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Abstract: Automatic building extraction based on high-resolution aerial imagery is an important
challenge with a wide range of practical applications. One of the mainstream methods for extracting
buildings from high-resolution images is deep learning because of its excellent deep feature extraction
capability. However, existing models suffer from the problems of hollow interiors of some buildings
and blurred boundaries. Furthermore, the increase in remote sensing image resolution has also
led to rough segmentation results. To address these issues, we propose a generative adversarial
segmentation network (ASGASN) for pixel-level extraction of buildings. The segmentation network
of this framework adopts an asymmetric encoder–decoder structure. It captures and aggregates
multiscale contextual information using the ASPP module and improves the classification and
localization accuracy of the network using the global convolutional block. The discriminator network
is an adversarial network that correctly discriminates the output of the generator and ground truth
maps and computes multiscale L1 loss by fusing multiscale feature mappings. The segmentation
network and the discriminator network are trained alternately on the WHU building dataset and
the China typical cities building dataset. Experimental results show that the proposed ASGASN can
accurately identify different types of buildings and achieve pixel-level high accuracy extraction of
buildings. Additionally, compared to available deep learning models, ASGASN also achieved the
highest accuracy performance (89.4% and 83.6% IoU on these two datasets, respectively).

Keywords: high-resolution aerial images; generative adversarial network; deep learning;
WHU building dataset; China typical cities building dataset; semantic segmentation

1. Introduction

Automatic building extraction from high-resolution aerial imagery is of great signifi-
cance in a wide range of application domains, such as disaster warning and processing,
economic development assessment, and urban land use analysis [1–5]. In recent years,
the improvement of remote sensing image resolution has made the spectral features of
buildings more obvious and has provided richer semantic and texture features and other
information for building extraction. However, high resolution can also lead to an increase
in interference and redundant information. Therefore, the automatic extraction of buildings
with high accuracy is a challenge to be tackled.

In the last few decades, to make full use of high-resolution remotely sensed imagery
features for building information extraction, methods such as edge extraction, image seg-
mentation, and digital morphology have been applied. These methods have achieved
definite research results [6–10]. For example, the voting method was used to determine
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the orientation of the house edges, and then least squares were used to refine the house
edges [11]. Buildings can be extracted by a multi-scale segmentation method based on area
growth, and the parameters of the best segmentation results are determined by multiple
trials [12]. Building extraction can also be achieved by adding a priori knowledge of the
building shape to the active contour model [13]. In addition, excellent machine learning
classifiers have been used for the extraction of buildings, including boosting [14], sup-
port vector machines (SVM) [15] and random forest [16]. However, the above methods
rely heavily on parameter selection and manually predefined features, leading to some
limitations in practical building extraction.

With the rapid development of computer computing power and an increase in avail-
able data sources, deep learning techniques have been more widely and deeply developed,
especially convolutional neural networks (CNNs) have played an important role in many
fields [17]. Many scholars have used CNN models such as LeNet [18], AlexNet [19], VG-
GNet [20], GoogleNet [21], and ResNet [22], which outperform traditional machine learning
methods, to conduct related studies. However, CNNs perform region division and full
convolution operations for each image element, which is computationally expensive. Mean-
while, the CNN processes the feature map into a fixed length output vector and outputs
the result in the form of a numerical description [23]. Therefore, CNNs are not suitable for
semantic segmentation tasks such as building extraction.

In 2015, Long proposed the Full Convolutional Network (FCN) for classification
at the semantic level [24], which can be adapted to predict each pixel of the original
image to accomplish the task of image semantic segmentation, and became the paradigm
for many classical segmentation networks, mainly including the following. The first is
(1) encoder–decoder neural networks. In the encoder part, the feature maps with smaller
sizes are obtained by multiple downsampling to obtain multi-level semantic information,
and in the decoder part, the final semantic segmentation maps are obtained by decoding
the feature maps of each size. For example, The U-Net [25] method improves image
segmentation accuracy by fusing multiscale information of images based on the symmetric
coding structure through skip-connections. The SegNet [26] method is designed with a
convolutional encoder with pooling and a decoder with deconvolution, which improves the
edge portrayal and reduces the training parameters. The second is (2) image pyramid neural
network, such as the DeepLab series models [27–30]. To better learn the features at different
scales, DeepLabv3+ designs atrous spatial pyramid pooling (ASPP) to obtain more levels of
semantic details, which effectively improves the segmentation accuracy. Meanwhile, these
FCN-based models and their variants are widely used in tasks such as target extraction
and image classification for remote sensing image processing. One scholar [31] added
an attention mechanism with a multiple loss method to U-Net and successfully extracted
buildings from publicly available aerial image datasets. Some scholars [32] improved the
accuracy of small building detection based on residual features and feature pyramidal
multiscale prediction. A team [33] proposed the RFA-U-Net model with a joint attention
mechanism for building extraction. The FCN-based pixel-by-pixel prediction can ensure
the accuracy of individual pixels, but the spatial relationship of the position before the pixel
is often ignored.

In recent years, the emergence of generative adversarial networks (GANs) has pro-
vided an emerging solution thinking for semantic segmentation of building contour extrac-
tion. In our problem setup, the generator of the GAN is used to obtain a pixel-level semantic
segmentation result map, while the discriminator is used to distinguish the segmentation
map from the true coverage. The generator and discriminator are jointly optimized in the
“adversarial” setting, so that the generator gets the best possible result. Methods based on
GAN [34] can enhance the continuity of spatial labels and refine the segmentation results of
the image. A team [35] used the DeepLabv3+ architecture as the basic segmentation model
and the Pix2pix architecture as the GAN model to build a network that could perform
the semantic segmentation task. Abdollahi et al. [36] propose a GAN model with SegNet
and BCovLSTM modules for feature extraction and detection in complex environments,
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which can effectively detect buildings obscured by features. To test the effectiveness of
GAN application, Aunget et al. conducted building extraction experiments using Yangon
city in Myanmar as a test area and obtained the local building footprint [37]. Although
the above techniques made some achievements in solving the building extraction prob-
lem, the extracted building boundaries are not precise enough, and the accuracy can be
further improved.

In order to further improve the accuracy and stability of the results of high-resolution
building extraction and optimize the building boundaries more accurately, this paper
proposes a new automatic building contour extraction network ASGASN. ASGASN has
three main contributions:

(1) ASGASN implements automatic and efficient building segmentation based on GAN.
In this algorithm, the segmentation network provides the class-false a priori knowl-
edge for the training of the discriminator network, and the discriminator network
corrects the learning of the segmentation network through training to make the
classification results more closely match the a posteriori knowledge.

(2) The ASGASN architecture, into which ASPP and skip connections are embedded,
allows features to be extracted from multiple spatial scales and improves seg-
mentation accuracy by fusing multiscale information. The global convolutional
block is also added to make a tight connection between the feature map and the
pixel-by-pixel classifier.

(3) The segmentation and discriminator network are trained alternately by multiscale L1
loss and multiple cross entropy losses, which finally make the best performance of
ASGASN. We conduct relevant experiments on both the WHU building dataset [38]
and the Chinese typical city building dataset [39] to verify the advancedness of the
present network.

2. Methods
2.1. Proposed Network ASGASN

The overall architecture of ASGASN is shown in Figure 1. This network follows
the basic structure of GAN and is divided into segmentation network and discriminator
network. The segmentation network is an asymmetric fully convolutional network, and
the skip connection and ASPP are chosen as the bridge between the encoder and decoder
to classify the input image at the semantic level. The discriminator network has a similar
structure to the classical CNN network and aims at identifying the type of input, which has
three inputs: original images, predicted results, and ground truth labels. The discrimina-
tor network learns potential higher-order feature structures by adversarial training and
feeds them into the segmentation network to guide its learning. As learning proceeds,
the accuracy of the discriminator network in identifying the truth of the input data in-
creases. When the discriminator network has a strong performance but cannot identify
whether the input is a prediction or ground truth, the segmentation network has a strong
segmentation performance.
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Figure 1. The structure of our proposed ASGASN. A are convolutional + batch normalization + Leaky
rectified linear unit (Relu) layers; B is Residual block; ASPP is Atrous Spatial Pyramid Pooling; C is
transposed convolution + batch normalization + Relu layers; D is upsample; E is Global convolutional
block+ batch normalization+ Relu layers; F is concatenation operation; G is skip-connection.

2.2. Segmentation Network

The segmentation network of ASGASN is a horizontal U-shaped asymmetric deep
learning model, with the upper end performing image input and the lower end directly
outputting building extraction results. The detailed structure is given in Figure 2 and
Table 1. As we can see from Table 1, it contains eight encoder blocks, one ASPP module
and nine decoder blocks. The encoder (blocks 1–8) consists of convolutional blocks and
several residual blocks that can extract feature mappings at different levels from global
and local contextual information. The decoder (blocks 10–18) consists of convolutional
blocks, residual blocks and global convolutional blocks. Convolutional blocks are used
to resize feature maps and the change the number of channels, residual blocks are used
to deepen the network layers to prevent network degradation, and upsampling is used
to recover the image details. A skip connection fuses each upsampled mapping with the
corresponding size feature mapping in the encoder. The fusion output is sequentially and
progressively fused with the multilevel feature map and restored to the size of the original
input map. Finally, there is an output layer after the encoder that performs pixelwise
classification. ASPP (block 9) is used as a bridge between upsampling and downsampling,
while extracting multiple scales of semantic information from the small size feature map, so
that better global learning of the feature map can be performed. ASGASN’s detailed blocks
are shown in Table 1: ‘Conv’ stands for Convolutional, ‘ReLU’ stands for Rectified Linear
Unit, ‘BN’ stands for Batch Normalization, and ‘GlobalConv’ denotes Global Convolutional.
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Table 1. The detailed blocks of the proposed ASGASN.

Block Type Kernel Size Input Output

1
Conv1 (7, 7) 3 × 128 × 128 64 × 64 × 64

LeakyReLU1 64 × 64 × 64 64 × 64 × 64
Residule Block1 64 × 64 × 64 64 × 64 × 64

2
Conv2 (5, 5) 64 × 64 × 64 128 × 32 × 32

BN1 + LeakyReLU2 128 × 32 × 32 128 × 32 × 32
Residule Block2 128 × 32 × 32 128 × 32 × 32

3
Conv3 (5, 5) 128 × 32 × 32 256 × 16 × 16

BN2 + LeakyReLU3 256 × 16 × 16 256 × 16 × 16
Residule Block3 256 × 16 × 16 256 × 16 × 16

4
Conv4 (5, 5) 256 × 16 × 16 512 × 8 × 8

BN3 + LeakyReLU4 512 × 8 × 8 512 × 8 × 8
Residule Block4 512 × 8 × 8 512 × 8 × 8

5
Conv5 (5, 5) 512 × 8 × 8 512 × 4 × 4

BN4 + LeakyReLU5 512 × 4 × 4 512 × 4 × 4
Residule Block5 512 × 4 × 4 512 × 4 × 4

6
Conv6 (4, 4) 512 × 4 × 4 1024 × 2 × 2

BN5 + LeakyReLU6 1024 × 2 × 2 1024 × 2 × 2
Conv7 (1, 1) 1024 × 2 × 2 1024 × 2 × 2

7
Conv8 (3, 3) 1024 × 2 × 2 2048 × 1 × 1

BN6 + LeakyReLU7 2048 × 1 × 1 2048 × 1 × 1

8
Conv9 (1, 1) 2048 × 1 × 1 512 × 1 × 1

BN7 + LeakyReLU8 512 × 1 × 1 512 × 1 × 1
9 ASPP 512 × 1 × 1 512 × 1 × 1

10
Conv10 (1, 1) 512 × 1 × 1 2048 × 1 × 1

BN8 + ReLU1 2048 × 1 × 1 2048 × 1 × 1
Upsample1 2048 × 1 × 1 1024 × 2 × 2

11

Conv11 (3, 3) 1024 × 2 × 2 1024 × 2 × 2
BN9 + ReLU2 1024 × 2 × 2 1024 × 2 × 2

Conv12 (1, 1) 1024 × 2 × 2 2048 × 2 × 2
BN10 + ReLU3 2048 × 2 × 2 2048 × 2 × 2

Upsample2 2048 × 2 × 2 2048 × 4 × 4

12

Conv12 (3, 3) 2048 × 4 × 4 512 × 4 × 4
BN10 + ReLU3 512 × 4 × 4 512 × 4 × 4
Residule Block6 512 × 4 × 4 512 × 4 × 4

Upsample3 512 × 4 × 4 1024 × 8 × 8

13

GlobalConv Block1 1024 × 8 × 8 512 × 8 × 8
BN11 + ReLU4 512 × 8 × 8 512 × 8 × 8
Residule Block7 512 × 8 × 8 512 × 8 × 8

Upsample4 512 × 8 × 8 1024 × 16 × 16

14

GlobalConv Block2 1024 × 16 × 16 256 × 16 × 16
BN12 + ReLU5 256 × 16 × 16 256 × 16 × 16
Residule Block8 256 × 16 × 16 256 × 16 × 16

Upsample5 256 × 16 × 16 512 × 32 × 32

15

GlobalConv Block3 512 × 32 × 32 128 × 32 × 32
BN13 + ReLU6 128 × 32 × 32 128 × 32 × 32
Residule Block9 128 × 32 × 32 128 × 32 × 32

Upsample6 128 × 32 × 32 256 × 64 × 64

16

GlobalConv Block4 256 × 64 × 64 64 × 64 × 64
BN14 + ReLU7 64 × 64 × 64 64 × 64 × 64

Residule Block10 64 × 64 × 64 64 × 64 × 64
Upsample7 64 × 64 × 64 128 × 128 × 128

17

GlobalConv Block5 128 × 128 × 128 64 × 128 × 128
BN15 + ReLU8 64 × 128 × 128 64 × 128 × 128

Residule Block11 64 × 128 × 128 64 × 128 × 128
Upsample8 64 × 128 × 128 64 × 128 × 128

18 Conv13 (5, 5) 64 × 128 × 128 3 × 128 × 128
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2.2.1. Subsubsection Atrous Spatial Pyramid Pooling

The ASPP draws from DeepLabv3+ [29]. The details of the ASPP structure are shown
in Figure 3. It has several parallel atrous convolutions containing different rete, and the
final output is performed by feature map fusion. Four different rates of atrous convo-
lutions operate in parallel to ensure better retention of semantic information in images
while keeping the network computation constant. After the ASPP model, different scale
feature maps containing rich semantic features can be obtained, and feature map fusion is
finally performed to effectively improve the feature sensitivity of the model [40]. In this
network, we employed the ASPP module with image pooling and 1 × 1 convolution and
three-branches of atrous convolution with different rates to effectively capture multiscale
contextual information.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 21 

 

 
Figure 3. The structure of atrous spatial pyramid pooling. 

2.2.2. Residual Block 
The residual block was proposed by He et al. [41], and a good solution to the phe-

nomenon that increasing the network depth tends to cause gradient dispersion and gra-
dient explosion. Figure 4 shows the specific structure of the residual block. The input im-
age feature maps are first passed through convolutional modules with 1 × 1, 3 × 3, and 1 × 
1 convolutional kernels and then fused with the initial feature maps by skip connection to 
obtain new feature maps for output. In this work, we designed the residual block into the 
segmentation network to help improve network performance and prevent network deg-
radation. 

 
Figure 4. The structure of residual block. 

2.2.3. Global Convolutional Block 
Semantic segmentation for extracting buildings based on remote sensing images re-

quires intensive pixel prediction when both classification and localization tasks need to 
be performed. As shown in Figure 5b, the traditional semantic segmentation approach 

Figure 3. The structure of atrous spatial pyramid pooling.



Appl. Sci. 2022, 12, 5151 7 of 21

2.2.2. Residual Block

The residual block was proposed by He et al. [41], and a good solution to the phe-
nomenon that increasing the network depth tends to cause gradient dispersion and gradient
explosion. Figure 4 shows the specific structure of the residual block. The input image
feature maps are first passed through convolutional modules with 1 × 1, 3 × 3, and
1 × 1 convolutional kernels and then fused with the initial feature maps by skip con-
nection to obtain new feature maps for output. In this work, we designed the residual
block into the segmentation network to help improve network performance and prevent
network degradation.
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2.2.3. Global Convolutional Block

Semantic segmentation for extracting buildings based on remote sensing images
requires intensive pixel prediction when both classification and localization tasks need to be
performed. As shown in Figure 5b, the traditional semantic segmentation approach focuses
on the localization problem, but this may reduce the classification performance. We follow
the idea of global convolutional [42] and consider two points: from the localization point
of view, the model should use full convolution to maintain the localization performance;
from the classification point of view, a larger-size kernel should be used in the network
structure to make a tight connection between the feature map and the pixel-by-pixel
classifier. Therefore, the global convolutional block is used in the segmentation network
to improve the classification and localization accuracy of the network. The details of the
global convolutional block structure are shown in Figure 5d; it uses a two-branch structure,
with the left branch using k × 1 + 1 × k convolution processing, while the right branch
uses a combination of 1 × k + k × 1 for the final feature map fusion to ensure sufficient
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processing in the k × k region. It also ensures a reduction in computation with a certain
feeling of wildness.
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2.3. Discriminator Network

There are two kinds of inputs in the discriminator network: original images fused with
the predicted results mapping and original images fused with the ground truths. Figure 6
illustrates the specific structure of the discriminatory network. It first goes through five con-
volutional and global convolutional blocks, then follows convolution, batch normalization,
and ReLU layers, and finally generates a distribution map through a convolution-sigmoid
layer. To better obtain the spatial and positional relationships between pixels, we obtain
global information by fusing semantic feature maps at different levels. Finally, we adjust the
learning and training of the network by calculating multiscale L1 loss for back propagation.
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2.4. Loss Function

In order to optimize the performance of ASGASN, we train the network by a dual
loss function. The discriminator network is first trained with multi-scale L1 loss, and the
segmentation network is trained using cross-entropy loss on the basis of back-propagation.
The multi-scale L1 loss is defined as:

LC = − 1
N

N

∑
n=1

lmae( fC(xn, S(xn)), fC(xn, yn)) (1)
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where (xn, S(xn)) is the concatenation of original images and predicted result, yn is the
ground truth, fC(x) denotes the semantic features obtained from x at different levels, lmae
is the L1 distance. lmae is defined as:

lmae
(

fC(x), fC
(
x′
))

=
1
L

L

∑
i=1
‖ f i

C(x)− f i
C
(

x′
)
‖1 (2)

where L represents the sum of all feature sizes in the segmentation, f i
C(x) denotes the

features characteristics in a single scale i.

LS = − 1
N
(y(xn)log(S(xn)) + (1− y(xn))log(1− S(xn)))− LC (3)

where y(xn) denotes the true distribution of the ground in the nth remote sensing image.

2.5. Flowchart

The training and testing process of building segmentation based on ASGASN is shown
in Figure 7. The left side of the dashed line shows the training process of ASGASN. First,
the original image and the ground truth are input to the segmentation network to obtain
the corresponding prediction results. Then, the discriminator network discriminates the
ground truth from the predicted results. In the discriminator network, the multiscale L1
loss is obtained by computing the difference between the predicted result and the ground
truth. Meanwhile, multiscale L1 loss and cross-entropy losses are back-propagated using
gradient descent, and the parameters of the whole network are continuously updated until
the training is completed. The right side of the dashed line shows the testing process of
ASGASN. In the testing process, only the original images need to be input into the trained
segmentation network to obtain the building extraction results.
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2.6. Pixel Analysis

The ASGASN proposed in this paper is a pixel-level building extraction of the high-
resolution aerial imagery, that is, a category attribution for each pixel on the image. The
input of the network is a cut subgraph of the training data after data enhancement, and
the output image has the same size as the input image, and the value of each pixel point
indicates the predicted category value of that point. This pixel-level analysis allows for
more accurate extraction of building contour information, such as small depressions or
protrusions. It also improves the recognition of small-sized buildings, so that the different
types of buildings in the whole image can be acquired more completely. In addition, some
open-source software such as QGIS is also based on pixel analysis for snow mapping and
dew volume estimation [43,44].

3. Experiment Dataset and Evaluation
3.1. Experiment Data

The first dataset used in this study is the WHU building dataset [38] from the New
Zealand Land Information Service website. The WHU dataset covers 450 km2 of land
on the ground and was selected from approximately 22,000 individual buildings in the
Christchurch area with a spatial resolution of 0.3 m. The dataset provides shapefile format
data of buildings as well as rasterized data. Figure 8 is an example of the original images
and their corresponding ground truths. White represents buildings, and black represents
the background. The second dataset used in this study is the China typical cities (CHN)
building dataset [39]. The original data were derived from Google’s Class 19 satellite
imagery with a ground resolution of 0.29 m. The sample dataset covers a total area of
approximately 120 km2. This dataset contains a sample of 7260 image areas, with a total of
63,886 buildings, distributed among four cities: Beijing, Shanghai, Shenzhen and Wuhan.
Figure 9 shows the original image from the dataset and its corresponding ground truth.
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3.2. Data Processing

The data enhancement method increases the training sample by sample expansion to
avoid overfitting of the model [45]. In this study, the samples were subjected to vertical and
horizontal mirror flips as well as rotations of different angles. Figure 10 shows an example
of the imagery after data processing and enhancement.
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3.3. Experiment Settings

This experiment was conducted based on the PyTorch deep learning framework with
an NVIDIA GeForce RTX 3070 graphics card. The images in the dataset were randomly
cropped to 256 × 256 pixels to better utilize the power of the GPU and improve com-
putational efficiency. In the parameter setting, the most suitable model parameters were
finally determined through several controlled variable experiments. To avoid the imbalance
caused by the strong discriminator network between the two models, the optimization
goal of the discriminator network was divided by two to reduce the learning speed of the
segmentation network. To accommodate the memory limitation of the computer GPU, the
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model was trained by inputting eight images per batch and training 200 epochs to obtain
the optimal model parameters for each of the two data sets.

3.4. Evaluation Metrics

In this paper, we experimentally test the validity and accuracy of each model and
evaluate the model performance based on several metrics: the ‘overall accuracy’ (OA),
‘precision’, ‘recall’, ‘F1-score’, and intersection over union (‘IoU’). The five metrics are
presented as follows:

1. OA refers to the proportion of correctly predicted building and background pixels to
all pixels in the image:

OA =
TP + TN

TP + TN + FP + FN
(4)

where TP represents the number of buildings extracted as buildings and the actual
number of buildings; FP represents the number of buildings extracted as buildings and
the actual number of backgrounds; TN represents the number of buildings extracted
as backgrounds and the actual number of backgrounds; and FN represents the number
of buildings extracted as backgrounds and the actual number of buildings.

2 Recall refers to the proportion of correctly predicted building pixels in the image to
the true value pixels in the building area:

Precision =
TP

TP + FP
(5)

3 Precision refers to proportion of correctly predicted building pixels to all predicted
building pixels in the image:

Recall =
TP

TP + FN
(6)

4 F1-score represents the weighted average of OA and Precision:

F1 =
2(

1
Precision

)
+

(
1

Recall

) (7)

5 IoU, which can describe segment-level accuracy:

IoU =
TP

TP + FP + FN
(8)

3.5. Model Comparisons

FCN8s: FCN is based on VGG and completes the conversion from a classification
model to a semantic segmentation model by replacing the fully concatenated layer with an
inverse convolution layer [23], pioneering the application of fully convolutional networks to
image segmentation. The FCN upsamples the feature maps obtained from the convolution
layer and classifies them for each pixel while recovering the feature map size.

PSPNet: Zhao et al. [46] proposed a pyramid pooling module (PSPNet) that aggre-
gates contextual information based on different regions and has the ability to mine global
contextual information. Based on the pixel-by-pixel prediction, PSPNet also mines the
global information of the remote sensing imagery to improve the accuracy of predicting
features through multi-scale information aggregation.

SegNet: SegNet [25] is an FCN-based encoder–decoder structured semantic segmenta-
tion network with a max pooling operation. Such a structural design allows the network to
upsample the underlying information input feature maps. Therefore, SegNet has better
performance and efficiency in semantic segmentation.
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U-Net: U-Net [24] is a classical architecture with a symmetric encoder–decoder struc-
ture. The compressed paths in U-Net are used to better capture feature information and
features, and their symmetric extended paths can restore feature map size, while fusion
of feature maps is performed by jumping connections to retain the maximum amount of
important feature information. Due to its good robustness, U-Net has been widely used as
a base framework for many segmentation models in recent years.

4. Results
4.1. Experimental Results on the WHU Dataset

In order to verify the effectiveness of the model for buildings, this paper conducted
building extraction experiments based on the WHU dataset and FCN8s, PSPNet, SegNet,
and U-Net models, and the extraction results are shown in Figure 11. Overall, PSPNet
returns more false negatives (blue) and the fewest true positive (green), while FCN8s got the
most false positives (red). Although both SegNet and U-Net return more positives (green)
results, SegNet obtains more false negatives (blue) than U-Net. In contrast, ASGASN shows
significantly fewer false positives (red) and false negatives (blue) than the other models
and the extracted building outline is closer to the real situation on the ground.

The following is a comparative analysis of the extraction results for different types
of buildings. The red boxes in the first column show the extraction results of different
models for irregular buildings. FCN8s, PSPNet, and SegNet only extracted a part of the
buildings, and a considerable part was not detected. The U-Net model extracts the integrity
of buildings better than these three models but still suffers from the problem of fine blurred
edges. ASGASN extraction is relatively complete, with clear building boundaries and
basically no voids. The red box in the second column shows the extraction of buildings
at the edge of the image by different models. FCN8s, PSPNet, SegNet, and U-Net poorly
extract buildings, all failing to accurately extract the boundaries of buildings and, in some
cases, not detecting buildings at all. ASGASN can detect all buildings; although there are a
few false positives (red), ASGASN still obtains a smoother edge for the building outline.
The red box in the third column shows the extraction of different models for small-scale
buildings. FCN8s, PSPNet, SegNet, and U-Net are basically unable to extract buildings
and only extract sporadic patches in the interior. ASGASN can detect buildings at smaller
scales and extract a higher degree of completeness. The red box in the fourth column shows
the extraction of regular buildings by different models. The PSPNet building extraction is
the worst as basically no edge details are detected. FCN8s, SegNet, and U-Net extracted
buildings have more accurate edges, but still result in false negatives (blue). ASGASN
extracts the edges of the building outline more smoothly and accurately, and the integrity
of the building interior is higher. Therefore, ASGASN achieves the best extraction results.

Table 2 shows the comparison of the results of all models for each evaluation metric,
and ASGASN achieved the highest scores in four metrics. Among them, the OA of ASGASN
is 2.3% better than SegNet, which has the highest accuracy among the other models. For
recall, the performance of U-Net and the proposed ASGASN is significantly better than
that of the other three methods. ASGASN has the highest performance, which is 4.4%
higher than that of U-Net. The ASGASN F1-score reached 94.4%, which is 3.4%, 5.3%,
13.0% and 5.3% higher than those of U-Net, SegNet, PSPNet and FCN8s, respectively. The
cross-convergence ratios increased by 3.5%, 9.2%, 17.2% and 9.1% relative to U-Net, SegNet,
PSPNet and FCN8s, respectively.
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Table 2. Quantitative comparison with the state-of-the-art models on the WHU dataset. The highest
value for each metric is marked as bold.

Metrics Methods Image1 Image2 Image3 Image4 Mean

OA

FCN8s 0.938 0.945 0.963 0.938 0.946
PSPNet 0.931 0.899 0.927 0.906 0.915
SegNet 0.951 0.938 0.973 0.944 0.951
U-Net 0.973 0.953 0.969 0.959 0.936

ASGASN 0.977 0.971 0.981 0.968 0.974

Precision

FCN8s 0.967 0.953 0.876 0.925 0.931
PSPNet 0.944 0.921 0.924 0.926 0.928
SegNet 0.954 0.955 0.954 0.957 0.955
U-Net 0.938 0.961 0.913 0.959 0.942

ASGASN 0.947 0.937 0.936 0.932 0.938

Recall

FCN8s 0.785 0.874 0.897 0.871 0.856
PSPNet 0.779 0.787 0.703 0.787 0.764
SegNet 0.804 0.828 0.864 0.836 0.833
U-Net 0.939 0.889 0.899 0.901 0.907

ASGASN 0.948 0.962 0.936 0.955 0.951

F1-score

FCN8s 0.867 0.912 0.887 0.897 0.891
PSPNet 0.854 0.849 0.703 0.851 0.814
SegNet 0.873 0.887 0.907 0.893 0.891
U-Net 0.939 0.923 0.906 0.929 0.924

ASGASN 0.947 0.951 0.936 0.943 0.944

IoU

FCN8s 0.765 0.838 0.797 0.814 0.803
PSPNet 0.745 0.737 0.665 0.741 0.722
SegNet 0.775 0.797 0.831 0.806 0.802
U-Net 0.885 0.858 0.828 0.867 0.859

ASGASN 0.901 0.904 0.881 0.893 0.894
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4.2. Experimental Results on the CHN Dataset

Figure 12 shows the building extraction results of different models on the CHN dataset.
Overall, ASGASN, U-Net and SegNet have significantly higher performance than FCN8s
and PSPNet. FCN8s and PSPNet can only obtain the general location of the building, and
have difficulty in extracting detailed information of buildings. In particular, for Image
4, both models return too many false positives (blue), indicating that there are missing
buildings in the extraction results. Between ASGASN, U-Net and SegNet, ASGASN returns
the most negatives (green) and has basically no voids in the extracted buildings. In contrast,
ASGASN gives a more accurate building profile and no voids in the results. In order to
evaluate the performance of each network more objectively, we calculated their evaluation
metrics in this test set as shown in Table 3. Compared to other models, ASGASN has the
highest scores on all four metrics. Among them, U-Net has the highest performance apart
from ASGASN. Compared to U-Net, ASGASN improved 0.6% in F1 score (0.905 vs. 0.911)
and 0.9% in IoU (0.827 vs. 0.836).
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Table 3. Quantitative comparison with the state-of-the-art models on the CHN dataset. The highest
value for each metric is marked as bold.

Metrics Methods Image1 Image2 Image3 Image4 Mean

OA

FCN8s 0.861 0.883 0.812 0.811 0.841
PSPNet 0.917 0.883 0.781 0.813 0.848
SegNet 0.967 0.932 0.818 0.882 0.899
U-Net 0.961 0.961 0.846 0.935 0.925

ASGASN 0.976 0.946 0.848 0.937 0.926

Precision

FCN8s 0.967 0.758 0.921 0.959 0.901
PSPNet 0.946 0.882 0.964 0.941 0.933
SegNet 0.958 0.866 0.972 0.943 0.934
U-Net 0.949 0.883 0.963 0.932 0.931

ASGASN 0.961 0.852 0.953 0.919 0.921

Recall

FCN8s 0.644 0.848 0.801 0.641 0.733
PSPNet 0.741 0.695 0.744 0.674 0.713
SegNet 0.887 0.821 0.719 0.729 0.789
U-Net 0.875 0.948 0.813 0.896 0.833

ASGASN 0.944 0.948 0.818 0.901 0.902

F1-score

FCN8s 0.773 0.801 0.856 0.768 0.799
PSPNet 0.831 0.777 0.841 0.785 0.808
SegNet 0.921 0.843 0.827 0.822 0.853
U-Net 0.911 0.914 0.882 0.914 0.905

ASGASN 0.952 0.897 0.883 0.910 0.911

IoU

FCN8s 0.631 0.668 0.749 0.624 0.688
PSPNet 0.710 0.636 0.724 0.647 0.679
SegNet 0.854 0.729 0.705 0.698 0.746
U-Net 0.836 0.843 0.789 0.842 0.827

ASGASN 0.908 0.814 0.791 0.834 0.836
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5. Discussion
5.1. About the Proposed ASGASN Model

In recent years, there have been breakthroughs in deep learning architectures for
semantic annotation of high-resolution images, which provide a completely new way of
thinking for high-precision extraction of buildings. Some of these advanced FCN-based
models (e.g., USPP [2], ARC-Net [4], and MC-FCN [47]) have improved the learning ability
of image features and have better classification results. However, the contours extracted by
existing networks are not accurate enough in the face of identical objects of various shapes,
textures and sizes in high-resolution remote sensing images.

In this paper, we designed a new generative adversarial network with skip connections
and ASPP for semantic segmentation, called ASGASN. The model has three key innovations.
(1) The main contribution of this study is to apply the self-adversarial property of GAN
to the automatic segmentation of buildings and develop a new network named ASGASN.
While the more common segmentation networks are mainly based on the FCN architecture,
which mainly controls the training of the network through the loss function and lacks the
self-optimization of the network. We can intuitively see from the content of the red box
in Figure 11 that the adversarial learning feature of ASGASN can extract some buildings
that cannot be recognized by the FCN framework.(2) In order to better obtain the detailed
features of the building outline, the segmentation network of the architecture uses a larger
convolutional kernel and global convolutional block to expand the semantic information
receiving domain, and the classical combination of ASPP+ skip connection is added to
consider the contextual semantic information, which effectively improves the sensitivity of
the model to the building. (3) To improve the discriminator network’s ability to discriminate
true or false, the multi-level downsampled feature maps are fused and ultimately guide
the training of the entire ASGASN. Through these three innovations, ASGASN achieves a
good performance improvement and can extract different types of building contours more
accurately. The OA of the ASGASN on the WHU and China typical city building datasets
are 97.4% and 92.6%, respectively, with F1-scores of 94.4% and 91.1%, respectively, and IoU
values of 89.4% and 83.6%, respectively. Moreover, these results demonstrate the practical
performance of ASGASN in real-world application scenarios.

5.2. Limitations

Despite the favorable performance in both qualitative analysis and quantitative evalu-
ation, ASGASN still has certain limitations. The learning of the ASGASN model relies on a
large number of training samples and performs poorly in classes with few training samples.
In some areas, such as remotely sensed feature extraction, large amounts of data often lead
to large costs. This requires our model to perform well against small sample data. In the
future, it is critical to address small training samples through data enhancement techniques
and semisupervised semantic segmentation techniques, with a focus on improving the
accuracy of small sample categories.

6. Conclusions

In this paper, we propose a GAN framework called ASGASN for efficient and accurate
automatic building segmentation from high-resolution remote sensing images. AS-GASN
consists of a segmentation network and a discriminator network, which are used to obtain
building segmentation results and to distinguish segmentation results from ground truth,
respectively. Model training as well as comparative analysis experiments based on WHU
dataset as well as a CHN dataset show that ASGASN extracts smoother and more accurate
building contour edges, higher integrity of building interiors, and better performance for
different types of buildings. The following conclusions are obtained based on the study.

(1) ASGASN using the adversarial training strategy can pay more attention to the rela-
tionship between pixels, improve the continuity of segmentation results, and make
the extracted building boundaries clearer.
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(2) ASGASN introduces depth-separable convolution and global convolution to im-prove
the classification and localization accuracy of the model, and uses ASPP to improve
the model’s ability to perceive buildings at different scales. These measures allow the
network to obtain building extraction results that are closer to the ground truth.

(3) The wide applicability of ASGASN for remote sensing images is greatly improved
compared with other networks. The building extraction results on the WHU dataset
show that ASGASN can get better extraction results for different types of buildings.
Additionally, in the quantitative evaluation metrics of both datasets, the method in
this paper achieves better score performance.

In the future, we plan on conducting research related to the field of deep neural
network security such as robustness testing of models [48–50]. Meanwhile, we will consider
combining with unsupervised classification and other algorithms to further improve the
generalization ability of the model so that our model can be better applied to engineering
fields such as urban planning and built-up area change detection.
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