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Abstract: Over recent decades, the demand for smarter and more intelligent manufacturing systems
has increased in order to meet the growing requirements of customers. Manufacturing systems
are termed as smart manufacturing systems (SMSs); these systems are capable of fully integrated
autonomous operation. Specifically, the concept of autonomous systems and functions has been
adopted for next generation manufacturing systems (NGMSs). Among these NGMSs, the fractal
manufacturing system (FrMS) exhibits several characteristics that are similar to those of SMSs. There-
fore, in this paper, a smart, self-reconfigurable manufacturing system (SSrMS) based on the FrMS is
proposed. The proposed SSrMS architecture was designed for realizing self-reconfiguration functions
based on the FrMS concept. SSrMS exhibits a fractal structure, which enables the distribution of
control features; this also constitutes the fundamental basis of autonomous operation and reconfigu-
ration between each fractal. SSrMS architecture includes the use of big data, digital facilities, and
simulations. Furthermore, we introduce three reconfiguration methods to conduct system recon-
figuration, which are a goal decision model, a negotiation model, and a sustainability assessment
method. The goal decision model was developed to determine a goal of each fractal to achieve
the system’s goal. In other words, each fractal can decide a goal to achieve the system’s goal, such
as maximizing productivity or profit, or minimizing cost, and others. The negotiation model was
adopted to perform partial process optimization by reassigning tasks and resources between the
fractals, based on the goal of coping with the changes in the system’s condition. The sustainabil-
ity assessment method was designed to simultaneously evaluate sustainability with respect to the
system’s goals. The proposed architecture of SSrMS with goal decision model, negotiation model,
and sustainability assessment method has the features of self-optimization, self-organization, and
self-reconfiguration in order to achieve fully autonomous operations for the manufacturing system.
The proposed architecture including three methods are expected to provide a fundamental study
of the autonomous operations. The main findings of in this study is the development of a new
architecture for fully autonomous operations of the smart manufacturing system with reconfiguration
methods of goal-oriented manufacturing processes.

Keywords: fractal manufacturing system (FrMS); self-reconfigurable manufacturing system; smart
manufacturing; Industry 4.0; goal decision model; negotiation model; sustainability assessment method

1. Introduction

Since the advent of Industry 4.0 as a new paradigm, the manufacturing industry has
evolved significantly. Furthermore, the paradigm of a new manufacturing system shifted
rapidly due to the increasing demands of mass personalization, sustainable production,
sustainable products, etc. Hence, a variety of smart manufacturing concepts and architec-
tures have been suggested. Kusiak [1] suggested the latest term of smart manufacturing
systems (SMSs), which includes six essential pillars: materials, data, predictive engineer-
ing, sustainability, resource sharing and networking, and manufacturing technology and
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processes [2,3]. SMSs employ similar technologies, such as information and communica-
tion technology (ICT), industrial internet of things (IIoT), artificial intelligence (AI), big
data, sensor data, etc. These technologies have led to the smartization of manufacturing
and highly connected resources throughout the process [4]. Qu et al. [2] described fully
integrated autonomous functions for smart manufacturing, as follows:

• Integration, organization, and allocation for advanced information and communication
technologies [5];

• Self-optimizing processes [6], data-driven decision making [7], self-regulation, and
self-organization for adaptive and intelligent manufacturing control [8];

• Predictive situational awareness [9], statistical process monitoring and prognostics [10],
predictive maintenance [10], and predictive manufacturing situations [11] for operation
reliability and accuracy.

Among these autonomous functions, the core functions are related to decision-making
and predictions and preservation. A decision-making-related function consists of aspects
such as self-optimization, self-organization, self-decision-making, etc. Moreover, prediction-
and preservation-related functions consist of aspects such as real-time monitoring, pre-
dictive maintenance, etc. Autonomous functions are operated based on certain factors,
including the distributed control system, multi-agent system, AI, knowledge-base, big
data, etc. SMSs exhibit similar properties because they inherited the structures and charac-
teristics of NGMSs. The holonic manufacturing system (HMS), the biological manufacturing
system (BMS), the intelligent manufacturing system (IMS), and the fractal manufacturing
system (FrMS) are the most popular representatives of the next generation manufacturing
system (NGMSs). Nevertheless, studies have focused on evolving IMS, HMS, and FrMS
into SMSs via new technologies such as AI, big data, sensor data, etc. Among NGMSs,
FrMS reported by Ryu et al. [12–14] exhibits suitable characteristics such as a distributed
control system and a multi-agent system, using AI and the knowledge-base, is required for
SMSs. Furthermore, FrMS features vertical and horizontal structures based on the fractal
structure. It is based on the concept of autonomously cooperating multi-agents termed
as fractals, which are referred to as the basic fractal unit (BFU) [12–16]. Specifically, BFU
consists of an observer, a reporter, a resolver, an analyzer, and an organizer. BFU determines
the goal decision, process optimization, and reconfiguration within the system’s final goal.
To determine the system’s goal, goal-orientation technology is adopted through the goal
decision model. The structure and process of the manufacturing system are subsequently
altered by DRP. Self-optimization is conducted via BFU based on the knowledge base.
Ryu et al. [12–14] were the first to propose the concept of a goal model for FrMS. However,
FrMS needs to be improved and evolved into SMSs, including sustainable development.
FrMS has sufficient potential and the fundamental background required to evolve into
SMSs. However, thus far, approaches based on big data or active data utilization have not
been adopted in FrMS in order to reconfigure the processes and the system.

Therefore, in this paper, we proposed an SSrMS architecture based on FrMS. SSrMS
exhibits the features of a data-driven system. All the fractal units are operated based on
the data in SSrMS. An external change is detected based on the environment informa-
tion, which can serve as a signal to initiate a reconfiguration of the processes, structure,
or the system itself. Internal changes are detected by the fractal units in SSrMS. This
helps initiate negotiations or the re-optimizing process in the system. Furthermore, all
the fractals exchange information, such as the current status, request, and response, to
improve homeostasis and impart flexibility to account for changes. The optimization or
reconfiguration results are stored in the knowledge base as a future reference for the next
adaptation. For the data-driven system, SSrMS employs big data, which comprises the
environment information, knowledge base, legacy system, and equipment signal DB. To
determine the system’s goal, each fractal’s goal needs to be identified; thereafter, the process
is reconfigured accordingly, and sustainability is assessed.

First, in order to decide the goal for the fractal and system, the goal decision model
was developed. The goal decision model provides various types of goals for each fractal
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and system, including productivity, cost, profit, etc. A neural network was used to develop
the goal decision model, wherein it derives the goals of the system and each fractal. Thus,
a goal-oriented system can be realized using the goal decision model.

Second, in order to reconfigure a manufacturing process, the negotiation model is
developed. The negotiation model performs partial process optimization by reassigning
tasks and resources between the fractals, based on the goal of coping with the changes in
the system’s condition.

Third, in order to create balance between the goal of the system and sustainability, the
sustainability assessment method was developed. The sustainability assessment method
was designed to simultaneously evaluate sustainability with respect to the system’s goals
using the balanced scorecard (BSC), the analytic hierarchy process (AHP), the green-bill of
material, and neural network.

Given that the system and three methods are operated based on a data-driven system
and big data, the proposed architecture and methods can serve as a fundamental basis for
a new type of SMSs, one that is capable of self-optimizing and self-reconfiguring a system
structure with manufacturing processes.

This paper aims to propose a new architecture and concept of smart manufactur-
ing systems based on the fractal concept to achieve fully integrated autonomous oper-
ations. The proposed architecture supports providing a basic research foundation for
self-reconfiguration, goal-orientation, and self-organization. The proposed models for goal
decision and negotiation can enhance the possibility of facilitating goal-oriented and self-
reconfigurable manufacturing systems. The sustainability assessment method proposed
in the study can provide a new research direction to harmonize sustainability and the
system’s goal for the homeostasis of the manufacturing system.

This paper is organized as follows: Section 2 presents a literature review of existing
manufacturing systems, such as SMSs, HMS, and FrMS, which have features of self-
reconfiguration, self-optimization, and self-adaptation. In Section 3, the characteristics of
SSrMS are presented. Section 4 presents the architecture of SSrMS with a sequence diagram
of the manufacturing process reconfiguration. In Section 5, descriptions on the models for
goal decision and negotiation as well as a sustainability assessment method are presented.
Section 6 concludes this paper including further research.

2. Literature Review
2.1. Smart Manufacturing System (SMS)

In the 1980s, the basis of smart manufacturing was flexibility, computer-integration,
and intelligent manufacturing. Japan established the intelligent manufacturing system
(IMS) program in 1995 and has since led the world in this domain. In the US, non-profit ven-
tures have conducted research on IMSs and related activities under the NGMSs program [3].
In the EU, studies on intelligent manufacturing were conducted under IMS program
expansion [3,17]. NIST defines SMSs as a fully integrated collaborative manufacturing sys-
tem that responds in real-time to satisfy the changing demands and conditions in factories,
supply networks, and customer needs [2,3,18]. Different definitions exist for SMSs depend-
ing on the perspective: engineering, interconnection and communication, and predictive
analysis and decision-making perspectives; this is illustrated in Table 1.

Table 1. Other definitions of the smart manufacturing system (modified from [2]).

Perspective of Definition Description

Engineering view Enable rapid manufacturing of products, dynamic response to
demands, and real-time optimization [19].

Interconnection and
communication
(IoT and CPS) view

Increase in production rate and decrease in production waste
using sensors and communication technologies to capture
data at all manufacturing stages [20].

Predictive analysis and
decision-making view

Optimize planning and control of manufacturing operations,
predictive manufacturing, fault diagnosis, etc. [21].
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Various studies have focused on the SMS architecture; representative architectures
for SMSs include the Industry 4.0 architecture by IBM, service-oriented smart manufac-
turing system by NIST, and RAMI 4.0 by Platform Industrie 4.0, as listed in Table 2 [22].
Industry 4.0 by IBM includes two layers: a platform/hybrid cloud layer and an equip-
ment/device layer. The platform/hybrid cloud layer performs plant-wide data-processing
and analytics, whereas the equipment/device layer acts as a middleman between the
smart devices/tools and plant/enterprise. The service-oriented SMS by NIST is similar
to Industry 4.0 by IBM [23]. The service-oriented SMS utilizes a service bus to connect
various types of services, including those pertaining to the operational technology domain,
information technology, and virtual domain. Furthermore, the service bus connects the
enterprise to external collaborators. RAMI 4.0 consists of six layers: the business, functional,
communication, integration, and asset layers. Each layer performs functions that define
rules, integrate services, enable preprocessing with data analysis, provide event-generation
with connectivity, and improve the physical performance of each component [24].

Table 2. Three representative architectures for SMSs.

Architecture Description

Industry 4.0 by IBM Reference architecture comprising platform/hybrid cloud
layer and equipment/device layer

Service-oriented SMS
by NIST

Functional architecture utilizing a service bus to connect
various types of services in the system

RAMI 4.0 by Platform
Industrie 4.0

Reference architecture comprising six layers with different
functions, perspectives, and levels of controls.

2.2. Holonic Manufacturing System (HMS)

Koestler defined a holarchy as a hierarchy of self-regulating holons in supra-ordination
to their parts, sub-ordination to the higher levels, and coordination with an environ-
ment [25]. The HMS consortium converted the concepts developed by Koestler for social
organizations and living organisms into a set of appropriate concepts for manufacturing
industries [26]. Over the last two decades, many research results and developments have
been reported for HMS. Additionally, following the paradigm shift caused by Industry 4.0,
HMS was also attempting an effort toward smartization. For the evolution to Industry 4.0,
ten key enablers were selected for the HMS: sustainability, secure communication/cyber-
resilience, real-time capabilities, process virtualization, service orientation, interoperabil-
ity/integration, adaptability, big data analysis, autonomous and decentralized decision
support systems, and connectivity [27]. With these ten key enablers, Leitao and Restivo
proposed the adaptive holonic control architecture (ADACOR), which features a decen-
tralized control architecture and considers centralization to tend toward a global opti-
mization system [27]. Pach et al. [28] proposed the optimized and reactive control dy-
namic architecture (ORCA), which is one of the first dynamic architectures. Furthermore,
Barbosa et al. [29] proposed the evolution of the ADACOR mechanism into ADACOR2.
Specifically, the objective of ADACOR2 aims at allowing the system to evolve dynamically
via configurations discovered online, which are limited to the stationary and transient
states alone.

2.3. Fractal Manufacturing System (FrMS)

As mentioned before, FrMS is based on the concept of autonomously cooperating
multi-agents, referred to as fractals. FrMS exhibits several characteristics, including self-
similarity, self-organization, and goal-orientation, and so on [15,16]. Furthermore, the
definitions of a fractal and FrMS are as follows.

• A fractal is a set of self-similar agents whose goal can be realized through cooperation,
coordination, and negotiation with others. It can reorganize the configuration of the
fractal system to realize a more efficient and effective configuration;



Appl. Sci. 2022, 12, 5172 5 of 25

• FrMS is a flexible and fault-tolerant system developed and operated with a fractal architecture.

The FrMS is an agent-based system that continuously reorganizes the system configu-
ration to remain in an optimal environment. The agent-based system can autonomously
improve its structure, such as upgrading servers, moving services, and performing load
balancing interposed without interruptions or revisions to the network and clients. Figure 1
illustrates the concept of FrMS. The architecture of FrMS comprises a hierarchical structure
developed using the elements of BFU, which is a fundamental component of the FrMS.
As shown in Figure 2, The five functional modules in the BFU are the analyzer, organizer,
observer, resolver, and reporter. The observer module gathers information or messages
from other fractal agents and the environment. Subsequently, it delivers this information to
the analyzer module and resolver module. The analyzer module obtains this information
from the observer module and analyzes information, such as scheduling, simulation, and
changes in the fractal’s objective. The resolver module then makes alternative decisions
for current fractals, such as new objectives or negotiations with another fractal, based on
the analyzed information and message derived from the analyzer and observer modules.
The organizer module checks the current status of the fractal, and it can alter the fractal
structure. The organizer module then transmits the data related to the status and altered
structure to the analyzer and resolver modules. Lastly, the reporter module reports all
types of data and information to the other fractals or sensors.

Figure 1. Conceptual model of FrMS.

Figure 2. Five functional modules in a BFU.

2.4. Goals in Manufacturing Systems

Studies on the objectives, goals, and evaluation methods for manufacturing systems
have been popular since the establishment of the manufacturing industry. Studies on manu-
facturing systems’ objectives can be classified into three categories: key performance index
(KPI), objectives definition, and new evaluation method. However, in all existing studies,
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the objectives and goals of the manufacturing system have always been considered as essen-
tial and key factors. Studies on the objectives and goals have afforded many types of KPIs
for evaluation and optimization purposes. Hon [30] stated that the evaluation factors for
manufacturing systems exhibit different trends with respect to time and issues. In the 1960s,
the priority of manufacturing systems was cost minimization. By contrast, in the 1970s,
productivity was the most important KPI. Furthermore, once the mass production system
was established, in the 1980s quality was considered as the more important KPI, rather
than productivity. In the 1990s, the optimization of manufacturing systems was studied
based on a multi-dimensional perspective. Currently, sustainability, eco-friendliness, and
zero-emissions are considered as the most important KPIs. Craig and Harris [31] and Son
and Park [32] stated that cost is the primary priority for manufacturing systems. Hopp and
Spearman [33] hierarchically categorized the goals of manufacturing systems. Furthermore,
Hopp and Spearman suggested profit maximization as the priority. Troxler [34] defined four
attributes—suitability, capability, performance, and productivity—consisting of 24 KPIs to
evaluate a system based on the traditional perspective. Since the 1990s, either profit or per-
formance has been selected as a manufacturing systems’ objective and goal. Jose et al. [35]
listed the top five parameters in a manufacturing system as profitability, conformance to
specifications, customer satisfaction, return on investment, and material and overhead costs.
Furthermore, the least significant parameters were efficiency, quality, technical competence,
flexibility, innovation, speed, and capacity. In the 2000s, new objectives and goals were ex-
amined, including business strategy, innovation, sustainability, eco-friendliness, etc. Golec
and Taskin [36] reported that a manufacturing system’s goal consists of nine parameters:
innovation, customization, product proliferation, price reduction, cost, flexibility, quality,
speed, and stability. The objectives and goals of a manufacturing system were defined by
Avella et al. [37]; they analyzed the relationship among parameters in order to measure the
capacity of the manufacturing system.

2.5. Negotiation Methods for Manufacturing

Krothapalli and Deshmukh [38] proposed a negotiation methodology that negotiates
between parts and machine using internal and external agents in the manufacturing system;
this methodology enables easier negotiations. However, Krothapalli and Deshmukh did
not consider the negotiation between multi-agents. Shin and Jung [39] proposed a mobile
agent-based negotiation process (MANPro), which offers a negotiation process for a manu-
facturing system with intelligent distributed control. MANPro consists of part-oriented,
machine-oriented, and bi-directional bidding for improved negotiation performance. Fur-
thermore, MANPro involves a mobile agent technique, wherein a mobile agent can travel
between systems. Shin and Jung [40] proposed a methodology for negotiation process
creation, evaluation, and real-time scheduling based on MANPro; however, they also
failed to consider the negotiation between multi-agents. Adhau et al. [41] proposed the
auction-based negotiation methodology, in which multiple projects can be scheduled si-
multaneously. This methodology can solve scheduling optimization for multiple projects
under resource limitations. Furthermore, many agents can participate in the negotiation
simultaneously under the auction method. However, one agent utilizes the resources
first, and the other agents subsequently follow the auction procedure again; moreover,
the resources for the winner agent cannot be re-allocated to other agents. Gordillo and
Giret [42] proposed a multi-agent scheduling algorithm to evaluate manufacturing systems
based on the negotiation methodology. This algorithm considers job priority changes and
job allocation under various situations. Furthermore, it can perform rescheduling at any
instance; however, it does not consider resource utilization. A comparison of previous
research shows that process reconfiguration has not been considered in existing studies.
Krothapalli and Deshmukh considered the negotiation between single agents. Shin and
Jung considered the negotiation between multi-agents with single-agents, and they also
included a scheduling algorithm that could re-allocate the task sequence. Therefore, the
methodology proposed by Shin and Jung covered the aspect of process reconfiguration.
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Adhau et al. [41] considered the negotiation between multi- and single-agents. However,
the methodology of Adhau et al. [41], i.e., the resource allocation method, is not suitable
for process reconfiguration. Gordillo and Giret [42] considered the negotiation between
multi-agents and that between multi- and single-agents.

2.6. Sustainability for Manufacturing

Sustainability for manufacturing is implemented by process efficiency, increasing resource
efficiency, reducing power consumption, increasing automation for human labor, etc. [43,44].
In order to improve the sustainability in the manufacturing system, eleven critical success
factors (CSFs) that satisfy the requirements of both SMSs and environmental sustainability
are suggested by Jabbour et al. [45]. Existing studies on sustainability and its assessment
use the analytic hierarchy process (AHP) and outranking. AHP and outranking methods
determine an optimal alternative considering a given circumstance. In order to achieve
project management with sustainability, a functional redundancy-based human resource
management framework is suggested by Dotsenko et al. [46].

Another method to assess sustainability is the heuristic approach based on the sophis-
ticated mathematical model [47].

However, a single objective or restricted goal is considered by existing sustainability
assessment. Furthermore, existing sustainability assessments do not consider sustainability
and system’s goal at the same time.

3. Characteristics of Smart Self-Reconfigurable Manufacturing System (SSrMS)
3.1. Self-Similarity

Self-similarity is a unique characteristic of the fractal structure, where the entire shape
and partial shape are similar. In FrMS, self-similarity is adopted for the structure and
organization design and job, formulation, and goals [12,14]. Figure 3 shows the self-
similarity structure with the facility for SSrMS. The super-fractal in Figure 3 is the highest
fractal unit in the system. The other fractals belong to the super-fractal. Logically, each
fractal has the same structure. Figure 3 presents the hierarchical structure. Self-similarity
can afford simplified logical structures and ease of building. Additionally, the same logical
fractal structure can easily add, remove, or replace the equipment in the system.

Figure 3. Self-similarity and hierarchical fractal structure.

3.2. Self-Organization

Self-organization refers to the ability whereby each fractal unit can develop the man-
ufacturing process by itself via goal-orientation. Each fractal has sufficient information
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regarding each fractal’s performance data, the precedence relation, and the system’s goal.
Thus, the system can organize the manufacturing processes after deciding the goal, as illus-
trated in Figure 4. Furthermore, self-organization can help reorganize the manufacturing
process when the system’s goal changes or the system is optimized. Moreover, DRP can
address the reorganized manufacturing process, as illustrated in Figure 4.

Figure 4. Self-organization process and DRP in SSrMS.

3.3. Goal-Orientation

SSrMS consists of fractal units with self-similarity. If the highest-level fractal can decide
the goal by itself, then the other fractals can also determine the goal by themselves, because
every fractal has the same logical structure. Hence, the goal-orientation characteristic
enables each fractal to determine an individual goal within the system’s goal. Notably, the
system’s goal needs to be changed based on the circumstances. Furthermore, the system
needs to adjust the goal when the fractal exhibits a state change, as follows: equipment
malfunction and addition or removal of the fractal. Ryu et al. [13,14,48] suggested a
goal-formation process for the goal-orientation characteristic, as illustrated in Figure 5.

Figure 5. The goal-formation process by Ryu et al. (modified from [13,14]).

3.4. Self-Learning

To perform self-reconfiguration in the system, the system needs to conduct better
decision-making or at the very least recommend a better alternative. This type of advanced
methodology can control the structure and also monitor and modify the structure of the
manufacturing system. Over the past several decades, self-learning, self-optimization,
and self-evolution have become important and active research areas. Among these, self-
learning is one of the critical characteristics for the reconfiguration of a manufacturing
system. The system requires self-learning to improve its performance. Each fractal can
decide on the goals, including appropriate manufacturing processes between the fractals,
operation performance within the highest goals, and self-diagnosis. Therefore, in SSrMS,
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self-learning implies that each fractal can save and learn from past decisions and thus
perform better decision-making, as compared to previous decisions. The previous decisions
correspond to the goal with the fractal status, performance with the manufacturing process,
negotiation results with the performance, self-diagnosis with malfunctions, and fault results
with a fractal condition, as illustrated in Figure 6. To perform self-learning in the system,
the system requires big data or a data lake. As shown in Figure 6, the fractal gathers
information from big data and the circumstances. The fractal then decides the required
changes based on data, such as the manufacturing process, selection of new goals, and
reassignment of resources between fractals. Subsequently, the fractal searches for a new
result to ensure better performance as compared to the previous performance of the fractal
itself. After applying the new result, the fractal analyzes and compares the new result
with the old decision information from the knowledge base using AI, heuristics, and
reinforcement learning. Following this feedback, the knowledge base now contains new
decision information. If the fractal requires a new decision to ensure better performance,
the fractal employs the old decision information from the knowledge base. Furthermore,
the fractal will repeat these steps with a learning algorithm. The entire fractal can share
and use the information from the knowledge base.

Figure 6. Self-learnable characteristic for SSrMS.

3.5. Self-Decision-Making

Self-decision-making refers to the ability whereby each fractal can decide the behavior,
goals, and negotiation between fractals. For this purpose, a fractal first receives a signal
that represents a request for adopting a new goal, restructuring processes, or reassigning
resources. Thereafter, the fractal can execute the appropriate job, such as a derived result.
Based on the derived result, the fractal decides the following behavior. The self-decision-
making characteristic is a fundamental feature of SSrMS because most of the technologies
in the SSrMS require the self-decision characteristic. However, self-decision-making does
not imply a fully autonomous decision-making technique. To prevent unexpected errors,
self-decision-making needs to be executed within a limited range, such as by lowering the
fractal’s goal decision, negotiating between fractals, adding/removing fractals based on
equipment failure, etc.

3.6. Self-Regulation

Self-regulation is a characteristic of a data-driven system, and its role involves control-
ling the equipment based on internal data. In SSrMS, each fractal checks the status data
from equipment in real time to adopt appropriate regulations, as illustrated in Figure 7. For
example, when an unusual operation is detected by a fractal from the signal data based
on prediction, the fractals can request a job change or cease operation for maintenance of
equipment. Additionally, the fractals can appropriately control equipment for resource
utilization based on the energy consumption data, Green-BOM data, and inventory data,
etc. Self-regulation is performed via a fractal, which represents the equipment. If a fractal is
removed or unavailable, self-regulation can lead to goal changes or process reconfiguration
in the system. This implies that the regulation triggering conditions in the system are the
abnormal signals detected from equipment due to factors such as equipment malfunction,
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detection of product defects, addition/removal of adjacent equipment, reconfiguration
messages, and demands to alter the goal.

Figure 7. Self-regulation characteristic for SSrMS.

3.7. Self-Execution

Self-execution is aimed at controlling equipment via internal and external data. For
this, the fractal checks the consumption data of adjacent equipment based on the current
equipment and remaining resource level data. Furthermore, environmental information
is used to predict market trends and material prices based on analyses of web data, as
illustrated in Figure 8. Based on the prediction results, the analyzer in the fractal compares
the prediction result and the current status. If required, adjustments in the facility and
scheduling are requested by the resolver in the fractal. Thereafter, the higher-level fractal
receives this adjustment request from the lower-level fractal, which is responsible for
the equipment. The higher-level fractal then decides on process reconfiguration via the
negotiation model. Therefore, self-execution is conducted by the higher-level fractal.
Additionally, using self-execution, the higher-level fractal can request a change in the goal
via forecasting based on certain factors, including market trends, stock market trends, and
customer demands.

Figure 8. Self-execution characteristic for SSrMS.

4. The Architecture of the Smart Self-Reconfigurable Manufacturing System (SSrMS)
4.1. SSrMS Architecture

Currently, the importance of acquiring and utilizing appropriate data for the opti-
mization and development of manufacturing systems is increasing. Most analyses, opti-
mizations, and autonomous functions for SMSs are based on data that can be obtained
from various sources, including the equipment, legacy system, environment, etc. Therefore,
SSrMS also involves the concept of data-driven manufacturing systems.

Based on the characteristics of SSrMS, Figure 9 shows the proposed architecture of
SSrMS. The proposed architecture consists of big data, big data analysis tools, digital twins
(simulation), and a fractal structure. The fractal structure exhibits a recursive shape, where
the highest-level fractal (super-fractal) consists of two fractals (sub-fractals). Furthermore,
these fractals comprise the lower-level fractal (lowest-level). Each fractal has five agents:
the observer, reporter, analyzer, resolver, and organizer. Additionally, SSrMS incorporates
an AI and Q-learning module to support the resolver agent. It executes the search for
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new goals, negotiation between fractals, optimization of fractal status, self-learning, and
restructuring processes. Digital facilities and simulations are some forms of the digital twin.
Before SSrMS adopts a new goal, structure, or manufacturing process, digital facilities
and simulations are used to simulate the digital facilities with the derived solution. These
digital facilities can help improve the stability of the factory, reduce accidental losses, and
improve the self-learning accuracy.

Figure 9. Architecture of SSrMS.

Big data comprise equipment data, the knowledge base, environmental information,
and the legacy system data. Equipment data are collected using the equipment signal of
the database (DB), which consists of the sensor data, parameter data, power utilization
data, resource utilization data, etc. The knowledge base includes previous reconfiguration
result data, Q-learning result data, negotiation result data, metadata of the trained AI, each
fractal’s optimization status data, etc. The knowledge base contains essential information
and data required for the smartization of the self-reconfiguration manufacturing system.
Furthermore, environmental information includes significant amounts of ambiguous infor-
mation from the real-world, such as material price trends, stock market information, new
technology news, and other information that can affect the manufacturing system. Thus,
it is difficult to clean this environmental information and transform it into information.
Hence, data collection technologies are required to acquire data from the Internet, and web-
based survey techniques using AI are adopted to obtain useful environmental information.
This approach can help predict the condition of the system in the future. Based on the
prediction, suitable pathways to realize the system’s goal can be suggested. In this manner,
environmental information affords better reconfiguration directions for the manufacturing
system using the other data included in big data.
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Figure 10 illustrates the data-driven modeling of big data for SSrMS. The data required
for process reconfiguration or goal changes are provided by the legacy systems, environ-
ment information, and equipment signal DB. Process reconfiguration and goal change are
conducted by the goal decision model, negotiation model, and sustainability assessment
method in the fractal. The result of this process reconfiguration and goal change is then
restored in the knowledge base. Digital facilities execute simulations to verify the results
from fractals. Furthermore, actual facilities apply the process reconfiguration and goal
change using fractals. These new goals and manufacturing processes are then updated at
all the fractals.

Figure 10. Data-driven modeling of big data for SSrMS.

The method of acquiring data and synthesizing relevant information from the external
data is based on the environment information, as illustrated in Figure 11. The collection
of web data is performed using AI, which can determine valuable data, including market
trends and material price trends. A prediction method based on AI assesses the future
trends of the market, material prices, etc. Furthermore, the highest-level fractal, as a
representative of the factory, receives the prediction results and performs the analyses.

Figure 11. Environment information in SSrMS.

The legacy system data comprise the data from sources such as product lifecycle
management (PLM), enterprise resources planning (ERP), customer relationship manage-
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ment (CRM), and the manufacturing execution system (MES). These legacy system data
can provide important information, including operation scheduling, planning and actual
operation data, the system’s current status, overall equipment effectiveness (OEE), resource
information, etc. With legacy system data, the manufacturing system can compare the
planning and actual situations of the system and search for the reconfigurable spot to
realize the goal.

Big data analysis tools handle the equipment signal DB, environmental information,
and legacy system data. On receiving an information request from a fractal, the big data
analysis tools collect data from the environment and analyze the data based on the request.
Specifically, large amounts and different types of signal data and legacy system data exist.
Therefore, the system requires an application to efficiently handle this vast amount of data.

4.2. Sequence Diagram of the SSrMS Architecture

The self-reconfiguration procedure in SSrMS architecture is realized by BFU, as shown
in Figure 12. The definition of BFU is similar to that for FrMS. The self-reconfiguration
procedure commences from the big data or operator’s request. SSrMS recognizes the
reconfiguration request information. The observer in BFU then receives this request and
sends it to the analyzer. The analyzer decides to either receive or refuse the request; the
analyzer refuses the request if the fractal is not subject to reconfiguration, malfunctions,
or insufficient capacity. On accepting the request, the resolver receives the information
to be analyzed and decides on the type of reconfiguration suitable for the fractal. Hence,
the resolver decides the reconfiguration method based on the restructuring structure and
sets up the new goal for SSrMS and the reconfiguration processes. Furthermore, the
resolver determines the other participants (usually lower-level fractals) required for the
reconfiguration. Once the participants are decided, the reporter receives a message from the
resolver, which requests other fractals to participate. The reporter then calls the observer of
the other fractals to request joining reconfiguration. Subsequently, the resolver calls the
organizer to check the status of all fractals. The organizer sends a message to the resolver
confirming the status of all fractals. Thereafter, the resolver requests the AI module for
the execution of an optimization job. The AI module requests the previous optimization
results and data from the knowledge base. The knowledge base then sends the requested
data to the AI module and resolver. Based on these data from the knowledge base and the
data from the data lake, the AI module begins to build the model, performs training, and
obtains the result.

Figure 12. Sequence diagram of reconfiguration flow in SSrMS.
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Meanwhile, the resolver attempts to obtain the optimization solution using heuristics
and algorithms. Thus, all the work is performed by the resolver and AI module, wherein
the resolver receives all the information pertaining to the results and decides on the optimal
solution. The optimal solution thus obtained is stored in the knowledge base. Furthermore,
the resolver temporarily calls the organizer to apply the new reconfiguration method. The
organizer sends the new reconfiguration solution directly to the digital facilities. Thereafter,
the digital facilities perform simulations of the digital factory using the new solution. Based
on the simulation results, the resolver assesses the performance of the system. Finally, if
the necessary conditions are satisfied, the resolver makes the final decision to apply the
new reconfiguration solution to the actual factory.

5. Self-Reconfiguration Methods in SSrMS
5.1. Goal Decision Model

There are three methods for process reconfiguration which are the goal decision model,
negotiation model, and sustainability assessment method in SSrMS.

Ryu and Jung [12] suggested the concept of a goal decision model to generate a
system’s goal based on environmental needs. The goal decision model falls under the
category of goal-orientation technologies, which consist of GGP, GHP, and GBP. However,
the reference goal decision model cannot represent all the goals in-depth because the goals
for the manufacturing system are complicated owing to the interdependencies among the
goals. Lee et al. [49,50] suggested a goal decision model mechanism based on the goal
model concept of Ryu and Jung [12]. The goal decision model is a crucial mechanism for
determining the system’s goal. Furthermore, the proposed model features flexibility in
terms of deciding goals. The mechanism of the goal decision model includes five steps, as
illustrated in Figure 13. As shown in Figure 13, the goal decision model can determine the
system’s initial best goal.

Figure 13. Mechanism of goal decision model [49].

In order to perform experiments, a neural network (NN) model has been developed for
implementing the goal decision model by using Python 3.8. To develop the NN model, the
results of NN optimization provided by the Matlab library have been considered. As shown
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in Figure 14, the activation function of the NN is a Gaussian function by data tendency
verification from Matlab. Therefore, the NN includes a regression model with a Gaussian
activation function. The total number of data was 500 and sizes of data for testing and
validation were 50% each. The number of training epochs was 1000. Data used in this study
are artificially made, similar to actual company data. This is because actual data have many
missing values and it may have a negative impact on training and validation. The NN con-
sists of one input layer (5 nodes), four hidden layers (32 nodes-64 nodes-32 nodes-5 nodes),
and one output layer (1 node). As shown in Figure 14, data for the experiment consists of
productivity, efficiency, utilization, flexibility, cost, and profit. The values of productivity,
efficiency, utilization, flexibility, and cost range from 0 to 1, but that of profit ranges from
0 (i.e., zero profit) to 10 (i.e., maximum profit). As illustrated in Figure 14, each fractal has
its own NN to realize its goal, and the result from each fractal can be used as an input value
to realize the system’s goal. Based on the derived value of the system’ goal, the NN can
obtain each fractal’s optimized parameter value. Based on the NN structure, individual
fractals can decide a new goal under the system’s goal in order to reset the goal. Further-
more, the manufacturing system can reset the goal or execute partial reconfiguration in
the system using the proposed model. However, the signal and process data cannot be
easily obtained for experiments. Therefore, the experiment is limited within the dotted box
illustrated in Figure 14.

Figure 14. Overview of experiment for the goal decision model.

As mentioned before, the size of data for testing and validation were 50% each, and
1000 training epochs were adopted. After training the NN, the validation mean squared
error (MSE) value for prediction was 0.031. Furthermore, the predicted initial solution
value from the trained NN was 5.38. When ten is the maximum profit ratio without any
constraints, the value of NN result means the best profit ratio under the constraints, such as
cost, equipment capability, time, and so on. The basic experimental assumption was that the
exact relationship and equation of the data were unknown. However, to verify the trained
neural network, the original and experiment results were compared, as illustrated in Table 3.
The normalization process can provide unified units for different units, such as percentages,
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time, etc. The values in Table 3 are within the range of 0 to 1 or 0 to 10; these values were
normalized from the original data. Therefore, a goal for the system can be derived after
converting the normalized values to the actual values. The difference between the actual
values and the neural network results is 5.28%. In this experiment, this result indicates
that in the real world, manufacturing systems include structured and unstructured data,
such as signal data from equipment, process data from the legacy system, image data for
quality inspection, text data, multimedia data, etc. Furthermore, the number of data points
is extremely high. Given these conditions, a neural network is suitable to derive the goals
for actual manufacturing systems.

Table 3. Actual and experimental result.

System’s Goal (Profit Value) Difference (%)

Actual value 5.61
Neural network result 5.38 5.28%

The goal decision model in SSrMS functions as illustrated in Figure 15. Each piece of
equipment in the factory is connected with each fractal. The highest-level fractal detects
the need to change the goal of the system and first decides the system’s goal. Then, the
lower-level fractals decide their goals to realize the system’s goal. A neural network is used
in the goal decision model to determine each fractal’s goal. Furthermore, the system applies
the new goal to the entire system and each fractal based on the neural network results.

Figure 15. Goal decision model in SSrMS.

5.2. Negotiation Model

The negotiation model can reduce the time and cost of reconfiguration by reconfiguring
a part of the manufacturing process. Furthermore, it is possible to realize the system’s
goal by considering each fractal’s goal. Lee et al. [51] suggested a negotiation model
for reconfiguring the manufacturing process with many negotiations, as illustrated in
Figure 16. The method proposed by Lee et al. [51] consists of three mechanisms: resource-
based negotiation, task-based negotiation, and hybrid-type negotiation. The hybrid-type
negotiation involves the use of the genetic algorithm (GA) to realize the optimization
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process. To execute hybrid-type negotiations, Lee et al. [51] suggested five agent modules:
the bid-manager, agent dispatcher, task agent module, negotiation agent module, and
resource agent module.

Figure 16. Negotiation model in SSrMS.

The hybrid-type negotiation can simultaneously reassign tasks and resources using the
GA. In the hybrid-type negotiation method, the GA derives optimized reallocation. Based
on the results of reallocation from the GA, hybrid-type negotiation realizes optimization.
The hybrid-type negotiation involves three steps to perform negotiations with the GA
as shown in Figures 17 and 18. Steps 1 and 2 of the hybrid-type negotiation process are
shown in Figure 17. Step 1 begins with the bid-manager determining the fractal and then
joining a negotiation process. The bid-manager decides the candidates for negotiation,
and each candidate checks their sub-fractals. If the candidates have sub-fractals, then
all the sub-fractals enter the negotiation process. All the fractals also check priority to
confirm the negotiation participants once the bid-manager determines all candidates.
Fractals with insufficient priority are excluded from the negotiation. Based on step 1, the
fractals are determined to participate in the negotiation. In step 2, the final boundary is
determined according to the highest-level fractal. The highest-level fractal determines the
final boundary of the negotiation.

In step 3, the hybrid-type negotiation process is performed, as shown in Figure 18.
Hybrid-type negotiation covers two cases: negotiation case 1 and negotiation case 2.
Negotiation case 1 refers to the negotiation between multi- and single-agents. Furthermore,
negotiation case 2 refers to the negotiation between multi-agents. A single fractal shares the
resources or tasks under negotiation case 1. By contrast, under negotiation case 2, multiple
fractals assign the resources and tasks using the GA.

In order to perform the experiment by GA, the GA was implemented using Java
Eclipse to verify the hybrid-type negotiation. The population size was set as 100 units,
and the number of iterations was 700. The mutation ratio was set as 0.1. In the GA, a
chromosome consists of two parts indicating the fractal ID and the tasks with sequence.
A gene in the chromosome has two types: fractals and tasks. A fractal gene has information
on unique fractal IDs, which represent each piece of equipment including F1, F2, and F3.
A task gene has information on the job and task, which represents the job and task IDs
(e.g., J1, J2, J3, . . . and T11, T12, T21, T31, . . . ). Furthermore, each task has information
regarding the processing time of every other task. The GA has three objectives, which are
the minimum total task completion time for each fractal (i.e., CF), the minimum workload
of each fractal (i.e., WF), and the minimum total workload of fractals (i.e., WT).

The fitness value of the chromosome is decided by the objective function f (z), which
corresponds to min f (z) = (CF + WF + WT). Each objective in the fitness function is applied
with identical weights. The fitness function is applied to evaluate the fitness of all the
chromosomes in the population. For the fitness evaluation, CF, WF, and WT are computed
for each chromosome in the current generation. If the new chromosome has a higher fitness
value, then the new chromosome is chosen. The recombination method is a two-point
crossover, and fitness selection is a roulette wheel as a random. Two-point crossover was
applied for fractal selection. Two-point crossover covers a larger space than one-point
crossover. Furthermore, two-point crossover is more suitable for solving this problem. The
order crossover method was used for the task sequence. Additionally, the mutation of
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the GA only altered the assignment property of the chromosomes for the fractal selection
and task sequence. The experiment’s objective corresponded to the minimization of work-
load. Data pertaining to the ten fractals and tasks were assumed to be available for the
experiment. To observe the results more clearly, it was assumed that certain tasks impose
heavy workloads on specific fractals as a penalty. For instance, T23 requires 54 min in F3 to
constitute a disadvantage, as illustrated in Table 4. The five fractals join the negotiation
process with four tasks. Hence, F1 operates T21 in J2, T41 in J4, and T23 in J2, whereas F3
operates T31 in J3. In this experiment, the workload reduced to 32 min, and the minimized
total workload was 8 min.

Figure 17. Steps 1 and 2 of hybrid-type negotiation.
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Figure 18. Step 3 of the hybrid-type negotiation process.

Table 4. Experiment result of GA for negotiation model.

(unit: min)

F1 F2 F3 F4 F5

Job 1
T11 2 5 4 1 2
T12 5 4 5 7 5
T13 4 5 5 4 5

Job 2
T21 2 5 4 7 8
T22 5 6 9 8 5
T23 4 5 4 54 5

Job 3

T31 9 8 6 7 9
T32 6 1 2 5 4
T33 2 5 4 2 4
T34 4 5 2 1 5

Job 4
T41 1 5 2 4 12
T42 5 1 2 1 2

5.3. Sustainability Assessment Method

Both sustainability and each fractal’s goal are considered together by the sustainability
assessment method in SSrMS. The proposed method involves conducting an integrated
assessment of system optimization with respect to sustainability. As shown in Figure 19,
the analytic hierarchy process (AHP), Green-BOM, and neural network are utilized in the
proposed method. Sustainability KPIs and their weights are derived by the AHP based
on the determined goal of each fractal. To obtain the new goal, the obtained sustainability
KPIs considering each fractal’s goal are derived by a neural network with the goal decision
model. Furthermore, environmental regulations and other process data are provided by
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the Green-BOM. The new goal obtained via the proposed model is then simulated in digital
facilities to verify the new system optimization with sustainability.

Figure 19. Sustainability assessment method in SSrMS.

The overall procedure for the sustainability assessment is shown in Figure 20. The sus-
tainability KPIs are selected based on the global reporting initiative (GRI) framework [52,53]
or the demand of the system operator. Based on these selected sustainability KPIs, the
system operator implements the AHP to derive the weight of each KPI. Then by BSC, a
sustainability score is then calculated based on the weights from the AHP.

Figure 20. Flow of process reconfiguration and optimization by three methods.

In order to derive the sustainability score, the BSC method consists of three perspec-
tives, including the sustainability dimensions, performance measures, weights from AHP
result, actual performance, standard performance, performance level, and score as shown
in Table 5. Each column in Table 5 can be described as follows:

Table 5. BSC for sustainability measurement (modified from [54]).

Perspective/
Sustainability

Dimension
Performance Measures Weights Actual

Performance
Standard

Performance
Performance

Level Score

Economic
32.90 *

Cost 36.78 50 20 90 10.89
Market presence 63.22 20 10 90 18.72

Environmental

44.00 *
Materials 30.45 95 85 90 12.06
Energy 9.55 98 97 60 2.52
Water 13.86 80 78 60 3.66
Emissions 14.77 10 10 60 3.90
Effluents and waste 10.23 75 76 60 2.70
Products and services 21.14 90 60 90 8.37
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Table 5. Cont.

Perspective/
Sustainability

Dimension
Performance Measures Weights Actual

Performance
Standard

Performance
Performance

Level Score

Social

23.20 *
Employment 23.28 9 12 30 1.62
Labor/management relations 8.62 85 45 90 1.80
Training and education 9.91 24.8 15 90 2.07
Anti-corruption 34.05 98 97 60 4.74
Public policy 9.05 75 30 90 3.58
Marketing communication 15.09 25 10 90 5.97

Total Sustainability Score 73.05

* Total weight of each perspective.

In the first column, perspective/sustainability dimensions represent the sustainability
dimensions, including the economic, environmental, and social dimensions.

In the second column, the performance measures contain the sustainability KPIs from
the GRI framework, which are determined by the system operator.

In the third column, weights are allocated for each performance measure. The bold-
faced italicized letters in the column denote the total weight of each perspective. The total
weight of each perspective corresponds to the sum of the weights of the sustainability KPIs
obtained from the AHP result in performance measures. The weights of each performance
measures in weights is a proportional weights of perspective.

The fourth column contains the actual performance of the company or manufacturing system.
The fifth column contains the standard performance, which expresses the average

performance of the company or manufacturing system. The average performance refers to
the standard level of certain measurements, including energy consumption and emissions
in air and water.

The sixth column contains the performance level, for which the actual performance is
compared with the standard performance. The performance level includes three categories:
excellent, normal, and poor. Excellent indicates that the actual performance exceeds the
standard performance, and the value corresponds to 90. Good performance occurs when
the two performances are equal or at the same level, and the value corresponds to 60. Bad
performance indicates that the standard performance exceeds the actual performance
(i.e., the performance level is as usual), and the value corresponds to 30.

The seventh column contains the sustainability score of each performance measure
and the total sustainability score of the company or system. This measure is equal to the
product of the proportional weight of the measure, the proportional weight of its perspec-
tive, and its performance level. For example, the result of economic performance (cost)
is 32.90% × 36.78% × 90 = 10.89 (weight of economic dimension × weight of economic
performance (cost) × performance level = score).

The sustainability assessment method uses the neural network to assess sustainability
with respect to the system’s goal optimization using the goal decision model. The input
data for the experiment correspond to the lower-fractal’s goal and include productivity,
efficiency, utilization, flexibility, cost, sustainability score, and profit. A total of 500 data
were used in the experiment, and there were no missing values in the data. Prior to the
experiment, all the data were preprocessed and normalized. Python 3.8 is used with
Jupiter notebook as a tool for the neural network implementation. Training and validation
data size is 50%. A total of 500 training epochs were used. The neural network structure
consists of one input layer with six nodes, one hidden layer with twenty-four nodes, and
one output layer with six nodes. It was assumed that the system’s goal corresponds to
maximizing profit. The neural network employs the Gaussian function as an activation
function, because, based on the data tendency and neural network optimization, the Matlab
learner app recommends a Gaussian regression model. After neural network training, the
neural network loss rate and MSE value were close to 0.406. To obtain the result from
the neural network, a few constraints were assumed: the sustainability score must exceed
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0.51, utilization and cost must exceed 0.3, cost is fixed, and usage of resource utilization is
minimal. A sustainability score lower than 0.51 is insufficient for sustainable development.
The initial results of the neural network are listed in Table 6. Based on these results, it can be
concluded that the environmental dimension reduces utilization and increases productivity
via labor resource and the social dimension.

Table 6. Final goal value of the sustainability assessment method via goal decision model.

KPIs Profit Productivity Utilization Flexibility Cost Efficiency Sustainability

Value 6.77 0.82 0.3 0.3 0.3 0.38 0.51

5.4. Reconfiguration Flows in SSrMS Architecture

Figure 21 shows the proposed architecture and methods for SSrMS. The self-reconfiguration
process starts from equipment at left-bottom in Figure 21. In order to set a new goal and
initial manufacturing processes in SSrMS, the goal decision model adopted determines the
goals for machines, workstations, and the entire system. In order to optimize manufac-
turing processes, reconfiguration of such processes is conducted by using the negotiation
model equipped with GA. Additionally, sustainability assessment with the goal decision
model was implemented via the sustainability assessment method. To realize the system’s
goal, an individual fractal decides its own goal based on the system’s goal. Manufacturing
processes are reconfigured by using the negotiation model under scenarios involving addi-
tion/removal of fractals in the system or reallocation of tasks/resources. This negotiation
model can lead to process optimization. Furthermore, the sustainability of the system is
considered, where the sustainability assessment method is used to simultaneously derive
sustainability and fractal goals based on the goal decision model. The proposed assessment
model employs the AHP to determine sustainability-related KPIs and the Green-BOM to
account for environmental regulations.

Figure 21. Process reconfiguration with the proposed methods in SSrMS architecture.

6. Conclusions

This paper proposed the architecture of SSrMS, which is a fully self-reconfiguration-
oriented system. A smart, self-reconfigurable manufacturing system (SSrMS) is an im-
proved system with the SMSs concept based on the features of FrMS. SSrMS aims to design
architecture and methods for complete autonomous and internal optimization via self-
reconfiguration, goal decision, and negotiation between fractals. To realize autonomous
functions for the system, self-control methods are required. Thus, the development of au-
tonomous functions and architecture for autonomous operation is essential. The proposed
SSrMS is suitable for engineering-to-order manufacturing operations, such as injection
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molding, ship manufacturing, aircraft manufacturing, etc., because these types of op-
erations are more compatible with process optimization via process reconfiguration, as
opposed to the removal and adjustment of equipment.

The contributions of this paper include the design of a new architecture and the devel-
opment of autonomous technologies to cope with the paradigm shift caused by the fourth
industrial revolution. The proposed SSrMS exhibits the fractal concept and structure of the
FrMS, given that the concept and theoretical background of the FrMS is closest to those of
SMSs. Furthermore, the FrMS characteristics were optimized for the system as well as for
process self-reconfiguration. Therefore, the SSrMS architecture and methods are orientated
toward autonomous operations for self-reconfiguration. It is expected that the proposed
SSrMS, which has scalable features, can facilitate fundamental studies on SMSs and fully
autonomous systems. The proposed SSrMS architecture represents a significant design for
the autonomous operations required in SMSs. The self-reconfiguration method in SMSs
is afforded by the scalable fractal structure and the various autonomous functions. The
goal decision model signifies a method that considers the system’s goal and the goal of
each piece of equipment. Therefore, the goal decision model can constitute a fundamental
approach to simultaneously realize the local and global optima for SMSs. Additionally, it
contributes toward deriving the system’s goal via an NN based on the complex relationship
between goals. The contribution of the negotiation method involves removing the partial
inefficiencies in the system using the GA. It imparts homeostasis to the system without a
reconfiguration of the entire process. The sustainability assessment corresponds with a sig-
nificant design to simultaneously consider sustainability and the system’s goal. Moreover,
the proposed model considers the operator’s demand, environmental regulations, and the
system’s goal via the AHP, Green-BOM, and NN, respectively.

The proposed SSrMS architecture and methods for autonomous functions represent
the implement of smartization for autonomous operation. Nevertheless, it is beyond the
scope of this study to cover all the related aspects and mechanisms. Furthermore, all of
the data for the experiment is modified from the real data. Therefore, three methods still
remain for the research to improve the method with real data. It is, therefore, expected that
future research can help improve autonomous functions, methods, and mechanisms for
SMSs. Thus, further studies should explore the following areas:

First, the development of big data and environmental information systems should
be explored. The development of big data is essential for the implementation of SMSs,
because SSrMS and SMSs cannot be implemented without data acquisition and utilization.
The environmental information system, data collection, preprocessing, and application
methods are critical technologies for the self-decision making required to implement
autonomous functions. Second, the mechanism of the goal decision model necessitates
improvements based on actual data. The experiment results indicate the feasibility of the
method, although they exhibit limitations in terms of the implementation of the actual
model and the completion level of the NN. Third, the development of a self-learning
module is required to guarantee the accuracy of autonomous decision-making. Self-learning
is an essential technology for realizing the autonomous operation of SSrMS and SMSs
considering environmental changes and system optimization.
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