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Abstract: The production of biocompatible medical implants is accompanied by technological and 
time costs. As a result, to be used in the human body, such a product must be of the highest quality. 
Assessing the quality of biomedical implants made of titanium alloys is relevant given their impact 
on the health and life of their wearer. In the case of the production of such implants by additive 
technologies, an important task is to evaluate the properties of the alloys from which it is made. The 
modern development of Artificial Intelligence allows replacing traditional assessment methods 
with machine learning methods for such assessment. Existing machine learning methods demon-
strate very low classification accuracy, and existing hybrid systems, although increasing classifica-
tion accuracy, are not sufficient to apply such schemes in practice. The authors improved the hybrid 
PNN-SVM system to solve this problem in this paper. It is based on the combining use of PNN, Ito 
Decomposition, and SVM. The PNN’s summation layer outputs were used as additional attributes 
to an initial dataset. Ito decomposition was used to nonlinearly model relationships between fea-
tures of an extended dataset. Further classification is carried out using SVM with a linear kernel. 
The proposed approach’s modeling is performed based on a real-world dataset using the smart web 
service designed by the authors. Experimentally found an increase in the classification accuracy by 
6% of the proposed system compared to existing ones. It makes it possible to use it in practice. 
Designed smart web service, in which the authors implemented both improved and existing hybrid 
classification schemes allows to quickly, easily, and without high qualification of the user to imple-
ment and explore in more detail chosen classification scheme when classification tasks in various 
fields of industry. 

Keywords: smart technologies; web service; modified PNN; SVM; PNN-SVM scheme; small data 
approach; machine learning; medical manufacturing; medical implants 
 

1. Introduction 
It is known that the method of powder metallurgy is one of the best ways to obtain 

products from pure metals and alloys based on them [1]. According to a pre-developed 
algorithm, the corresponding microstructure can be constructed (design) [2]. It considers 
the size and quantitative ratio of phases, the proportion of pores of a specific size, their 
shape, and the nature of the distribution of the cross-section of the product. Thus, the 
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functional properties of products from these alloys can also be predicted. Intensive re-
search is underway in this direction [3–5], which indicates the relevance of the aim set in 
this paper. It is primarily due to the biofunctionalization of titanium alloys due to the 
unique set of corrosion-mechanical properties compared to alternative biomaterials such 
as polymers and ceramics. 

Therefore, one of the most critical stages of powder metallurgy is making powders, 
their machining, alloying, heat, or chemical treatment [6]. It makes it possible to control 
the shape and size of the powder particles, which directly determines their value. The 
particles’ size and shape in the powder affect the number and size of the macropores 
formed during pressing [7,8]. The decrease in porosity with decreasing powder size is 
determined by the surface energy level per unit volume. A higher energy level character-
izes smaller particles with a high specific surface area, and therefore they sinter better. 
The porosity during the sintering of spherical particles is about 50%, and the shape of the 
pores formed in this case is non-spherical [5,9]. Thus, the use of powdered titanium alloys 
with a particular morphology of the location of the pores is based on the principle of struc-
tural homogeneity, which ensures a uniform distribution of pores of the same size and 
shape [10,11]. 

Creating a multifactorial process of microstructure design of biocompatible materials 
should consider changes in material properties (corrosion resistance, adhesive strength, 
levels of passivation with bone tissue, etc.) depending on their structure. This became 
possible due to precise studies of titanium powder alloys of different alloying systems [10] 
and modern neural network modeling methods [12]. However, traditional research meth-
ods of powder alloys require large material resources [13], and the use of the existing ma-
chine learning methods [14] does not provide sufficient accuracy for their use in industrial 
systems. 

In addition, many problems accompany the use of artificial intelligence tools by ma-
terials scientists. It includes the lack of basic skills in data preprocessing and data analysis; 
lack of the necessary qualification when working with machine learning methods for the 
development, configuration, and use of artificial intelligence tools in solving applied 
problems of Materials Science, etc. 

Therefore, this paper aims are to improve the hybrid intelligent diagnostic system, 
which would increase the accuracy of work when solving the Ti-based alloy’s quality eval-
uation task for medical implants manufacturing, as well as develop a simple, intuitive and 
fast smart web service of the quality assessment of sintered alloys for the manufacture of 
biomedical products. 

The main scientific results of this paper are the following: 
• we have generalized the approach to preprocessing small-sized and middle-sized 

datasets for further use by an arbitrary classifier. It is based on the different use of 
the output signals of the summation layer of the modified version of the Probabilistic 
Neural Network (PNN), the outputs of which form a complete system of events; 

• we have improved the hybrid PNN-SVM system by additional modeling the rela-
tionships between all attributes of the extended dataset by PNN summation layer 
outputs based on the Ito decomposition; 

• we have developed a smart web service for Ti-based alloy’s quality evaluation for 
medical implant manufacturing which is based on different options for prepro-
cessing a given dataset using the outputs of a PNN’s summation layer with subse-
quent analysis of the obtained dataset by the SVM classifier. 
The practical significance of each of the above scientific results obtained during this 

study, as well as the possibility of their further use, can be described as follows: 
• The modified variant of realization of a PNN provides an increase in classification 

accuracy compared to the basic variant of realization of this ANN. In addition, the 
use of the neural network’s summation layer outputs provides the possibility of fur-
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ther use of the obtained set of probabilities belonging to each class of the task to re-
place the initial inputs of the problem (reduce dimension) or expand the attributes of 
the initial dataset to build comprehensive diagnostic systems; 

• advanced hybrid PNN-SVM system provides a significant increase in classification 
accuracy compared to both existing and single models, which form it when solving 
the task of predicting the properties of the material for the manufacture of biocom-
patible titanium implants for various applications; 

• designed smart web-service of Ti-based alloy’s quality evaluation for medical im-
plant manufacturing implements three different data mining options based on PNN-
SVM classifier and provides flexibility, high accuracy, and high speed, which signif-
icantly reduces human, material, and time resources when solving the stated prob-
lem. 
The structure of the paper is as follows: in Section 2, an overview and critical analysis 

of existing approaches are conducted. Section 3 is devoted to a detailed description of the 
improved hybrid PNN-SVM system, algorithms for its training and application, and the 
developed smart web service. Section 4 presents the results of experimental studies on the 
accuracy of all hybrid systems implemented in the smart web service to solve the stated 
task. The fifth section compares the improved system’s results with existing ones and de-
scribes its advantages and disadvantages. 

2. State-of-the-Arts 
The modern production of biomedical implants, in particular from titanium alloy 

powders, is based on the development of additive technologies. Such implants have many 
advantages [15], but studying the properties of alloys sintered as a result of 3D printing is 
an urgent task [16,17]. They affect the biocompatibility and other essential characteristics 
of the product from such alloys, which is vital for the non-rejection of the implant by the 
human body during operation [18]. 

Experimental studies by traditional methods are pretty common in the scientific lit-
erature [19–23]. However, they require a lot of material resources to purchase powders, 
human and time resources for their processing, expensive equipment for their research 
and analysis, and so on. The modern development of Data-driven Materials Science pro-
vides an opportunity to use artificial intelligence tools to solve such tasks. It is made pos-
sible by the large amount of data accumulated over the years that can be analyzed. One 
of them is to predict the properties of titanium alloy before it is sintered by 3D printing. 
This section of the paper is devoted to reviewing and analyzing existing works that use 
machine learning methodology [24] to solve the stated task. 

In [25], the principles of creating expert systems that can accumulate expert 
knowledge to solve complex tasks in powder metallurgy are considered. In particular, the 
authors consider the basic principles of using artificial neural networks for solving the 
design, materials, and process optimization tasks in powder metallurgy. In [14] considers 
the effectiveness of traditional machine learning methods (Logistic Regression, AdaBoost, 
SVM, SGD, MLP) to solve the task of predicting the properties of titanium alloys. Experi-
mentally, it has been established that classical machine learning methods do not provide 
high accuracy. The highest accuracy was obtained for the SVM with rbf-kernel. It reaches 
76%. This result is explained by the features of this algorithm and the dimension of the 
processed dataset (small data). However, this result is not satisfactory for using this meth-
odology in practice. 

In [26], the problem of powder selection and process parameters for Powder Metal-
lurgy was investigated. The authors used an apparatus of artificial neural networks, 
which provided much higher accuracy compared to statistical simulations. The input pa-
rameters of the neural network during the powder selection task’s solution were only the 
powder’s mechanical properties. However, such powders are characterized by many 
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other critical properties that must be taken into account by the artificial intelligence model 
to obtain satisfactory results. 

In [27], the problem of obtaining high-quality powders of the set sizes was solved. To 
solve it, the authors used an approach based on Bayesian optimization [28]. The accuracy 
of determining the number of parameters of the process of obtaining powders reached 
77%, which is satisfactory when solving such a task. However, its increase will signifi-
cantly improve the quality of powder alloys for manufacturing various products. 

In [29], the collection and preliminary processing of data of titanium alloy powders 
were performed. Each vector of the resulting set was marked. Four classes of Ti-based 
alloys conformity are allocated. To solve the Ti-based alloys classification task, the authors 
used a Probabilistic Neural Network. This type of Artificial Neural Network (Figure 1) 
does not require implementing the training procedure and has several advantages when 
processing short datasets. 

 
Figure 1. Topology of the classical PNN. 

The authors obtained a classification accuracy of 80%. It is much higher than the ac-
curacy of the classical machine learning methods from [14]. However, it is not sufficient 
to use the proposed approach in practice. One of the reasons may be that the authors did 
not select the optimal value of the smooth factor. Since the importance of this parameter 
significantly affects the accuracy of the PNN. 

The authors [29] used the feedforward neural network approach to predict material 
properties. They perform the feature selection procedure and use this neural network type 
to solve prediction tasks based on a significantly reduced dimension preprocessed da-
taset. The advantage of this step is to increase the prediction accuracy and, in part, the 
speed of the training procedure. However, the iterative nature of the training algorithm 
requires significant time to implement this model. 

In [12], the authors solved the task of predicting the properties of titanium alloys 
using a hybrid scheme. It involves a combination of PNN and machine learning algo-
rithms. This approach is due to the very low accuracy of classification using existing ma-
chine learning methods [14]. One of the reasons for this is that the dataset used contains 
many independent attributes that can reduce the accuracy of the classifier [30]. Therefore, 
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the authors proposed an approach to reduce data dimensionality with their subsequent 
classification. The paper’s main idea is to use the Probabilistic Neural Network as a tool 
for data preprocessing, mainly to reduce the dimension of the input data space of the task. 
In this case, it was implemented through the outputs of the summation layer of the PNN. 
It forms a vector of probabilities of belonging of each observation to each of the predefined 
classes of the task. Thus, the study’s main goal was to transform the vectors of the entire 
dataset and replace the original dataset with the resulting dataset. Further classification 
based on the new dataset was performed using Logistic Regression. The flowchart of the 
proposed approach is shown in Figure 2 [12]. 

 
Figure 2. Flowchart of the PNN-Logit system that used PNN-based dimensionality reduction. 

As a result of experimental research, the authors found that the classification based 
on the initial and modified datasets differs significantly. In particular, in the first case, the 
accuracy was close to 64% (logit classifier) and 88% (classical PNN classifier), and in the 
second—90% (PNN + logit classifier). That is, the proposed hybrid PNN-Logit scheme 
provided an increase in accuracy by 24% compared to the logit classifier and an increase 
of 2% compared to the classical PNN classifier 

The advantage of this approach, in addition to a significant increase in accuracy, is a 
significantly smaller dimension of the input data space required for the effective operation 
of the classifier based on machine learning [31]. However, if there are a small number of 
predefined classes of the task (e.g., 2 or 3), the probability vector of each class will contain 
a small number of elements (e.g., 2 or 3). It may undermine the proposed approach’s ef-
fectiveness, particularly accuracy. 

To increase the hybrid system’s accuracy for intellectual data analysis of the problem 
with a few labeled classes, the authors in [12] proposed a modification of this approach. 
The modified PNN-Logit schema also uses a PNN-based preprocessing procedure. How-
ever, the main difference of this scheme was the nonlinear expansion of the input data 
space instead of reducing the dimensionality, as in the previous case. The method was to 
use the outputs of the PNN summation layer to replace the initial dataset and further 
expand the new dataset space using Ito decomposition [32]. Further classification of the 
dataset expanded in this way was carried out using Logistic Regression. The flowchart of 
the proposed approach is shown in Figure 3 [12]. 

Ito decomposition (Kolmogorov-Gabor Polynomial) is increasingly used to approxi-
mate nonlinear dependences with high accuracy [33–35]. For the classification problem, 
such an approach is substantiated by Cover’s theorem [36]. It was the main reason for its 
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use to modify the scheme from Figure 2 [37]. Mathematically, Ito decomposition can be 
represented as follows, 

1 , , ,
1 1 1
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1 1
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... ... ...

n n n n n n

n i i i i j i j i j l i j l
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where n is a number of features 1,..., nx x , and k is the Ito decomposition degree, θ  is the 
Ito decomposition coefficient. 

 
Figure 3. Flowchart of the PNN-Ito-Logit system. 

According to experimental studies, a modified approach using Ito decomposition in-
creased accuracy up to 2% (from 90% for the scheme of Figure 2 to 92% for the scheme of 
Figure 3). 

Despite the relatively high accuracy of the two approaches described above, an error 
of 8% is significant, especially in the case of solving the tasks of diagnosing the properties 
of the alloy from which biomedical implants will be made. In addition, in the case of a few 
labeled classes, particularly for a two-class problem, they will not be as effective because 
the actual classification is based on PNN-derived probabilities (only two attributes). 

The authors of [38] investigate the problem of machine learning methods processing 
short sets of data in the Materials Science domain. The authors proposed an intuitive 
scheme to expand the input data space of the problem to improve the prediction accuracy. 
It consists of adding to the initial dataset additional attributes that are essentially a “rough 
estimate” of the material’s properties. This approach is also based on Cover’s theorem and 
should increase the accuracy of classifiers or regressors. The authors have shown a signif-
icant increase in the accuracy of the proposed method compared to existing ones. How-
ever, the main problem here is the need for a “rough assessment” of the material’s prop-
erties as a scheme to expand the space of input features of a given dataset. An expert 
should do it. Therefore, in such a model appears a human factor. Secondly, the expert’s 
opinion may be subjective, which will significantly affect the data in the form of outliers 
or anomalies—and consequently, the accuracy of the machine learning method. Third, for 
medium-sized datasets, such an approach will require significant time and human re-
sources in the form of expert work on each vector of the specified dataset. 

To avoid such shortcomings, Ref. [39] developed a new smart system. It is also based 
on PNN summation layer outputs, but the fundamental difference here is that they are 
included as additional features to the initial dataset. The dataset expanded in this way is 
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fed to the selected classifier. The flowchart of the proposed approach is shown in Figure 
4 [39]. 

 
Figure 4. Flowchart of the PNN-SVM system.  

In [39], SVM was used by the authors as a classifier. This machine learning algorithm 
demonstrates the highest accuracy of existing machine learning methods to solve the 
stated task [13]; allows the process of short datasets efficiently, and provides a high-speed 
training process. In the case of creating a hybrid system, where the element is a neural 
network without training, the latter factor plays an essential role in developing an algo-
rithm for learning the entire hybrid scheme. 

Experimental studies were based on SVM with rbf-kernel. This approach for nonlin-
ear input expansion significantly increases the classification accuracy. The results showed 
that the proposed scheme provides a 15% higher accuracy (91%) than a single SVM with 
rbf-kernel (74%). However, this scheme did not increase accuracy compared to the scheme 
in Figure 2. 

This paper proposed an advanced PNN-SVM smart system that will provide the best 
classification accuracy. In addition, the paper proposed a user-friendly smart web service 
that implements all of the above methods. 

3. Materials and Methods 
In the previous section, we summarized existing research on the development of in-

telligent systems of Ti-based alloy’s quality evaluation for medical implant manufactur-
ing. Most of them are based on various approaches to preprocessing small-sized and mid-
dle-sized datasets based on PNN outputs. 

The use of PNN is explained by the fact that this ANN provides the ability to obtain 
the output signal in the form of the value of the class to which the current observation 
belongs. In addition, PNN allows acquiring a set of probabilities belonging to each of the 
predefined classes of the task. Such signals are formed in the PNN summation layer. The 
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latter advantages provide the possibility of comprehensive preprocessing of medical da-
tasets to reduce the dimensionality or expand the space of input data of the stated task. 
As shown above, both approaches are justified, particularly in improving the accuracy of 
the work compared to the basic option of using PNN in the classification tasks. 

Other advantages of PNN include the lack of training procedure as such, high speed 
when processing small-sized and middle-sized datasets, high efficiency of processing data 
with outliers, and others [40]. They provided a relatively widespread use of these neural 
networks in biology and medicine [41]. 

Let us consider the realization of PNN and its modification in more detail. 

3.1. Modified PNN 
Lets assume that the number of vectors equal to represents the sample of tabular data 

N . Each i-th vector ix  ( 1, )i N=  belongs to one of the K  classes. Accordingly, the vec-
tors 

kix  from N  will belong to the k -th class, where 1,k K= . In addition, denote the 

current vector as px . 
To implement the PNN, it is necessary to perform several following steps: 

1. Calculate the Euclidean distances , kp id  from the current vector px  to each vector of 

a given dataset , ( 1, )
ki kx i N= , which belong to the corresponding k -th class 

( )1,k K=  according to the formula: 

( )2,
1

k k

k

N

p i i p
i

d x x
=

= −  (2) 

2. Calculate Gaussian functions , kp iϕ  from , kp id  according to the formula: 

2
,

, 2exp( )k
k

p i
p i

d
ϕ

σ
= − , (3) 

where σ  is the scope parameter of the Gaussian function (smooth factor). It should be 
noted that this is the only PNN parameter to be configured for each specific task. 

3. Calculate the probabilities of belonging of the px  vector to each predefined classes 
, 1,k k K=  based on (3) according to the expression: 

,
1( )

k

k
k

N

p i
i

k

P k
N

ϕ
==


. (4) 

The main problem of expression (4) is that the sum of the obtained probabilities of 
belonging to each of the , 1,k k K=  classes of the task is not equal to 1. This can signifi-
cantly affect the accuracy of complex diagnostic systems that include PNN as one of the 
elements. 

To avoid this shortcoming, we propose to use a different one approach to calculate 
the probabilities ( )P k  of the current vector px  belonging to each of the predefined clas-
ses , 1,k k K=  of the task: 

,
1

,
1 1
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k
k
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p i
k i
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=

= =
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, (5) 
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Thus, we obtain a different from the basic algorithm of the formation of the output 
signals of the summation layer PNN, which will form for the current vector px  the vector 
of probabilities belonging to each of the , 1,k k K=  classes of the task. The sum of these 
probabilities in each new vector will be equal to 1. That is, (5) describes the formation of a 
complete system of events. This approach will increase the accuracy of the proposed ver-
sion of the PNN implementation, which will increase the accuracy of the complex system 
as a whole, which is based on the use of this neural network without training. 

The scheme of realization of both variants of PNN is given in Figure 5 

(a) (b) 

Figure 5. Probabilistic Neural Network: (a) classical version; (b) a modified version. 

3.2. Improved PNN-SVM System 
This paper proposes improving the PNN-SVM system, demonstrating its effective-

ness in solving Ti-based alloy’s quality evaluation task for medical implant manufactur-
ing. The basic version of the system is presented in [39]. 

The existing system is based on the principle of preprocessing data using PNN and 
expanding the initial dataset with the PNN-based outputs to improve the accuracy of solv-
ing the classification task by the SVM method. The use of SVM here is explained by the 
highest accuracy of this method among the classifiers based on machine learning methods 
that are studied in [14]. The proposed system is based on additional modeling of relation-
ships between all attributes of the extended due to the outputs of the PNN summation 
layer dataset based on the use of the second-degree Ito decomposition. Theoretically, the 
use of such an approach is fully justified by Cover’s theorem on the separation of images 
[42]. 

A flowchart of the improved smart PNN-SVM system is shown in Figure 6. 
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Figure 6. Flowchart of the improved PNN-SVM smart system. 

Since PNN does not require a training procedure, but it is necessary to implement 
SVM, the proposed smart system based on a combination of these two machine learning 
methods provides procedures for both training and application. 

The training procedure for the improved smart system is as follows: 
• prepare and apply a modified PNN to obtain a set of probabilities of belonging of 

each observation from the training set to each of the defined classes of the stated task; 
• form a new set of training data by combining the initial dataset with the correspond-

ing probability vectors obtained in the previous step; 
• perform nonlinear expansion of a new dataset using the second-degree Ito decompo-

sition according to (1); 
• perform SVM-based linear classifier training using the extended training dataset in 

the previous step. 
Accordingly, the main steps of the testing procedure for a pre-trained improved 

smart system are as follows: 
• apply the prepared PNN to the current vector to obtain the vector of probabilities of 

its belonging to each of the defined classes of the stated task; 
• form a new vector by combining the current vector with the probability vector ob-

tained in the previous step; 
• perform the second-degree Ito decomposition on the extended vector to model the 

relationships between the input attributes of a given vector and the probabilities of 
its belonging to each of the defined classes of the stated task; 

• perform classification using pre-trained SVM with the linear kernel; 
• get the result of the system work. 
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3.3. Smart Web-Service 
For developing a smart web service, the authors have selected optimal tools for work-

ing with machine learning [43–46]. Let’s consider the main components of the practical 
implementation of the system. 

The main programming language is Python. Machine learning requires constant data 
processing, and Python has built-in libraries and packages for almost every task [47]. It 
helps machine learning engineers reduce development time and increase productivity 
when working with complex artificial intelligence programs [48]. The following libraries 
were used for development: Scikit-learn; NumPy; Pandas; Matplotlib. 

The logical structure of the system consists of separate modules, the functionality of 
which is combined in the main file of the project, which also implements the user inter-
face—main.py. The implementation of the probabilistic neural network is contained in the 
pnn.py file. 

The file implements the PNN class, which contains several methods for creating and 
working with the network. PNN modifications described in the previous section are also 
implemented here. 

The Streamlit library was used to build the user interface. This library has a wide 
range of interface components and allows the creation of smart web applications for ma-
chine learning and data analysis. The authors have developed a clear, intuitive, and not 
overloaded with details graphical interface, which is shown in Figure 7. 

 
Figure 7. Smart web-service’s user interface. 

The user interface consists of two main areas: 
• Panel for selecting machine learning models and their parameters (Figure 8) 
• The main window for downloading and displaying a dataset, presentation, and vis-

ualization of machine learning models (Figure 9). 
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Figure 8. Panel for selecting machine learning models and their parameters. 
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(a) (b) 

Figure 9. The panel of results of the smart web service: (a) window for downloading and displaying 
the dataset; (b) a window for presenting and visualizing the results of machine learning models. 

To start working with the application, the user should click on the file’s download 
button located in the main window and open the dataset file to be processed, or drag this 
file to the button area. By clicking on the “Show raw data” check box in the left panel, you 
can display the dataset as a table in the main window. 

After downloading the file, a section of work with a PNN will be available on the 
panel, where a drop-down menu with the possibility of selecting the PNN type will be 
presented. Option “Basic” uses a neural network that does not describe a complete system 
of actions, and option “Modified” uses a neural network with a complete system of events. 

Selecting the PNN type (classical and modified) activates the progress bar, showing 
how close the program is to complete the network preparation process. When the indica-
tor is filled with blue, a section will appear with the selection of the classifier, namely: 
“Classifier”—a drop-down menu with different options of classifiers; “Data type”—a 
drop-down menu with data options on which to set the classifier, according to Table 1. 
“Metrics”—a multi-choice drop-down menu, with options for visualization of metrics [49] 
to assess the optimality of the algorithm—confusion matrix, ROC curve, etc. After select-
ing the above parameters, the section for selecting classifier hyperparameters appears. Fi-
nally, a button appears to start the classification and visualization process with user-se-
lected parameters. 

  



Appl. Sci. 2022, 12, 5238 14 of 21 
 

Table 1. The results of the modeling of the improved PNN-SVM smart system. 

Performance Indicator 
Improved PNN-SVM Smart System 

Train Mode Test Mode 
Total accuracy 0.99 0.97 

Precision 0.98 0.97 
Recall 0.99 0.97 

F1-score 0.99 0.97 

4. Modeling and Results 
The multiclass classification task was investigated in this paper. Modeling of the im-

proved PNN-SVM smart system was conducted using the smart web service developed 
by the authors. It is implemented in Python. Among the performance indicators, the au-
thors use well-known indicators: Total accuracy, Precision, Recall, and F1-score [50]. All 
experimental studies were performed using the developed smart web service. 

4.1. Dataset Description 
The improved PNN-SVM smart system modeling was performed using a real-world 

dataset to solve the Ti-based alloy’s quality evaluation task for medical implant manufac-
turing. It was collected at the Materials Science and Materials Engineering Department of 
Lviv Polytechnic National University and placed in a public repository [51]. 

The problem was assigning the observation with 20 attributes to one of the four clas-
ses presented in Figure 10. Each observation’s main classes of attributes should be distin-
guished chemical and phase composition, size and form of parts, polydispersity, and sat-
ellite composition. 

 
Figure 10. Classes of the Ti-based alloy’s quality evaluation task for medical implants manufactur-
ing. 

The training dataset contained 384 observations, and the test dataset had 96 observa-
tions. A more detailed description of the dataset used for modeling can be found at [29]. 

In addition to all of the above, the authors used the second-order Ito decomposition 
(1) to model the relationships between all attributes of a given dataset: 

1 ,
1 1

( ,..., )
n n n

n i i i i j i j
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This approach is explained because the task has 20 attributes and four classes. As a 
result, we obtain 24 attributes for which simulations should be performed using this de-
composition scheme. A significant increase in the degree of Ito decomposition will signif-
icantly affect the system’s operating time, as the input data for the operation of SVM will 
become more and more. In addition, as shown in [12], high degrees of this decomposition 
can provoke overfitting, which will not provide satisfactory results for the smart system 
[52]. 
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4.2. Improved PNN-SVM System Results 
The results of modeling of the improved PNN-SVM smart system from Figure 6 

based on a given dataset are shown in Table 1 
It should be noted that these results were obtained with the optimal value of the 

smooth factor (σ = 0.12) for PNN and SVM with linear kernel. Practical experiments have 
shown that the nonlinear rbf-kernel, which demonstrates the highest accuracy among 
other kernels when using a simple SVM [14], in the proposed system provides signifi-
cantly lower accuracy (93% vs. 97%). This is due to the additional modeling of input data 
before submission to the SVM based on the Ito decomposition, which is provided by the 
improved PNN-SVM system. According to Cover’s theorem [42], nonlinear expansion of 
the input data space, in this case, based on this decomposition type, increases the proba-
bility of correct classification by linear models. That is why the linear kernel for SVM here 
demonstrates the highest accuracy among other kernels 

As can be seen from Table 1, the improved PNN-SVM smart system provides high 
classification accuracy according to all performance indicators. 

4.3. Results of All Other Variants of the Investigated Smart System 
In this paper, also other existing approaches based on PNN are used that are imple-

mented in the designed smart web service, in particular: 
• Classical PNN; 
• Modified PNN; 
• PNN-Logit system from [12] that used PNN-based dimensionality reduction; 
• Modified PNN-Ito-Logit system proposed in [12] that used PNN-based dimension-

ality reduction; 
• PNN-SVM system that used PNN-based dimensionality reduction; 
• Modified PNN-Ito-SVM system that used PNN-based dimensionality reduction; 
• PNN-SVM system proposed in [39]. 

The results of all studied approaches using the developed web service are summa-
rized in Table 2. 

It should be noted that assessing the results of different systems adequately, addi-
tional modeling of PNN-Logit and PNN-Ito-Logit (approaches that used PNN for dimen-
sionality reduction) systems was performed by replacing the Logistic regression with an 
SVM classifier. As a result, Table 2 presents two new systems for comparison, one of 
which demonstrated the highest accuracy among those considered. It indicates the effec-
tiveness of using the SVM in all considered variants of the smart system in solving the 
stated task. 

Table 2. The results of the studied smart systems. 

Investigated Smart System Total Accuracy Precision Recall F1-Score 
Classical PNN 

(σ = 0.04) ** 
0.88 0.84 0.91 0.85 

Modified PNN 
(σ = 0.12) ** 0.90 0.92 0.85 0.88 

PNN-Logit (where PNN used for dimensionality 
reduction) 
(σ = 0.12) ** 

0.90 0.90 0.90 0.90 

PNN-SVM (where PNN used for dimensionality 
reduction) * 
(σ = 0.12) ** 

0.91 0.91 0.91 0.90 

Modified PNN-Ito-Logit (where PNN used for 
dimensionality reduction) 

(σ = 0.12) ** 
0.92 0.92 0.92 0.91 
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Modified PNN-Ito-SVM (where PNN used for 
dimensionality reduction) * 

(σ = 0.12) ** 
0.92 0.93 0.92 0.92 

PNN-SVM system 
(σ = 0.12) ** 

0.91 0.91 0.91 0.90 

* modeling conducted for the existing approaches from [12] that used SVM instead Logit. ** optimal 
value of the smooth factor that provide highest classification accuracy. 

Comparing Tables 1 and 2 shows the highest classification accuracy by using an im-
proved PNN-SVM smart system. 

5. Comparison and Discussion 
The authors compared the performance of the improved version of the PNN-SVM 

system with other systems based on the use of PNN as a tool for data preprocessing. To 
do this, use all the methods described in Section 4.1. 

In addition, the authors compared their work with classical machine learning meth-
ods, in particular: 
1. Logistic Regression Classifier; 
2. SVM with linear kernel Classifier; 
3. SVM with rbf kernel Classifier. 

These methods were chosen because they can be used as optimal classifiers for the 
second part of the improved system. The results of all investigated methods based on the 
Total accuracy indicator are presented in Figure 11. 

 
Figure 11. Total accuracy values for all investigated methods. 

To facilitate the analysis of the results for all the studied methods, the histogram in 
Figure 11 is conditionally divided into three areas. The red area indicates unsatisfactory 
results of applying the machine learning methods for solving the Ti-based alloy’s quality 
evaluation task for medical implant manufacturing. The second is the yellow area, in 
which the combined set of hybrid approaches indicates the permissible level of accuracy 
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of solving the classification task according to [14]. The green bar graph determines the 
highest accuracy when solving the stated task. 

From the results presented in Figure 11 it can state the following: 
1. Classical machine learning methods (red bars of the histogram), both linear and non-

linear, do not provide a satisfactory level of accuracy in solving the multiclass classi-
fication task; 

2. Probabilistic Neural Network without training, as well as its modification, provide 
satisfactory but insufficient accuracy for their practical use; 

3. All considered hybrid intelligent systems provide an increase of accuracy in compar-
ison with the basic classifiers which form them; 

4. Systems where PNN is used to reduce the dimension of the input data space of the 
task provide a slight increase in accuracy, although significantly reduce the duration 
of training procedures for such systems; 

5. PNN-based systems for expanding the input data space of the task increased the ac-
curacy of linear classifiers, which is fully justified by Cover’s theorem. However, high 
enough accuracy is not obtained here; 

6. The highest classification accuracy in solving the stated task is obtained using the 
improved system proposed in this paper. In particular, due to additional modeling 
of the attributes of the extended dataset based on the Ito Decomposition, it was pos-
sible to increase the system’s accuracy by more than 6% compared to the existing 
implementation of the system. 
The last point provides a significant advantage when using the improved system to 

solve the classification tasks. In particular, a classification accuracy of 97% will ensure a 
proper assessment of Ti-based alloy’s quality for the defect-free production of biocompat-
ible titanium implants for various purposes. 

Among the disadvantages of the proposed approach that should be noted is a signif-
icant increase in the duration of the training procedure of the improved system compared 
to the basic option. This is due to the considerable increase in the number of attributes of 
the extended dataset, which is fed to the SVM classifier [53,54]. However, the following 
should be noted here: 
• the improved system is based on preprocessing of data based on an Artificial Neural 

Network without training, which will eliminate this shortcoming in the case of pro-
cessing small-sized and middle-sized datasets [55,56]; 

• a linear SVM is selected as the basic classifier, which is quite fast [57]. The processing 
of nonlinear extended inputs also provides significantly higher classification accu-
racy than other kernels of this method. In addition, the optimal implementations of 
this method, which are laid down in the Scikit-learn library and its was used in this 
paper, provide high performance of this machine learning method; 

• in Materials Science tasks, large datasets are challenging to collect [38,58]. That is why 
combining the above methods will provide high-speed processing of available data. 
In case it is necessary to process large datasets, the authors implemented other ap-

proaches in the designed smart web service, particularly the system based on PNN’s di-
mensionality reduction, which will significantly reduce the computational load and the 
duration of the training procedure by the selected classifier. 

Created smart web service allows you to quickly, easily, and without great qualifica-
tion of the user to implement and explore in more detail the chosen classification scheme 
when solving both the stated and other classification tasks in various industries. 

6. Conclusions 
Evaluating the properties of biocompatible products is an essential task that depends 

on both the health and even the life of the carrier of such products. Modern 3D printing 
technologies provide the opportunity to significantly reduce the costs and the time of pro-
duction of medical implants, in particular from titanium alloys. Avoiding the additional 
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costs of producing a defective material is possible by evaluating its properties before sin-
tering by 3D printing (in particular based on a set of different properties of titanium alloy 
powders). The best option for implementing such an approach is to use artificial intelli-
gence tools. 

Existing machine learning methods provide low accuracy in solving this task. Hybrid 
variants increase classification accuracy, but it is still not sufficient for their use in practice. 
In this paper, the authors have proposed improving the hybrid scheme of multiclass clas-
sification based on the combined use of improved PNN, Ito decomposition, and SVM with 
linear kernel. It is implemented in the form of smart web service. 

The improvement consists of additional modeling of all extended attributes of the 
dataset due to the PNN’s outputs based on the Ito decomposition. According to Cover’s 
theorem, such nonlinear modeling of relationships between attributes of a given dataset 
provides an opportunity to increase the accuracy of linear classification. That is why the 
last step of the improved system is to use SVM with a linear kernel 

The operation of the advanced hybrid PNN-SVM system was modeled using a real-
world dataset to solve the Ti-based alloy’s quality evaluation task for medical implant 
manufacturing. The authors found the high efficiency of the improved version of the sys-
tem. In particular, the level of classification accuracy reaches 97%, which is a significantly 
higher figure (as much as 6%) than all other considered methods. It provides an oppor-
tunity to use this hybrid scheme when solving the stated task. 

Among the shortcomings of the developed system, a significant increase in the dura-
tion of the training procedure should be noted. However, since most materials science 
tasks are characterized by small amounts of data intended for analysis, this shortcoming 
can be ignored. 

Further research will be conducted in the direction of application and study of the 
effectiveness of both the improved scheme and all schemes implemented by the authors 
in the form of smart web services in solving other applied classification tasks. In addition, 
it is planned to use a non-iterative SGTM neural-like structure as a linear classifier (instead 
of SVM with a linear kernel) to decrease the training time and increase the total accuracy 
of the proposed system. 
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