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Abstract: Data mining techniques are useful in discovering hidden knowledge from large databases.
One of its common techniques is sequential rule mining. A sequential rule (SR) helps in finding
all sequential rules that achieved support and confidence threshold for help in prediction. It is an
alternative to sequential pattern mining in that it takes the probability of the following patterns into
account. In this paper, we address the preferable utilization of sequential rule mining algorithms by
applying them to databases with different features for improving the efficiency in different fields of
application. The three compared algorithms are the TRuleGrowth algorithm, which is an extension
sequential rule algorithm of RuleGrowth; the top-k non-redundant sequential rules algorithm (TNS);
and a non-redundant dynamic bit vector (NRD-DBV). The analysis compares the three algorithms
regarding the run time, the number of produced rules, and the used memory to nominate which of
them is best suited in prediction. Additionally, it explores the most suitable applications for each
algorithm to improve the efficiency. The experimental results proved that the performance of the
algorithms appears related to the dataset characteristics. It has been demonstrated that altering
the window size constraint, determining the number of created rules, or changing the value of the
minSup threshold can reduce execution time and control the number of valid rules generated.

Keywords: sequential rule mining; non redundant sequential rules; TRuleGrowth; top-k non
redundant rules; closed sequential patterns

1. Introduction

There is a fundamental issue in extracting useful information from the temporal
relations in large sequence datasets. It helps a user to acquire useful knowledge for making
a prediction. Many methods are emerging for finding the temporal relations in datasets.
One of the foremost popular methods is mining sequential patterns to discover, as often
as possible, patterns in sequence datasets [1,2]. Mining sequential patterns rely on one
measure called support measure. The support measure means the number of presence
items in a dataset. It can be misleading and inadequate for making a prediction. Mining
sequential rules is an extension of sequential patterns mining that addresses the previous
problem by considering additional measures [3,4].

Mining sequential rules take another measure besides the support into consideration,
called the confidence measure, which means that the probability of executing the next
pattern is calculated. There are many challenges for mining sequential rules, such as
classifying similar rules differently. Additionally, some rules have been discovered that lose
their importance when appearing separately. Therefore, particular rules are losing their use
in predicting. All previous reasons impact the generation of a large number of redundant
rules that affect the efficiency of the mining process. Numerous analysts have proposed
upgraded methods of sequential rule mining (SRM) to decrease redundant rules and
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progress the proficiency of these algorithms. SRM is divided into two categories: partially
ordered and standard sequential rules. The proposed enhanced algorithms concentrate on
two directions:

The first type is a common type for mining the sequential rules named standard. It
helps to enhance efficiency through the process of mining. The mining process consists of
two procedures; the first is mining sequential patterns that appear frequently. The second is
producing sequential rules that rely on the first procedure. Therefore, numerous researchers
give consideration to the first procedure to enhance the performance through disposing
of grouping that does not affect the ultimate result. Mining closed sequential patterns
is an example of the previous idea. It helps to produce rules based on more compact
data. In this study, we make a reference to this type with the non-redundant dynamic
bit-vector algorithm.

The second type is the newest type for mining the sequential rules named partially
ordered rules. It helps to enhance efficiency by extending the mining of sequential rules
algorithms by adding constraints or by finding a specified number of the most visit rules
in a database. In the partially ordered mining, there is no arrangement between items
in the prior and posterior sides. The pattern growth approach is applied to discover all
rules incrementally. There are improved algorithms that acknowledge an extra constraint
to enhance the overall performance. The TRuleGrowth algorithm adds a window size
parameter. It makes a difference to decrease the number of rules produced, as it diminishes
the runtime, and diminished disk space is a prerequisite to store generating rules, so that
users are able to analyze the rules in an easy manner. Additionally, we have another
approach to produce non-redundant rules. We find the most frequent rules (the top-k) that
achieved the minConf threshold. Therefore, we have only two parameters, K and minConf.
Like the TNS algorithm, we did not take the minSup into consideration due to the difficulty
of determining the valid values that suit each dataset’s features.

In this paper, we present a broad consider of two sorts of SRM: partially ordered
and standard sequential rules. We study three algorithms named TRuleGrowth, TNS,
and non-redundant with a dynamic bit-vector algorithm. All these algorithms generate
non-redundant rules and we compare the results of their implementation to decide the most
reasonable areas for each of them. We assess the final results according to these criteria:
runtime, number of produced rules, and memory utilization.

2. Literature Review

Numerous research has been suggested to enhance the mining process of sequential
patterns. The primary obstacle in mining sequential patterns is producing unessential
sequential patterns when setting the support measure with a very low value. Mining
the sequential rules is an alternative to sequential patterns that assist the users in having
knowledge of sequence items for making a prediction. It has been found in numerous
zones like electronic learning [5], manufacturing simulation [6], the analysis of customer
behavior [7], and decision systems [8].

The primary algorithm proposed for mining the sequential rules by Mannila and
Verkano is studying the sequence behavior for the prediction process. It helps in finding all
items that occurred as often as possible in a sequence dataset [9]. Then, most research has
been proposed to produce sequential patterns that appear frequently and remove repetitive
rules within the following stage of the mining process. They had to check the database
numerous times to find the support of each itemset that induces minimum complexity and
extra cost like RuleGen algorithm [10]. After that, the researchers have found rules with no
consideration of their arrangement; refer to partially ordered sequential rules (POSR). It
stands up on those items in the predecessor, and forerunner sides are unarranged. Two
primary algorithms for the POSR are named CMRule and CMDeo [11,12]. The CMRule
is the baseline algorithm that expels the temporal information and generates rules that
accomplish the support threshold. It relies on the produced number of sequential rules
that cause ineffectual performance [13]. The second baseline algorithm is CMDeo, which
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acts as more proficient than the CMRule. It discovers all substantial rules size 1 ∗ 1 by
expanding both sides of the rules. To address the previous obstacles, RuleGrowth has been
proposed. It can extend rules amid guarantees as it was necessary for rules in sequence
datasets [14–16].

Various algorithms have been developed based on the prefix tree to realize superior
efficiency. The CNR, IMSR, and MNSR algorithms rely on enhancing the rules by elim-
inating non-redundant rules [17–19]. They sort the sequences according to the support
value ascendancy before producing rules. In this way, it diminishes the scan’s number and
minimizes complexity to o

(
n2).

TRuleGrowth is an extension of RuleGrowth. It has been developed to control the
maximum consecutive items by applying an additional constraint called window size. This
constraint helps to produce much fewer number of rules. So, it enhances the performance
due to diminishing the request space used to store the generated rules [20–23].

The researchers proposed the Top-k sequential rule mining to overcome the problem of
the difficulty of determining the valid minSup value that suits each database features [24,25].
It depends on two parameters: k is the number of rules that users want to generate, and
the minConf that is easy to determine due to user satisfaction. The TopSeqRules is the first
algorithm that addresses the Top-k sequential rule mining. It depends on the same strategy
as the RuleGrowth algorithm. It integrates the two procedures to expand the left and the
right sides of the rule with the general procedure for mining the top-k pattern. Researchers
enhanced many algorithms to reduce disk space and generate interesting sequential rules.
The Top-k non-redundant sequential rule (TNS) utilizes the TopSeqRules for mining the
top-k to eliminate the redundancy on the generated rules [26,27].

A proficient algorithm named non-redundant with dynamic bit-vector has been sug-
gested. It is used to remove unnecessary rules early through utilizing dynamic bit-vector
with pruning techniques, so that it improves the performance by reducing the execution
time and memory utilization [28–30].

3. Methods of Applying Comparative Algorithms

There are two categories for mining the sequential rules. The first category is called
standard sequential rules that discover relations between two patterns that act sequentially.
It depends on two measures, support and confidence, which are selected by the user. It
exists in many algorithms like RuleGen, IMSR (Improved Mining Sequential Rule), and
NRD-DBV (Non-Redundant-Dynamic Bit Vector) algorithm. It produced the result only in
integer’s format, and it proves its efficiency in creating an imperative choice or expectation.
The second category is called POSR, which is the newest type of SRM that discovers
relations between two unarranged item-sets. It does not care about the relations between
the predecessor and forerunner of rules. The POSR is based on the pattern growth approach,
which starts with two items and expands the rules one element at a time recursively. It can
expand the mining process by including extra constraints to improve the performance of
the general rules like the TRuleGrowth algorithm. Therefore, it can control the number of
generated rules, which helps in saving more space and being more specific. The POSR can
also satisfy the user’s desire by producing a predefined number of the rules like the Top-k
algorithm. Each type has its benefits to generate the non-redundant rules. In this paper, we
present the most frequent recent algorithms that help in discovering the non-redundant
rules by applying them to different dataset’s features to reach the best efficiency.

3.1. The Fundamental Operations of the TRuleGrowth Algorithm

The TRuleGrowth algorithm is a type of POSR that does not need to arrange its items.
It is an extension of the RuleGrowth algorithm that proves its efficiency compared to the last
one. It is similar to RuleGrowth based on an approach called pattern growth. It performs
incrementally, begins with two elements, and grows one item at a time by expanding the
right and the left side of the rule. The TRuleGrowth utilizes an extra constraint called
window size to control the number of rules generated. It helps in producing more accurate
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results and saving more space by generating much fewer sequential rules. The value of a
window size constraint can be an obstacle when its value increases. The best solution, in
this case, is using the RuleGrowth algorithm instead of TRuleGrowth to eliminate the high
computations due to emerging large number of rules.

The construction of the TRuleGrowth algorithm is formed by three stages. The primary
stage is transforming the database to the sequential list, and then setting the support value.
The moment stage is creating a rule size 1 ∗ 1 and executing two procedures to extend
the rule on the right and the left sides. The final stage is determining the window size
and the confidence value, and after that, testing the legitimacy of the rules to produce the
non-redundant sequential rules, as shown in Figure 1.
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The TRuleGrowth Application Algorithm

This algorithm begins with scanning the dataset once to discover each item on each
side. At that point, it distinguishes every item achieving the support value threshold to
produce all accurate rules with size 1 ∗ 1. To computing sides (x→z) and sides (z→x), it
filters the dataset to generate the first sequence and calculate each duo of items individually.
Then we compute the support value by partitioning |sides (x→z)|/|s|. If the support
values of the item are not lower than the minSup, then the two strategies have been executed
to grow each side of the rule [14]. We have guaranteed that the value of the sliding window
has applied for all the rules. It saves all events of each item and shows their position by
including that item. For the events of c in the sequence {a,c}, {b,c}, {c}, and {a,b,e} are 1, 2,
and 3. At that point, utilize the hash table for searching each item found before item z and
items found before x in a sequence dataset. It can be done inside a window size parameter,
as appeared in Appendix A Algorithm A1 [22].

The operation of the two procedures is accomplished in the following steps: begin by
establishing a hash table and assign the null value. Then, check the item-set to dispose of
all items that do not accomplish the sliding window predetermined value. If the measure
of ‘hash x’ = size ‘x’, then include each item z ε y ∩ n in the hash table. In case ‘hash
table’ < ‘x’ at the point, contain each item with the position of n as DB ε x ∩ n. At last, if
‘hash y’ = size ‘y’ and size ‘hash x’ = size ‘x’, include side to accessible side (y U {z}→x) for
each item z /∈ y U x that contains ID, to begin with an item of ‘x’ inside window size.

An extra parameter called sliding window can be included which has the following
characteristics:

1. Controlling the number of produced rules, so less space and time is required to search
the desired sequential rules.

2. Reducing the amount of memory space required to store the generated rules by
developing fewer rules. Therefore, it gives the facility to analyze the output to
the user.
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3. Favoring its significance in practical for temporal transactions like analyses data for
shares market.

3.2. The Operation of the Top-k Non-Redundant Sequential Rule (TNS)

The TNS algorithm adopts TopSeqRules to mine the Top-k rules after eliminating
redundancy of sequential rule. It depends on the same search procedure of the RuleGrowth
algorithm. The TopSeqRules has two parameters: the number of rules that is determined
by the user needs (K), and the minConf threshold that also satisfies the user requirements.
It also utilizes three main variables; the first is minSup that is set to initial value = 0 and
raises with regard to the number of rules generated. The second variable is L, which helps
to perform Top-k rules by keeping each item that achieved the threshold value. The third
variable is R having the rule with the maximum support values that helps in choosing the
most candidate rules.

The TNS Algorithm Implementation

The TNS algorithm firstly scans the dataset only once to identify each item, as seen
in Figure 2. It considers an integer parameter K, minConf value, and initializes a value of
minSup with zero. Then it generates a rule recursively by growing the valid rule size 1 ∗ 1.
After that, it performes two procedures to extend the right and the left side of the rule to
generate the Top-k sequential rules. It is followed by removing all redundant rules which
means that if ra is equal to rb with the same support, we will absorb ra. Then it verifies the
result by setting parameter delta ∆ with a value higher than the all removed rules, so the
Top-k non-redundant rules will be generated as shown in Algorithm A2 [24].
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Applying the TNS algorithm solves the trouble of generating either a large number of
sequential rules or fewer numbers which may lose valuable information. It also addresses
the challenge of generating redundant sequential rules. It has more advantages as:

1. It saves more time by depending on another parameter to generate the wanted number
of sequential rules. Therefore, it does not rely on minSup value that is difficult to be
determined regarding database features.

2. Removes the redundant rules and verifies the result by the delta parameter that was
set higher than the removed sequential rules.

3.3. The Operation of the Non-Redundant with Dynamic Bit Vector Algorithm

The main idea of the NRD-DBV algorithm is to mine more compact data without
losing any information or distorting the final result. It is based on mining closed patterns
that depend on a vertical format. It performs efficiently in large datasets since it gener-
ates a smaller number of rules. Additionally, it utilizes pruning techniques to enhance
overall performance.
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The NRD-DBV Application Algorithm

The implementation of the NRD-DBV is performed in the following steps, as shown
in Figure 3:

1. Transforming the dataset to a bit vector by removing zeroes from the front and the end
of the sequence. It is followed by using a dynamic bit vector structure to determine
the position of each item.

2. Setting the support threshold to find all items that achieve the threshold value and
storing them in a prefix tree structure as the parent node of the tree.

3. Performing the check downward closer checking means removing all prefixes that
do not expand the rule. For instance, item c ordinarily happens after item b with a
similar support value of b; at that point c ought to be ingested such as A(BC) = 60%
and A(BC)DE = 60%. By applying this approach, we will remove sequence A (BC).

4. Setting all found frequent sequences as a sub-node and analyzing it, whether prefix
generator or closed patterns.

5. Applying the sequence extension technique for every sub-node by applying two meth-
ods. The first is called item extension. It expands the patterns by including new items
at the final item-set by regarding that item as larger than the last element of the item-
set. The second one is called a sequence extension item-set expansion by inserting the
item as a new item-set after the final existing, as displayed in Algorithms A3 and A4.

6. Producing the NRD-DVB by applying a condition to halt producing rules that do not

achieve the confidence threshold. This is indicated as, in the case ((
sup(Sequence o f Sn)
sup(Sequence o f pre) )

≥ mincon f ), the point nr-SeqRule, even with nr-SeqRule union with R. Additionally,
cease to produce the rules for the sub-nodes. Conjointly, cease producing the rules
when support (n1) < support (n) and if sup(n1)

sup(n2) < minConf, then sup(n2)
sup(n) < minConf.
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The NRD-DVB algorithm helps to compact the dataset by eliminating any super
sequence with a similar support value to the root. Therefore, it is more proficient, as:

1. It diminishes the memory utilization, and the runtime demanded to mine large
sequence datasets.

2. Furthermore, it embraces the prefix tree to store all sequences that produce more
proficient non-redundant rules.
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4. Experiments and Results

Experiments were processed to assess the runtime, memory usage for each algorithm,
and the number of generated rules. Additionally, the influence of the minSup on both NRD-
DBV and TRuleGrowth algorithms was measured and the TNS algorithm was compared
with the other two algorithms after producing the same number of rules for each of them.
Three algorithms were implemented on a PC with an Intel Core i5 2.3 GHz and free RAM
running with 6.58 GB. We utilized Python language encoded on Jet Brains PyCharm.

Four real databases with diverse characteristics were executed to assess the results
obtained from SPMF. The first dataset is named BMSwebview1 (Gazelle) [32] which consists
of 59,601 clickstream data sequences from an e-commerce website. There are 497 separate
items and the foremost vital issue that distinguishes their items reiterated in a seldom
manner. The second database is a database of a sign dialect articulation consisting of
800 sequences transcript from recordings [33]. It includes 267 particular sets of items. The
Korsarak is the third database; it is regarded as one of the biggest sequential databases.
It has 990,000 sequences of click-stream information from a Hungarian news entrance. It
incorporates 41,270 items. Because of the trouble connected on TRuleGrowth that caused
the overhead limitation to be surpassed, we used a subset of the global database of Korsarak
that contained only 25,000 items, which include non-reputation of position on the news.
The BMSWebView2 (Gazelle) is the fourth database; it utilizes the information set within
the KDD CUP 2000. It includes click-stream data of e-commerce in range 77,512 with
3340 particular items with an average length of 4.62. All experiments have been analyzed
regarding to runtime, generated rules, and memory usage. The impact of the minSup on
the previously stated criteria is studied.

The utilized datasets have different features useful for our comparison. In the first
dataset (BMSwebview1), due to the variance of sequences, we selected a lower minSup
value, which means that items are not repeated frequently in the dataset. We did not have
any rules during the mining process while setting minSup like other attempts. In all studies,
the minConf threshold was set to 0.5 for all states. The parameters’ values were determined
after several preliminary experiments to achieve the most preferable results.

4.1. Compared the TRuleGrowth with the NRD-DBV Algorithm

From the first dataset (BMS web view1), it is clear that the run time increased with
decreasing minSup. It is a reversed relationship between the minSup and the runtime.
The clarification of the relationship appears with raising values of window size and in the
NRD-DBV algorithm. When the window size constraint esteem diminishes, we take note
that it takes less time and has fewer number of rules. That is due to eliminating the complex
computations of produced rules. It is similar to the outcome for the generated rules. Addi-
tionally, there is moreover a reversed relationship between the minSup and the generated
rules’ number. With the high esteem of window size constraint in the TRuleGrowth algo-
rithm, there is an additional increment in the number of rules produced. As the window
size esteem diminishes and increments minSup esteems simultaneously, the generated
rules of the NRD-DBV are adjacent to the number of generated rules from the TRuleGrowth
algorithm. Figures 4 and 5 show the runtime, no. of rules with minConf = 0.5% and minSup
set from (0.09 to 0.06%), and Figure 6 shows the memory usage.

Additionally, it is found that when minimizing the value of window size, the time and
number of sequence rules required are decreased. This is because producing sequential
rules does not need very much computing.

On the other hand, in the sign dataset, we unrestricted with a low value for minSup.
As before, we observed that the runtime increased with decreasing minSup value. The gap
between the two parameters increased, especially for the TRuleGrowth algorithm when
assigning lower values of window size constraint. This is a result of generating a large
number of rules at smaller minSup values and higher window size value. It is an opposite
relation between minSup and the generated rules. Figures 7 and 8 show the runtime,
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number of rules with minConf = 0.5% and minSup set from (0.2% to 0.8%), and Figure 9
presents the memory usage.
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TRuleGrowth algorithm with lower window size constraint still achieved the least
time required for generating the sequential rules. This is because of lower computations
needed for the smallest number of rules. NRD-DBV takes more time than TRuleGrowth as
it generates more sequential rules based on ordering.

While in the Korsarak database, the NRD-DVB proved its efficiency in producing the
sequential rules. It generated approximately 21 rules in 200 (s), whereas the TRuleGrowth
stopped generating any sequential rules, as it was restrained by the overhead. We managed
this issue by employing a subset of the Korsarak with 25,000 groupings.

By applying the alternative solution to solve the problem with stops generating rules in
the TRuleGrowth algorithm, the subset of the Korsarak database with only 25,000 sequences
is used. The results demonstrated the availability of the TRuleGrowth algorithm, especially
when assigning a low value to the minSup threshold. It generates rules faster than the NRD-
DBV algorithm. The high speed of the TRuleGrowth algorithm is evident in generating
rules when diminishing the minSup value, whereas the NRD-DBV takes three times more
time than the TRuleGrowth. The runtime and the number of the generated rules are not
affected by different values of window size, as shown in Figures 10 and 11. The NRD-DBV
achieved the best utilization of memory as shown in Figure 12.
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The last database is named BMSwebview2; it has different features from the first
database, BMSwebview1. It has 358,278 overall instances of items, whereas the BMSwe-
bview1 has only 149,639 that forced us to assign fewer values to minSup as mentioned
before. The higher the values assigned to the window size parameter, the more time taken
to generate the rules, particularly when assigning a very low value to the minSup at the
same time. However, the TRuleGrowth still achieved the most parcel of the execution time
to produce the sequential rules, as clarified in Figure 13.
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Concerning the number of rules, the TRuleGrowth algorithm generated the lowest
number of rules with a low window size constraint value. With a larger window size
or a higher minSup value, the number of consecutive rules in TRuleGrowth grew in the
NRD-DBV algorithm because computations take longer time on a large number of rules, as
shown in Figure 14, and the NRD-DBV algorithm still achieved the least memory usage as
shown in Figure 15.
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Likewise, when using the TRuleGrowth algorithm with a small value of window size
constraint or high values of minSup, the smallest number of rules was generated. When
the minSup value was reduced or values of window size constraint were increased, the
number of rules in TRuleGrowth increased and it took longer to make a computation.

4.2. Comparing the TNS Algorithm with the Other Two Algorithms

We compared the TNS algorithm with the other two algorithms by setting the K
parameter equal to the number of rules generated from each of the other algorithms, either
with different window size constraints or different minSup values.

The TNS algorithm stopped generating any rules with (BMSwebview1). That is
because of the nature of this database’s features: its items are rarely repeated.

In the sign database, the TRuleGrowth algorithm generated sequential rules in less
time than the TNS algorithm, as shown in Figure 16. The TNS achieved its efficiency
in generating sequential rules faster than the NRD-DBV algorithm (see Figure 17), and
NRD-DBV achieved good performance in memory usage at the maximum value of minSup
as presented in Figure 18.
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As seen in Figures 19 and 20 in the Korsarak dataset, the TNS algorithm generated
almost four times fewer sequential rules than the two other algorithms.
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In the BMSwebview2 dataset, rules were generated in half the time taken for gen-
erating rules with the NRD-DBV algorithm. Additionally, rules were generated in less
or approximately close to the time taken for the TRuleGrowth algorithm, as shown in
Figures 21 and 22.
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Regarding the memory usage for each algorithm, it makes sense that the amount of
memory demanded increased with the lowering of the minSup value, since the number
of sequential rules is growing. However, in all experiments, the NRD-DBV method was
demonstrated to be more memory efficient than the TRuleGrowth and TNS algorithms.
This is because it has the advantage of the DBV structure and prunes all prefix child nodes
to remove unnecessary rules, as shown before in Figures 6, 9, 12, 15 and 18, and also the
following Figures 23–27.
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Computational complexity has been measured for each algorithm; we found that
both the TRuleGrowth and NRD-DBV algorithms are less complex. The complexity of the
TRuleGrowth algorithm is linear regarding the number of sequential rules in the dataset;
either one or two recursive calls are applied to expand the right and left sides.

In the NRD-DBV, producing non-redundant rules has a complexity of o (n*c), where n
is the number of nodes and c is the average number of child nodes. We must implement
(n−1) procedures for validating and producing sequential rules such as k << n for each
sequence. As a result, NRD- DBV complexity is ≈ o (n). TNS algorithm is efficient when
setting the parameter k up to 2000 rules. Otherwise, it performs more complexity because
of high computational expenses on mining sequential rules.
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5. Conclusions

This paper presents a meaningful comparison of three algorithms designed for the
task of sequential rule mining, which is especially common to several sequences. Each
algorithm was analyzed utilizing four real datasets with different features. For example,
one dataset had long sequential patterns with low diversity of items that forced us to use a
low minSup value to generate the sequential rules. Another dataset had short sequential
patterns with a high diversity of items. Another one was a huge dataset that caused an
overhead limit excess, which made us resort to using a subset of the original dataset.

Our experiments indicated that the performance of the algorithms is associated with
the features of the datasets. Moreover, experience shows that it can reduce the execution
time and control the number of valid rules generated by several orders of size restrictions
such as adjusting the window size constraint or determine the number of generated rules
or change the value of the minSup threshold.

With a specified value of a window size constraint, mining the TRuleGrowth algorithm
can run faster and the correctness of discovered sequential rules that are not constrained by
the arrangement can be increased.

The NRD-DBV algorithm could be used to reduce the number of sequential rules and
memory requirements. It relies on a DBV structure with a prefix-tree that leads to early prun-
ing of child nodes to reduce the search space. In addition, the NRD-DBV method generates
more rules for taking item arrangement into account than the TRuleGrowth algorithm.

The researchers conclude that each algorithm has its own use in the fields of application
of sequential rule mining to achieve the highest possible efficiency. NRD-DBV algorithm
has many applications in error detection, intervention, and bugs. It is useful in domains
that require the arrangement of items such as in medical area (for example, if the patient is
suffering from a fever, which is followed by a decrease in the level of coagulation, followed
by the appearance of red marks on the body, it is reasonable that the patient will need to be
treated for dengue fever. This order in events is important in predicting an appropriate type
of treatment). Additionally, it can be used in marketing to design the most personalized
strategy, and also in software engineering where ordering is mostly important to accomplish
its tasks.

The TRuleGrowth algorithm implementation allows the allocation of optional parame-
ters like maximizing the number of items that appear in the antecedent and consequent
of a rule. It can be useful in making product recommendations and performing fast deci-
sion making.

For future work, we intend to improve the NRD-DBV algorithm by using another
concise representation, such as maximal or generator patterns, to improve performance in
the large sequences database.
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Appendix A

Algorithm A1: The TRuleGrowth algorithm

Input
Sequence database
Minimum support
Minimum confidence
Output
Set of sequential rules
The executed time and memory usage of the generated rules
Algorithm
Begin
scanning dataset
For (each item m in DS) do {
Store each side that contains item m
If sup of each pair of item x,y ≥minSup {
Set sides (x→y) equal to zero}}
Calculate sides for generating rule (x→y)
else If (sup of rule (x→y) ≥minSup) then
If (size of left side of rule ≤maxleft && size of
right side of rule ≤maxright) then
else If (rule <= window size Constraint)
Then Expand left & Expand right
End if
If confidence of rule (x→y) ≥minConf
Then generate rule {x}{y} with its confidence Support
End if
End for
End

https://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php
https://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php
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Algorithm A2: TNS algorithm

Input
Sequence database
K= specified numbers of rules
Minimum support
Minimum confidence
Output
Set of sequential rules
The executed time and memory usage of the generated rules
Algorithm
Begin
R = ø. L= ø. minSup = 0.
Scan DB once & Record each item in variable(s)
FOR each pair of items I, j such that |sids(i)|≥minsup and ∩ 4. |sids(j)|≥minsup: sids(i⇒j) :=
Ø. sids(j⇒i) := Ø.
FOR each sid s ∈ (sids(i) ∩ sids(j):
IF i occurs before j in s THEN sids(i⇒j) := sids(i⇒j)∪7. {s}.
IF j occurs before i in s THEN sids(j⇒i) := sids(j⇒ i) ∪ 9.{s}.
END FOR
IF |sids(i⇒j)| / |S| ≥ minsup THEN conf ({i}⇒{j}) := |sids(i⇒j)| / | sids(i).
IF conf ({i}⇒{j}) ≥ minconf THEN SAVE({i}⇒{j}, L, k, minsup).
Set flag expandLR of {i}⇒{j}to true.
R := R∪{{i}⇒{j}}.
END IF
. . . [lines 11 to 17 are repeated here with i and j swapped] . . .
END FOR
WHILE ∃r ∈ R AND sup(r) ≥ minsup DO
Select the rule rule having the highest support in R
IF rule.expandLR = true THEN
EXPAND-L(rule, L, R, k, minsup, minconf ).
EXPAND-R(rule, L, R, k, minsup, minconf ).
ELSE EXPAND-R(rule, L, R, k, minsup, minconf ).
REMOVE rule from R. REMOVE from R all rules r ∈ R | sup(r) <minsup.
END WHILE
SAVE(r, R, k, minsup)
L := L∪{r}.
IF |L| ≥ k THEN
IF sup(r) > minsup THEN
WHILE |L| > k AND ∃s ∈ L | sup(s) = minsup
REMOVE s from L.
END IF
Set minsup to the lowest support of rules in L.
END IF
FOR (NRD = 1, NRD < ∆, NRD + +) Do
The result is exact (generated TNS)
ELSE Return with higher ∆ value
END FOR
End
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Algorithm A3: NRD-DBV algorithm

Input
Sequence database
Minimum support
Minimum confidence
Output
Set of sequential rules
The executed time and memory usage of the generated rules
Algorithm
Begin
Initialize a root→ null
NRD-seqRule→∅
Find out frequent closed sequence (FCS) by converting
pattern into DBV pattern |x| in DS &
sup(x) ≥minSup
Set FCS as child node of a root
For (each child node cn) do
Call Closed Pattern-Extension (cn, minSup);
For (each child node cn ) do
Call Generate-NRD-SeqRule (cn, minConf,
NRD-SeqRule)
End

Algorithm A4: Closed Pattern-Extension method

Input
Frequent sequential patterns
Minimum support
Minimum confidence
Output
Set of sequential rules
The executed time and memory usage of the generated rules
Algorithm
Begin
Set listNode→child nodes of root
For (each prefix Sequence in listNode) do
If sequential patterns not pruned, then
for (each prefix sequential patterns in listNode) do
If (sup (PrefixSp→Sequence-extension ≥minSup) then
Add prefixSP as a new itemset after the last itemset of the sequence
Else If (sup (Sp→Itemset-extension ≥minSup)
Add prefixSP as a new item in the last itemset of sequence
End For
Call Closed Pattern-Extension (prefixSP, minSup);
End If
Check & put the attribute of SP: closed pattern, prefixed generator or NULL;
End For
End
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