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minimum matching cost within a certain range as the matching point, while the global 
algorithm directly calculates the original matching cost to obtain the minimum value of 
the evaluation function. In addition, for some occasions with high-precision requirements, 
parallax refinement processing, such as image filtering, segmentation, and matching cost 
curve fitting, is also required. 

SGM, known as semi-global matching algorithm, is represented modularly as the 
semi-global block matching (i.e., SGBM) in OpenCV. In the algorithm, the difference map 
is constructed by selecting the difference of the pixel points, and the global cost function, 
which is related to the difference map, is set and minimized to solve the optimal difference 
of pixels [20]. The effect of SGBM stereo matching is better than that of local algorithms, 
but at the same time more complicated. The specific process of the algorithm is as follows: 

(1) Preprocessing: 
Step1: Use the horizontal Sobel operator for image processing. 
Step2: Map the image pixels into a new image. 

(2) Cost calculation: 
Step3: The gradient cost of the preprocessed image is obtained by sampling method. 
Step4: The SAD cost of the original image is obtained based on sampling method, 

and is superimposed with the gradient cost. 

(3) Dynamic programming: 
Step5: Establish a global Markov energy equation, and superimpose the full path in-

formation to calculate the pixel matching cost. 
Step6: Add the multi-directional matching cost to obtain the total matching cost. 

(4) Postprocessing: 
Step7: Uniqueness detection. 
Step8: Sub-pixel interpolation. 
Step9: Consistency detection of the left and right images. 

The SGBM algorithm attempts to establish a global Markov energy equation through 
the constraints of one-dimensional paths in multiple directions on the image. The final 
matching cost of each pixel is the superposition of all path information, and the disparity 
selection of each pixel is simply decided by WTA (Winner Takes All). The energy is accu-
mulated in each direction according to the idea of dynamic programming, and then the 
matching costs in each direction are added to obtain the total matching cost, as shown in 
formula (4): 

min max

min max

r

r r 1 r,...,

r 2,...,

( , )
( , ) ( , ) min ( , 1) min ( , )

min ( , )
i d d

i d d

L p r d
L p d c p d L p r d p L p r i

L p r i p
=

=

 −  = + − ± + − − 
 − +    

(4)

In the formula, L is the cost function accumulated by the current path; P1 and P2 are 
the smoothing penalties in the case of small and large differences in the disparity between 
the pixel and adjacent points with P1 < P2; the third term is adopted just to eliminate the 
effect caused by the difference in the lengths of each path in different directions. Further-
more, the total matching cost is obtained by adding up the matching costs in all r direc-
tions. The penalty coefficient controls the smoothness of the disparity map; the larger the 
P2, the smoother the disparity map. 

5. Experimental Verification 
In order to verify the feasibility and effectiveness of the proposed feature recognition 

and depth calculation of charging port image based on the SIFT algorithm and the SGBM 
algorithm, the image feature recognition experiment and binocular ranging experiment 
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were carried out in turn. The binocular camera model DUAL-200M-030T160 is used in the 
experiment. Before acquiring the image of the charging port, the binocular camera needs 
to be calibrated and corrected first. 

5.1. Camera Calibration and Stereo Correction Experiment 
Considering factors such as calibration cost, accuracy, and robustness, the “Zhang’s 

Calibration” method was selected to calibrate the binocular camera used in the project. 
First, a checkerboard is printed and stuck on the plane as a calibrator. Second, the orien-
tation of the calibrator or camera is adjusted to obtain six pairs of calibration board pic-
tures taken by left and right lenses respectively. Finally, the pictures are sent to the camera 
calibrator calibration tool in MATLAB, from which the checkerboard corner points are 
extracted to estimate five internal parameters and six external parameters in the ideal dis-
tortion-free situation. Then, the actual distortion coefficient is further estimated using the 
least squares method for distortion correction (Figure 4) and stereo correction (Figure 5). 
After calibration and stereo correction of the camera, relevant experiments such as image 
feature extraction based on SIFT and feature matching can be carried out. 

 
Figure 4. Checkerboard before and after distortion correction: (a) Before distortion correction; (b) 
After distortion correction. 

a b
 

Figure 5. Checkerboard before and after stereo correction processing: (a) Before stereo correction; 
(b) After stereo correction. 

5.2. Experiments on Image Retrieving and Key Point Extraction 
5.2.1. Image Preprocessing 

The charging pile is generally set outdoors with a strong magnetic and electric scene, 
in which environment the image obtained by the camera will inevitably contain noise. 
Therefore, image filtering preprocessing is required to suppress the noise of the image 
while retaining the as many details of the image as possible to ensure the smooth extrac-
tion of image features. The commonly used filtering algorithms include mean filtering, 
median filtering, and Gaussian filtering. Performance comparison of the filtering methods 
is shown in Table 1, among which median filtering has the best effect on processing the 
noise of the charging port image and is adopted in this experiment. Figure 6 shows the 
feature points of filtering processed images. 
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(b)

(c)

(a)

(d)  
Figure 6. Feature points of filtering processed image: (a) before filtering; (b) by mean filtering; (c) 
by median filtering; (d) by Gaussian filtering. 

Table 1. Performance comparison of filtering methods. 

Approach 
Feature Points  

Extraction Amount of Noise 
The Influence of Noise on Feature 

Point Extraction 

original image Extract a large number 
of feature points 

A lot 
The interference is very large, and a 
large number of noise points are ex-

tracted 

mean filtering 
Extract many feature 

points A lot, some being obvious 
The interference is large, and more 

noise points are extracted 

median filtering 
Extract a large number 

of feature points 
Very little, some not obvi-

ous 
Less interference, a small number of 

noise points are extracted 

Gaussian filtering 
Extract a large number 

of feature points A lot, some being obvious 
The interference is large, and more 

noise points are extracted 

5.2.2. Feature Extraction and Matching of Image 
The image features of the charging port are extracted utilizing the SIFT algorithm in 

OpenCV. In order to enhance the robustness of feature matching, each key point is de-
scribed by 16 seed points, generating 128 data points, which is a 128-dimensional SIFT 
feature vector that is not affected by scale changes and geometric deformations is finally 
formed. Further, normalizing the lengths removes the effect of lighting changes. The pa-
rameter settings are shown in Table 2. 

Table 2. Parameters of SIFT algorithm. 

Parameter  Meaning Value 
nOctaveLayers The number of levels in each group in the pyramid 3 

contrastThreshold Threshold for filtering out bad feature points 0.04 
edgeThreshold Threshold to filter out edge effects 10 
double sigma Gaussian filter coefficient of image in layer 0 of the pyramid 1.6 
K(FLANN) Top K points with the best match that the KNN algorithm returns  1 

After the SIFT feature vector is generated, the Euclidean distance method is used as 
the similarity criterion for key points. In order to exclude the key points with no matching 
relationship caused by background confusion or occlusion, a machine learning algorithm, 
K-nearest neighbor (KNN), is used to compare the nearest-neighbor distance and the next 
nearest neighbor distance. If the ratio is less than the set threshold, it is judged that the 
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matching result is correct. By lowering the threshold, the number of matching points will 
decrease, but it will be more stable. 

Figure 7 shows the features of the charging port extracted using the SIFT algorithm. 
It can be seen from the figure that the SIFT algorithm can extract the feature points of the 
charging port very well. After the extracted features are obtained, the FLANN matcher is 
utilized to perform feature matching between the feature points of charging port in the 
image extracted by SIFT and the pre-stored features, and the feature matching result is 
visualized as shown in Figure 8. It can be seen from the figure that the FLANN matcher 
can more accurately match feature points in the template extracted by SIFT with the target 
feature points. 

 
Figure 7. Feature points extracted by SIFT algorithm. 

 
Figure 8. Feature matching results. 

5.3. Binocular Ranging Experiment 
After feature matching of the charging port is completed, the three-dimensional re-

construction of the charging port needs to be performed to identify the three-dimensional 
coordinates of the charging port. The disparity map can be obtained by using the BM al-
gorithm and the SGBM algorithm. 

5.3.1. Comparison of Parallax Map 
Figure 9a is the disparity map obtained through the SGBM algorithm. The algorithm 

selects the difference of each pixel to form a difference map, related to which the global 
energy function is defined and minimized to obtain the optimal difference of each pixel. 
Figure 9b shows the disparity map calculated by the BM algorithm. The BM algorithm 
divides the frames of the two cameras into many small squares for model matching. By 
moving the small squares to match the small squares in the other image, and by finding 
the pixel positions of different small squares in the other image, combined with the rela-
tionship data of the two cameras (rotation matrix and translation matrix in the calibration 
parameters), the actual depth of the object is calculated to generate the corresponding 
depth map. 

Comparing the disparity maps obtained by the two algorithms, it can be seen that 
the disparity map processed by the SGBM algorithm is more refined than that of the BM 
algorithm, and with a better effect of the stereo matching. Therefore, the SGBM algorithm 
is used in this paper for stereo matching and disparity calculation. 
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Figure 9. Comparison of disparity maps obtained by two algorithms: (a) SGBM algorithm; (b) BM 
algorithm. 

5.3.2. Distance Measurement 
Table 3 shows the results of multiple sets of ranging experiments on charging ports 

using the SGBM algorithm under different light intensities (1st to 6th rows: 20–500 lx; 7th 
row: 100,000 lx). The first six groups of data in the table are the test results of the binocular 
camera under randomly changing light within a small interval, and the last group is the 
test data under overexposure. The first three columns of the test results are the world 
coordinates (unit: mm) of the charging port relative to the left camera, and the three values 
are X (the horizontal direction of the captured image), Y (the vertical direction of the cap-
tured image), and Z (the distance between the camera and the charging port, i.e., depth). 
The fourth column is the actual distance of Z axis (ZA) and the last two columns are the 
calculated overall distance (CD) and the actual overall distance (AD), respectively. It can 
be seen from the table that under the current camera calibration state and slowly changing 
light, when the actual Z distance is 200 mm (the distance is measured by the scale), the 
test distance RMS error between the calculated overall distance and the actual overall dis-
tance of the first six rows is about 1.51 mm (0.755%), which is acceptable in practical ap-
plications (<2% requested). 

It should be noted that the test error of the binocular camera is large under overex-
posure (the last set of data), which is also a disadvantage of binocular visual ranging. 
However, as the charging facilities are generally placed indoors (such as underground 
parking spaces) or are equipped with a rain cover or a roof, which is necessary for the 
automatic charging system of the research, the situation of overexposure can be excluded. 
Figure 10a is the visual ranging result and Figure 10b is the scale ranging image. 

Tables 4 and 5 show the results of multiple sets of ranging experiments on charging 
ports when the Z axis is 250 mm and 300 mm, respectively (under different light intensities 
from 20 lx to 500 lx). XA, YA, and ZA represent the actual distances of corresponding axes 
in each test. |e|I% means the error between the measured value and actual value of axis I 
(I = X, Y, Z) and |e|% is the error between the calculated overall distance (CD) and the 
actual overall distance (AD). Furthermore, the mean error of each axis is illustrated by 
|e|’I% (I = X, Y, Z) in the table below, from which it can be seen that although the errors 
in the X and Y axes are slightly bigger, the overall distance errors |e|’ are 0.71% and 0.60% 
in Tables 4 and 5, respectively, which are still in the acceptable range. 
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Figure 10. Comparison of two measurement results: (a) Identification and distance measurement of 
charging port; (b) scale measurement results. 

Table 3. Binocular camera range results (unit: mm) under (1st, …, 6th rows) random change in light 
in normal range and (7th row) an overexposure condition. 

X Y Z ZA CD AD 

−13.8329 4.0394 198.3303 200 198.8531 201 
−10.3983 −32.383 199.3371 200 202.2179 201 
−20.1614 14.990 198.530 200 200.1133 201 
−13.5946 4.6332 200.5588 200 201.0724 201 
−14.6609 12.3290 201.5883 200 202.4964 201 
−19.4849 47.2711 200.7639 200 207.1722 205 
−57.71264 70.5011 283.3291 200 297.6181 220 

Table 4. Binocular camera range results when Z = 250 (unit: mm). 

X XA |e|X% Y YA |e|Y% Z ZA |e|Z % CD AD |e|% 
47.57 50 4.86 21.44 20 7.20 251.59 250 0.64  256.94  256  0.37  
−8.89 −10 11.10 −78.19 −80 2.26 249.81 250 0.08  261.91  263  0.41  
−42.99 −45 4.47 −68.37 −70 2.33 249.06 250 0.38  261.83  263  0.44  
−80.62 −80 0.78 68.15 70 2.64 249.55 250 0.18  270.96  272  0.38  
44.53 45 1.04 22.82 23 0.78 250.56 250 0.22  255.51  255  0.20  
34.80 35 0.57 15.79 15 5.27 245.23 250 1.91  248.19  253  1.90  
−32.28 −30 7.60 78.66 80 1.68 249.55 250 0.18  263.64  264  0.14  
4.37 5 12.60 3.84 5 23.20 243.23 250 2.71  243.30  250  2.68  
23.26 25 6.96 63.40 60 5.67 247.57 250 0.97  256.62  258  0.53  
−4.27 −5 14.60 63.64 65 2.09 249.06 250 0.38  257.10  258  0.35  
47.80 50 4.40 67.67 70 3.33 249.30 250 0.28  262.71  264  0.49  

Mean error: |e|’X = 6.27% |e|’Y = 5.13% |e|’Z = 0.71% |e|’ = 0.71%. 

Table 5. Binocular camera ranging results when Z=300 (unit: mm). 

X XA |e|X% Y YA |e|Y% Z Z A |e|Z% CD AD |e|% 
−40.01 −40 0.02  45.42 45 0.93  299.11 300 0.30  305.17  306  0.26  
−52.01 −50 4.02  −103.57 −100 3.57  298.25 300 0.58  319.98  320  0.06  
−43.46 −45 3.42  −104.43 −105 0.54  295.39 300 1.54  316.31  321  1.47  
38.83 40 2.93  12.95 15 13.67  297.20 300 0.93  300.01  303  1.00  
31.36 30 4.53  −10.01 −10 0.10  302.60 300 0.87  304.39  302  0.90  
−38.21 −40 4.48  54.23 55 1.40  301.55 300 0.52  308.76  308  0.37  
−14.50 −15 3.33  90.48 90 0.53  301.38 300 0.46  315.00  314  0.46  
40.27 40 0.68  −104.22 −105 0.74  299.25 300 0.25  319.43  320  0.29  
−50.62 −50 1.24  −103.40 −105 1.52  295.08 300 1.64  316.74  322  1.56  
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−41.52 −40 3.80  −12.52 −15 16.53  300.55 300 0.18  303.66  303  0.21  
−7.21 −10 27.9  21.39 20 6.95  301.49 300 0.50  302.33  301  0.50  

Mean error: |e|’X = 5.12% |e|’Y = 4.23% |e|’Z = 0.72% |e|’ = 0.60%. 

6. Conclusions 
In this paper, a low-cost, high-precision identification and positioning method for 

charging ports suitable for engineering applications is proposed. This method adopts the 
binocular visual recognition technology, and deeply collaborative applications of the SIFT 
feature extraction algorithm, the nearest-neighbor search feature matching algorithm, and 
the SGBM disparity calculation method are conducted. Through operations such as cam-
era calibration, scale space construction, spatial extreme point detection, stable key point 
position, direction information allocation, feature matching by machine learning and par-
allax calculation, etc., a charging port identification and positioning method suitable for 
different light intensities, backgrounds, and arbitrary shapes is obtained. In order to verify 
the feasibility of the method, a complete identification and positioning experiment of 
charging port was conducted. Through camera calibration and stereo correction experi-
ments, the SIFT-based image recognition experiment, as well as the binocular ranging ex-
periment, ideal identification of the charging port was obtained, providing a theoretical 
and technical foundation for subsequent research into charging docking driven by a ro-
botic arm. 

7. Patent 
Automatic charging processing method and device for charging pile (No. 

202111595712.9). 
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