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Abstract: Joints exist widely in tunnel engineering. Studying the deformation characteristics of the
bolted joint is beneficial for preventing rock mass disasters. To reveal the deformation characteristics
of bolted rock joints, the elastic solutions of the radial deformation characteristics of bolted rock
joints under compression-shear load were derived, which were based on the Lame solution in elastic
mechanics and the displacement coordination condition of the interface between the bolt and the
joint (assuming that the displacement at the interface between the bolt and joint is equal). Then,
the distance from any point of the compression-shear side of the joint to the center of the bolt was
denoted as r. The minimum of the radial displacement of the joint at the compression-shear side urmin

was calculated. Numerical simulation verified the correctness of the elastic solutions by calculating
the influence range and distance. In addition, the variation law of the value of the radial displacement
(ur) was analyzed and discussed by changing the elastic modulus of the rock block (Er), radius (R),
and elastic modulus (Eb) of the bolt. The results indicate the following: (1) The radial displacement
will decrease as r decreases; the influence range of the bolt on the joint is approximately an ellipse,
whereas the long axis of the ellipse is equal to the influence distance of the bolt. (2) The influence
distance of the bolt is roughly six times the bolt radius (6R). (3) The radial displacement shows an
exponential relationship with the elastic modulus of the rock and a nonlinear negative correlation
with the radius and elastic modulus of the bolt. The increase in the elastic modulus of the rock, the
elastic modulus, and the radius of the bolt will make the radial displacement smaller.

Keywords: elastic solution; numerical simulation; bolt; shear load; the radial displacement

1. Introduction

Joints exist widely in tunnel engineering. The rock joints in engineering rock mass
reduce the overall strength of rock mass. Under the influence of external load or environ-
mental change, rock mass is prone to shear-slip failure along rock joints, which poses a
serious threat to engineering safety [1–3]. As the weak plane in rock mass, the mechanical
properties of rock joints control the stability of rock mass to a great extent [4–8]. As a
flexible reinforcement measure, bolts are widely used in the support and reinforcement of
geotechnical engineering such as mine, slope, and dam foundations due to their significant
engineering benefits [9,10]. Therefore, studying the shear performance of bolted rock joints
is necessary and practical for the stability assessment and safety design of geotechnical en-
gineering. In this case, a series of studies on this issue have been conducted, and numerous
achievements have been made. For example, the influence of different displacement angles,
surrounding rock material, the fracture openings of rock joints, bolt dip angles, and the
length of the shear strength of bolted rock joints have received attention from researchers
worldwide [11–13]. Martín, et al. [14], Grasselli [15], and Jalalifar, et al. [16] investigated
the shear strength of bolted joints. Other experts simultaneously considered the influence
of the tensile and shear strength of the bolt on the shear strength of rock joints [17,18]. To
better fit engineering practice, performing investigations on the shear strength of bolted
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rock joints under cyclic load is an important task [19–21]. Li [22] and Kang, et al. [23]
conducted field tests to explore the reinforcement performance of bolts in highly stressed
rock masses.

These studies were mainly conducted through experiments and numerical simulations,
and most of the conclusions were qualitative. Quantitatively describing the shear strength of
bolted rock joints is necessary for obtaining a deeper understanding of their features. Under
the circumstances, some scholars have conducted theoretical analyses of the shear strength
of bolted rock joints. Xiao, et al. [24] deduced the calculation formula of the ultimate
elastic load of the bolt based on the elastic-plastic theory. Ren, et al. [25], Martin, et al. [26],
and Chen, et al. [27] proposed analytical models that can predict the entire process of the
tension and tensile shear of bolts. Ma, et al. [28] and Cao, et al. [29] derived the analytical
expressions of various failure modes of bolts considering the interaction between bolts and
surrounding media. By conducting a theoretical analysis, Liu, et al. [30] pointed out that
the lateral shear force of bolts played an important role in strengthening the rock joints, and
the established theoretical model was helpful for improving the design method of bolts.
Veisi, et al. [31] discovered that the maximum failure load takes place at an optimum load
distance, which was related to the selected configuration. However, the above theoretical
analyses mostly studied the mechanical behavior of the bolt in the bolted joint, and there is
little research on the mechanical properties of the joint.

Although existing studies are significant for revealing the shear strength of bolted
rock joints, they do not effectively describe the deformation and failure characteristics of
such joints. Additionally, the deformation characteristics of the compression-shear side of
bolted joints have not been quantitatively employed, and the influence range of the bolt
has not been analyzed quantitatively. Consequently, in this study, the distance between any
point on the bolted joint to the bolt center was first treated as an independent variable r,
the influence range of the bolt on the rock joint was drawn through an example, and the
relationships between the radial displacement of joint at the compression-shear side ur,
radius R, and elastic modulus Eb of the bolt and elastic modulus of the rock Er were taken
into account to establish the theoretical model of the radial displacement of the bolted joint
in the polar coordinate system, whose correctness and feasibility were then verified by
numerical simulation method. The analysis process is shown in Figure 1.
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2. Deformation Characteristics of Rock Joint
2.1. Basic Equations

As shown in Figure 2, the bolted rock joint at the compression-shear side was taken
as the research object, and its dimensions in x and y directions are much larger than those
in the z direction. Thus, rock joints at the compression-shear side can be regarded as an
infinite plane, and the bolt can be considered as a rigid disk in the infinite plane. According
to the stress analysis of the bolted rock joint, in addition to the impact of the shear force
F on the bolt on plane x = 0 in Figure 2, shear stress also exists on the surface of the rock
block. Therefore, the basic equation of the bolted rock joint in polar coordinates (excluding
body force) is 

∂σr

∂r
+

1
r

∂τrθ

∂θ
+

σr − σθ

r
= 0

1
r

∂σθ

∂θ
+

∂τrθ

∂r
+

2τrθ

r
= 0

(1)
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In the formula, r is the radial distance between the point and bolt center, mm; σr, σθ ,
and τrθ are, respectively, the radial normal stress, tangential normal stress, and shear stress
of rock joints in polar coordinates, MPa. They are all unknowns, and the conditions of
geometry and physics must be applied to solve them.

The geometric relationship between the displacement and strain in polar coordinates
can be expressed as 

εr =
∂ur

∂r

εθ =
ur

r
+

1
r

∂uθ

∂θ

γrθ =
1
r

∂ur

∂θ
+

∂uθ

∂r
− uθ

r

(2)

where ur and uθ are, respectively, the radial and circumferential displacements of rock
joints, mm. εr, εθ , and γrθ are the radial strain, circumferential strain, and shear strain of
rock joints, respectively.

Considering that the size of the microunits on the bolted rock joint in x and y directions
is much larger than that in the z direction, and the external forces received are parallel to
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the rock joint and uniformly distributed around the joint, it can be regarded as a plane
stress problem. The stress–strain relationship in polar coordinates can be expressed as

εr =
(σr − µσθ)

E

εθ =
(σθ − µσr)

E

γrθ =
τrθ

G
=

2(1 + µ)τrθ

E

(3)

where µ is the Poisson’s ratio of rock mass, E is the elastic modulus, and G is the shear
modulus of rock.

The basic solution of the radial stress of rock joints at the compression-shear side can
be deduced according to the Lame solution [32] in elastic mechanics, as shown in Figure 3
and Equation (4).

σr= −R2

r2 q1, σθ =
R2

r2 q1 (4)
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In Equation (4), R is the inner radius of the ring, r is the distance between any point on
the ring and the center of the circle, and q1 is the internal pressure.

According to Equation (4) and Figure 1, we assume that the three stress components
of rock mass are 

σr = −R2

r2 · F cos θ

πr
= −R2F cos θ

πr3

σθ =
R2

r2 · F cos θ

πr
=

R2F cos θ

πr3

τrθ = −R2F sin θ

πr3

(5)

where R is the radius of the bolt, and F is the external force on the bolt. We substitute
the expressions of σr, σθ , and τrθ in Equation (5) into Equation (1), respectively, and
Equation (1) holds.

When the calculation point is located at the junction of the bolt and the rock joint, i.e.,
when r = R, the resultant force of the rock joint on half a circle should be equal to the force
exerted on bolt F, i.e., the boundary condition is shown as Figure 4 and Equation (6). The
negative sign represents the direction of the force pointing to the negative direction of the
x axis: ∫ π

2

− π
2

σr cos θrdθ +
∫ π

2

− π
2

τrθ sin θrdθ = −F (6)
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Substituting the stress σr and τrθ expressions assumed by Equation (5) into the left
side of Equation (6) and letting r = R in Equation (5) after integration, Equation (7) can
be obtained.

−
∫ π

2
− π
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R2
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− π

2

R2
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π
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2
− π

2
( sin2 θ + cos2 θ)dθ

= − F
π
(

π

2
+

π

2
) = −F

(7)

The value on the right side of Equation (7) is equal to the value on the right side of
Equation (6). Therefore, Equation (5) satisfies the condition that the stress of the contact
part between the bolt and joint is equal. The stress solution given by Equation (5) can satisfy
both Equations (1) and (6) of the stress boundary condition, that is, Equation (5) is the exact
stress solution of the problem.

2.2. Elastic Solution of Displacement and Stress Distributions of Rock Joints

After the exact solutions of σr, σθ , and τrθ of the rock joint are obtained from Section 2.1,
the strain can be deduced from the physical Equation (3) of the rock joint. Substituting the
exact stress solution (Equation (5)) into physical Equation (3), we obtain

εr = −R2F cos θ

2πGr3

εθ =
R2F cos θ

2πGr3

γrθ = −R2F sin θ

πGr3

(8)

According to the geometric Equations (2) and (8), Equation (9) can be obtained
as follows: 

εr =
∂ur

∂r
= −R2F cos θ

2πGr3

εθ =
ur

r
+

1
r

∂uθ

∂θ
=

R2F cos θ

2πGr3

γθr =
1
r

∂ur

∂θ
+

∂uθ

∂r
− uθ

r
= −R2F sin θ

πGr3

(9)

From the integral of the expression (9) εr, the radial displacement ur of the compressive-
shear side rock joint can be obtained as

ur =
R2F cos θ

4πGr2 + f1(θ) (10)
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where f 1(θ) is a function of θ. Substituting Equation (10) into the second expression of
Equation (9) (εθ) yields

∂uθ

∂θ
=

R2F cos θ

4πGr2 − f1(θ) (11)

According to the aforementioned integral, the displacement uθ of the rock joint at the
compression-shear side along the polar angle can be expressed as

uθ =
R2F sin θ

4πGr2 −
∫

f1(θ)dθ + f2(r) (12)

where f 2(r) is a function of r and then substituting Equations (10) and (12) into Equation (9)
and multiplying both sides by r yields

−R2F sin θ

4πGr2 +
d f1(θ)

dθ
− R2F sin θ

2πGr2 + r
d f2(r)

dr

−R2F sin θ

4πGr2 +
∫

f1(θ)dθ − f2(r) = −R2F sin θ

πGr2

(13)

After sorting out Equation (13), we obtain

d f1(θ)

dθ
+

∫
f1(θ)dθ = 0 (14)

r
d f2(r)

dr
− f2(r) = 0 (15)

From Equation (14), we obtain

f1(θ) = m cos θ + n sin θ (16)

where m and n are undetermined coefficients.
From Equation (15), we can obtain

f2(r) = λr (17)

where λ is the undetermined coefficient.
Substituting Equations (16) and (17) into Equations (10) and (12), we can obtain

Equation (18), which is the displacement component of the joint on the compression-shear
side expressed in polar coordinates in the bolted joint system. The three undetermined
coefficients m, n, and λ have to be determined according to the boundary conditions of the
specific problem: 

ur =
R2F cos θ

4πGr2 + m cos θ + n sin θ

uθ =
R2F sin θ

4πGr2 − m sin θ + n cos θ + λr

(18)

For the shear bolt in Figure 2, if the bolt on the rock joint, i.e., the rigid disk, is subjected
to shear load, its displacement only occurs in the x direction and is 0 in the y direction
such that

u = x0, v = 0 (19)

In the formula, u and v are displacements in the x and y directions, respectively, and
x0 is the displacement of the bolt in the x direction and is the known value.

The displacement transformation relationship between the polar coordinate and Carte-
sian coordinate systems can be expressed as{

ur = u cos θ + v sin θ

uθ = −u sin θ + v cos θ
(20)
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According to Equation (20), the displacement of the disc, namely the bolt, in the polar
coordinate system can be written as{

uD
r = x0 cos θ

uD
θ = −x0 sin θ

(21)

Then, according to the deformation coordination condition of the rock joint and bolt
(displacement continuity condition of the rigid disk and the rock joint), that is, when r = R
and ur

D = ur, and combining Equation (18) with (21), we obtain

x0 cos θ =
F cos θ

4πG
+ m cos θ + n sin θ (22)

Observing both sides of the Equation (22), we have the following result:

n = 0, m = x0 −
F

4πG
(23)

According to classical elastic theory, the contact boundary between the compression-
shear side rock joint and bolt should be in a state of “complete contact,” that is, neither
disengage from each other nor slide relative to each other. In this case, the displacement on
the contact boundary should be equal. In addition, the model is symmetric about the x axis,
so the toroidal displacement on the contact boundary is zero, that is, uθ|θ=0 = 0. Combining
the expression of uθ (Equation (18)) with Equation (23), λ = 0 can be obtained. Substituting
Equation (23) and λ = 0 into the ur expression of Equation (18), the ur expression can be
expressed as follows:

ur = [x0 +
F

4πG
(

R2

r2 − 1)] cos θ (24)

Equation (24) is the analytical model established in this study for the radial distribution
of displacements at the compression-shear side of the bolted rock joint in polar coordinates.

2.3. Analysis of Calculation Examples

The compressive strength of a certain granite is 250 MPa; E, µ, G are 2 × 104 MPa,
0.2, 8.3 × 103 MPa, respectively [33]. For the granite bolted joint, the radius of the bolt
R is 5 mm, the uniform load F is 5.2 × 105 N/mm, and the overall displacement x0 is
5.4 mm at the interface between the bolt and the granite. By putting the preceding test
data into Equation (24), we can obtain the analytical solution of the compression-shear side
displacement along the radial distribution of the bolted rock joint as follows:

ur = [5.4 +
15.663

π
(

25
r2 − 1)] cos θ (25)

Figure 5a shows the variation of ur with distance r at different angles θ. As shown in
Figure 5a, the value of ur at different θ decreases with the increase of r. When r varies in
the range of 5–30 mm (R~6R), the decrease trend of ur with r is very obvious, from 5.40 mm
(0◦), 4.68 mm (30◦), 3.82 mm (45◦), 2.70 mm (60◦) plunged to 0.55 mm (0◦), 0.48 mm
(30◦), 0.39 mm (45◦), 0.28 mm (60◦), respectively, and an 89.8% drop of the initial radial
displacement can be observed. When r is greater than 30 mm, the change of ur tends to be
gentle with the increase of r. Figure 5b shows the change rate of ur with the increase of r,
in which the rate of change goes to 0 after r is greater than 6R. Therefore, when the value
of r is greater than six times the radius of the bolt (i.e., 6R, 30 mm), the bolt basically does
not have any influence on the rock joint at the compression shear side, i.e., the influence
distance of the bolt on the rock joint at the compression shear side is approximately 6R.
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(b) Radial displacement decreases with radius.

When r equals 6R, by comparing the value of ur corresponding to θ in Figure 5a (0◦,
30◦, 45◦ and 60◦), we can see that the maximum radial displacement urmax is 0.55 mm. The
determination of this value is significant for the analysis of the mechanical properties of
bolted rock joints. This radial displacement only accounts for 10.2% of the initial radial
displacement u0 (5.40 mm). Assuming that the radial displacement at any point of the
bolted rock joint is smaller than 0.55 mm, that is, the ratio to the initial radial displacement
u0 is smaller than 10.2%, we can consider that the bolt has few influences on the rock joint
at this point. According to the preceding assumptions, when ur is 0.55 mm, θ is 0◦, 15◦, 30◦,
45◦, 60◦, 75◦, the corresponding r is 30.00, 28.13, 23.69, 18.45, 13.46, and 8.53, respectively
(Figure 6 gives these points), and the adjacent points are connected. Based on this, the
action range diagram of the bolt at the compression-shear side of the rock joint can be
drawn, as shown in Figure 6. The figure shown in the red curve in Figure 6 approximates
an ellipse, and the radial displacements of all points inside the ellipse are greater than
0.55 mm, which means that the rock joint within the ellipse region can be significantly
affected by the bolt.
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3. Numerical Simulation Verification
3.1. Numerical Calculation Model

In this study, a numerical calculation method in FLAC3D was adopted to verify the
correctness of the model (Equation (24)). The numerical model could simulate the stress and
deformation response of rock materials under external force, and the radial displacement of
the bolted rock joint in the shear test could be directly observed to determine the influence
range of the bolt on the rock joint. Considering that the preliminary modeling in FLAC3D

was relatively complex, this study intended to combine the convenience of Rhino modeling
to establish the meshed numerical model and then import it into FLAC3D for calculation [34],
as shown in Figure 7. The size of the model is 150 mm × 300 mm × 0.5 mm, and a total
of 3973 tetrahedral elements and 8052 nodes are included. The section area of the bolt
only accounted for 0.08% of the entire area of the model, and normal velocity limitation
was adopted as a boundary condition on both the bottom and right sides. The radius of
the bolt was set to 5 mm, the point load P of 1.3 × 105 N was applied to the bolt element,
and the change of ur was observed by using the self-programmed FISH program. As
this study aimed to solve the stress–strain elastic solution of the bolted rock joint at the
compression-shear side, both rock mass and bolt adopt elastic. An interface contact unit in
FLAC3D was applied to the contact between the rock mass and bolt, and cohesion c and the
angle of internal friction ψ are equal to 0.3 MPa and 41.5◦, respectively. The mechanical
parameters of the rock block refer to the calculation examples in Section 2.3. That is, the
elastic modulus Er, Poisson’s ratio u, and compressive strength σ are equal to 2 × 104 MPa,
0.2, and 250 MPa, respectively. The mechanical parameters of the bolt [33] are shown in
Table 1. It is assumed that the rock mass is in the elastic stage without plastic failure during
the whole process.

Table 1. Mechanical parameters of bolt.

Elastic Modulus
E/Mpa Poisson’s Ratio µ Bolt Radius/mm The Compressive

Strength/Mpa Tensile Strength/Mpa

5 × 108 0.1 5 400 570
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Figure 7. FLAC3D model of bolted rock joints at compression-shear side.

3.2. Comparative Analysis between Theoretical and Numerical Models

The radial displacements of 12 points within r = 5 mm–60 mm at different angles were
calculated by FLAC3D, referring to Figure 5a for the specific positions of these 12 points.
The curves of ur and r were obtained, as shown in Figure 8. As seen in Figure 8, ur gradually
decreased as r increased, and the decreasing rate was smaller. When r equals 6R, the radial
displacement was 0.79 mm (taking the point in the direction of θ = 0◦), accounting for 13.3%
of the radial displacement at r = R, which was also close to 10.2% of the theoretical model
in Equation (24), which proved the accuracy of the model in this study.
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We can infer from Equation (24) that ur would be generated when the rock joint was
constrained by the bolt under shear load. Points with the same value of ur were found and
connected to a curve to obtain the influence range diagram of the bolts. In this section,
we used FLAC3D to calculate the value of ur, and the point where the radial displacement
ur was equal to 0.55mm was extracted (marked with a red dotted line in Figure 9a) and
imported into Origin to draw the influence range diagram of the bolt at the compression-
shear joints, as shown in Figure 9b. The bolt was located at the origin of coordinates.
Compared with the influence range diagram (Figure 6) derived by the model established in
this study, the shapes of the two were basically the same, both an ellipse, which also further
verified the correctness of the model established in this study.
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It should be pointed out that the elastic solution of the radial displacement distribution
of the bolted joint was derived. However, the rock mass may be in a plastic state after an
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external disturbance and the stress state will be different in practical engineering. At the
same time, this paper only considers the effect of a single bolt on the rock mass, and the
bolt is perpendicular to the joint, which is special. However, the research results are indeed
helpful for a preliminary understanding of the deformation characteristics of the bolted
joint. Therefore, the authors will discuss the deformation characteristics of the bolted joint
in the plastic state and explore the influence of different numbers and sizes of bolts on the
bolted joint in future research.

4. Analysis and Discussion
4.1. Influence of Elastic Modulus of Rock Er on Radial Displacement ur of Joint

By keeping the radius R and elastic modulus Eb of the bolt unchanged, the relationship
between the influence range of the bolt at the compression-shear rock joints and Er is
explored. As shown in Figure 10, with the increase of Er, ur at the same point decreases
continuously. In this study, the points where r equals 4R, 5R, 6R, 7R are extracted, corre-
sponding to Figure 10a–d, respectively, showing significant nonlinear characteristics. Then,
the exponential function, logarithmic function, and power function were used to fit the
calculated results. We found that the exponential function fitted the calculated results well,
and the correlation coefficients were 0.99955, 0.99952, 0.99946, and 0.99941, respectively.
Therefore, the following exponential model was established to fit the calculated results:

ur = Ae−BE0 + C,

where A, B, and C are constants, and E0 (2 × 104 MPa) is the initial elastic modulus of rock
in this example.

As shown in Figure 10, ur changes greatly around 0.5E0–E0 and then gradually slows
down. We believe that as Er increases, its ability to resist deformation increases, and greater
stress is required for the joint to produce the same elastic deformation. However, the shear
effect on the bolt is constant, and therefore, the larger the Er is, the smaller the value of ur.
With the increase of Er, the influence range of the bolt at the compression-shear side rock
joint is correspondingly reduced.

4.2. Influence of Bolt Radius Rb on Radial Displacement ur of Joint

To investigate the influence of the bolt radius Rb on the radial displacement ur of the
rock joint at the compression-shear side, the value of Rb was set as 4, 5, 6, 7, 8, 9, and
10 mm, respectively, ensuring that Eb and Er did not change. Figure 11 shows the change
of ur when Rb increases continuously. Overall, the curve showed a trend of decline, but
when Rb increased from 6 mm to 7 mm, ur had a sudden drop, and then the decrease was
roughly the same. This study argues that, in this example, the bolt radius Rb (7 mm) is the
optimal bolt radius of this model. This test also indicates that in engineering practice, for
a particular rock, the economic benefit does not always increase with the increase of bolt
radius, so a bolt of appropriate size should be selected to reinforce the rock.

4.3. Influence of Elastic Modulus of Bolt Eb on Radial Displacement ur of Joint

To study the influence of the bolt elastic modulus Eb on the radial displacement ur of
bolted joints, six groups of different numerical tests were conducted. The elastic modulus
of each group of bolts is shown in Table 2, and Er and Rb remain unchanged. The variation
law of ur with the change of Eb could be obtained from Figure 12. ur (r = 6R in this study)
decreased first and then tended to be stable with the increase of Eb. According to Figure 12,
when Eb was less than or approximately equal to the Er, which was 2 × 104 MPa in this
example, the curve showed an obvious downward trend. However, when Eb was greater
than Er, the decline speed of the curve decreased. As Eb continued to increase, no significant
change occurred in the value of ur. This test also suggested that appropriate bolts should be
selected for reinforcement according to the specific mechanical properties of the reinforced
rock when strengthening rock mass in engineering practice. Otherwise, the bolt will not be
fully utilized, causing unnecessary economic losses.
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Table 2. Bolt number and elastic model parameters.

Bolt Number Elastic Modulus of
Bolt/MPa Bolt Radius/mm Elastic Modulus of

Rock Mass/MPa

1 5 × 103

5 2 × 104

2 5 × 104

3 5 × 105

4 5 × 106

5 5 × 107

6 5 × 108
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5. Conclusions

The theoretical model derived in this study focuses on the analysis of the displacement
and stress distribution of the bolted joint, which enriches the quantitative research of the
joint. At the same time, the elastic modulus of the joint and the bolt and the influence
of the radius of the bolt on the displacement and stress distribution of the joint at the
compression-shear side were analyzed. The conclusions are as follows:

(1) The influence range of the bolt on the compression-shear side rock joint is approxi-
mately an ellipse, and the long axis of the ellipse is equal to the influence distance of the
bolt at the compression-shear side rock joint, which is approximately six times the radius
of the bolt in the example.

(2) The farther away from the bolt, the smaller the radial displacement of the rock joint
at the compression-shear side due to the shearing action. With the continuous increase in
the distance, the decreasing rate of the radial displacement becomes slower.

(3) As the elastic modulus of rock increases, the radial displacement of the rock joint
at the compression-shear side decreases, that is, the influence range of the bolt decreases.
In addition, when the elastic modulus of rock remains unchanged, the reinforcement
performance of the bolt does not always increase with the increase in the elastic modulus
and the bolt radius.
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