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Abstract: Mechanical ventilation has a great impact on building simulation performance, such as
indoor environment quality and building energy consumption. However, there is still a lack of
accurate mechanical ventilation models established from long-term field data that can effectively
predict building performance. In this study, one-year measurements on mechanical ventilation
operation behavior were collected from 85 apartments, which were conducted with a mechanical
ventilation system of the same brand in cold regions of North China. This permitted statistical
analysis and clustering of the mechanical ventilation operation behavior by using the K-means
method, leading to five behavior patterns. The results showed that 24% households operated
mechanical ventilation system nearly all day, and there was a large difference in usage behaviors
between the split system and the centralized system. Furthermore, two classes of models based
on random forest and logistic regression were developed for predicting mechanical ventilation
system operation (on/off) behavior. The models based on random forest showed high accuracy as it
resulted in a 0.992 average in predictions. These models using field data can guide the selection of
accurate input boundary conditions of mechanical ventilation and improve the accuracy of dwelling
numerical simulations.

Keywords: mechanical ventilation operation behavior; machine learning; predictive model; residential
building

1. Introduction

Modern people spend 80–90% of their time indoors [1,2], and most diseases related to
environmental exposures stem from indoor air exposure [3]. For example, exposure to high
PM2.5 concentrations can cause chronic respiratory symptoms [4], even lung cancer [5],
while other air pollutants scuh as the ozone can affect cardiovascular health [6–8]. Ventila-
tion is effective in diluting or removing indoor air pollutants, for which the methods can
be categorized into two main types, i.e., natural and mechanical. Mechanical ventilation
is more effective and reliable than natural ventilation for improving indoor air quality
and comfort. People have started to pay increasing attention to the improvement of in-
door environment in recent years, making mechanical ventilation systems become popular
in newly built or renovated apartments. To develop reasonable ventilation strategies in
residential buildings, it is necessary to study mechanical ventilation system operation
behaviors of residents.

Previous studies on mechanical ventilation system operation behavior mainly fo-
cused on behavior patterns, the impact on indoor environment and energy consump-
tion. Lai et al. [9] conducted an investigation on the usage of mechanical ventilation in
46 dwellings in different cities in China, finding that the daily mechanical ventilation
duration was 7.2 h on average and there were large differences in ventilation duration
among climate regions and seasons. Zhao and Liu [10] conducted a measurement study on
36 apartments and found that the duration of mechanical ventilation systems operation
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increased as outdoor PM2.5 concentrations increased. Zhao [11] analyzed the indoor climate
of nine households and found that operating mechanical ventilation system in winter in
Urumqi, China, reduced indoor temperatures by 1.6 K and humidity by 3% on average,
and residents were more likely to sense dryness. Mechanical ventilation systems were also
found to have positive effects on the different pollutants (e.g., CO2, sub-micron particles
and PM10) [12–14], but the relevant cost can be more than twice of that for natural ventila-
tion [15]. Park et al. [16] conducted a survey of 139 residential apartments in Seoul, Korea,
and found that about 68.3% of the occupants did not use mechanical ventilation fans during
the heating period because of the increasing costs in heating energy. Kim et al. [17] found
that CO2 concentrations were the most influential driver for occupant ventilation behavior.

To design automatic, efficient and energy-saving ventilation, building simulation
performance is widely used [18], for which the operation behavior of the mechanical
ventilation system is one of the important input items. However, most existing studies used
the fixed schedule and ventilation volume to describe the operation state of mechanical
ventilation system. Some studies used idealized feedback set mode, in which the system will
switch on when indoor CO2 and PM2.5 concentrations are over the preset thresholds [15,19],
or economizing strategy, for which the supply airflow of mechanical ventilation system
is automatically sized when the outdoor air temperature is low enough to provide free-
cooling effectively [20]. In general, these methods cannot well represent the complex and
changeable occupant mechanical ventilation behavior in reality, which can result in large
discrepancies between the predicted results and the measured data [18,21]. To improve the
accuracy in dynamic building performance simulation, there is a need to develop accurate
mechanical ventilation models with field data.

Currently, with the development of IoT (Internet of Things) and big data, by com-
bining computer science, statistics and database knowledge, machine learning techniques
have been widely used to develop occupant behavior predictive model with improved
performance. Ren et al. [22] used clustering analysis to identify the motivation patterns of
the mechanical ventilation flowrate adjustment behaviors from 10 dwellings. Liu et al. [23]
found that the air conditioner’s operation behavior models developed by ANN and GBDT
algorithms showed higher accuracy than logistic regression. Cho et al. [24] applied Gener-
alized Additive Models to analyze occupants’ window-opening behavior. Using occupant
data from commercial buildings in Germany, Markovic et al. [25] proposed a window
opening model with deep learning methods, and the evaluation accuracy was between
86 and 89%. Mo et al. [26] studied the prediction model of occupant window behavior
in residential buildings and concluded that the XGBoost algorithm showed better perfor-
mance with high accuracies of around 80%. However, studies on mechanical ventilation
operation behavior are limited.

In order to narrow the deviation between simulation results and reality, in this study,
the actual environment parameters and mechanical ventilation behavior data of residents
were collected from 85 houses in Hebei province and Beijing and Tianjin in China. Moreover,
the behavior patterns of two types of ventilation systems (i.e., split and centralized) were
investigated by statistical analysis. Moreover, logistic regression and random forest models
were built using the collected data, and their predictive performance were evaluated.

2. Methods and Data
2.1. Monitored Households and Mechanical Ventilation System

The climate zone distributions of China [23] and the location and quantity distribution
of the monitored households are shown in Figure 1. These households were in the cold
region of northern China. They were in Beijing, Tianjin and six cities of Hebei province
(Shijiazhuang, Baoding, Langfang, Cangzhou, Tangshan and Handan). All these house-
holds were using a mechanical ventilation system of the same brand. There were two types
of systems, either split or centralized, with schematics provided in Figure 2 and relevant
parameters listed in Table 1.
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Parameter Split Centralized 
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Noise(dB) 32–49 29–56 
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monitored households. Beijing, Tianjin and Hebei were the cities and province investigated. SS is the
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Figure 2. Schematics of the (a) split and (b) centralized mechanical ventilation systems in buildings.

Table 1. Parameters of mechanical ventilation system.

Parameter Split Centralized

Air flow (m3/h) 60–130 100–500
Usage area (m2) 30 120–180

Rated power (W) 22 165
Noise (dB) 32–49 29–56

Product size (mm) 840 × 300 × 185 1541 × 600 × 405
Net weight (kg) 13.8 65

The split system is a supply ventilation system with one air inlet [9]. Each room uses
it independently. In this study, most split systems were installed in bedrooms. It uses a
fan to force outdoor fresh air into the room through the filter element, while the indoor
exhausted air leaks out through the cracks and holes of the building. The centralized system
is an energy recovery ventilation system with ducts. It can generally be used in the entire
house. The fresh air is introduced and sent to each room through the air inlet duct, and the
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exhausted air is discharged outdoors through the exhaust duct. Meanwhile, the operation
of the heat exchange unit makes the occupant feel more thermally comfortable and saves
heating loads in the winter season and cooling loads in the summer season.

2.2. Long-Term Field Data Collection and Preprocessing

The data in this research were collected from 1 January 2018 to 31 December 2018. A
sensor module applied to the mechanical ventilation system was used to monitor indoor
environmental parameters including temperature, CO2 and PM2.5 concentration. In ad-
dition, the system’s status (i.e., power on/off) and air flow were collected in every 5 min.
Outdoor environmental parameters including temperature, relative humidity and PM2.5
concentrations were obtained from the weather stations near the monitored households
at a time interval of 2 h. The timestamp interval of outdoor environmental data was pre-
processed as 5 min by forward filling, which is consistent with indoor environmental data.
Missing values, outliers and inconsistencies were removed and forward filled.

2.3. Model
2.3.1. K-Means

Clustering not only can be used as a separate process to find the internal structure
and regularity of data but also can be used as a precursor process for supervised learning
tasks such as classification. K-means algorithm is one of the widely utilized clustering
algorithm [27]. In this study, the K-means algorithm was used to for clustering and
analyzing the similarities and differences of the mechanical ventilation operation behavior
of occupants.

Given a sample set X = {x1, x2, . . . , xn}, the K-means algorithm divides X into K
clusters C. Each cluster has its “centroid” µj (j = 1, 2, . . . , K) obtained by averaging the
samples in this cluster. The K-means algorithm aims to select the optimal cluster partition
by minimizing the squared error.

∑n
i=0 min(

∥∥xi − µj
∥∥2) (1)

The algorithm is composed of three steps. Firstly, k centroids are initialized, where
a naive method is to randomly choose k samples from X. Secondly, each sample in X is
assigned to its nearest centroid. Thirdly, the mean value of the samples for each cluster as
the new centroid is recalculated. The differences between the old and the new centroids are
computed, and the algorithm repeats the last two steps unless the difference is less than
a threshold.

The Silhouette Coefficient is usually used to evaluate the performance of a cluster
analysis without knowing the true cluster label [28]. A higher Silhouette Coefficient score
indicates a model with better defined clusters:

S =
∑n

i=1
b(i)−a(i)

max{a(i),b(i)}
n

(2)

where S is the Silhouette Coefficient score, a(i) is the average distance between sample i
and all other samples within the same cluster and b(i) is the minimum average distance
between i and all samples in any other clusters.

2.3.2. Logistic Regression

In this study, sets 0 and 1 denote the off and on states of the mechanical ventilation
system’s status, respectively. Thus, the prediction model can be a binary classification
problem. Logistic regression algorithm is a classic classification algorithm [29] and has
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been widely used in modeling occupant behavior [22,23,25,30]. It can be represented by
the probability function, as described by Equation (3):

logit p = log
(

p
1− p

)
= b + c1x1 + c2x2 + . . . + cnxn (3)

where p is the probability of the mechanical ventilation system turning on/off event, b is the
intercept, c1, c2, . . . , cn are the coefficients of variables and x1, x2, . . . , xn are the explanatory
variables (i.e., indoor and outdoor environmental parameters and time parameters).

2.3.3. Random Forest

Random forest is a classification algorithm combining multiple decision tree models
to obtain higher prediction accuracy (than a single decision tree), and it possesses stronger
generalization ability [31]. The schematic of random forest is shown in Figure 3.
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In random forests, each tree in the ensemble is built from a sample drawn with
replacement (i.e., a bootstrap sample) from the training set. Furthermore, when splitting
each node during the construction of a tree, the best split is found either from all or a
random subset of the input features. Using two methods, i.e., “Bootstrap method” and
“Random selection of eigenvalues”, a decision tree with diversity can be trained.

2.4. Model Evaluation Criteria

Classification accuracy (ACC) is the commonly used indicator for evaluating the
performance of classifiers. For a given test dataset, ACC is the ratio of the number of
correctly classified samples to the total number of samples, defined by Equation 4. It is
based on a matrix of actual data and predicted data, called confusion matrix, as shown
in Table 2.

ACC =
TP + TN

TP + FP + TN + FN
(4)

Table 2. Confusion matrix.

Actual Data
Prediction

0 1

0 TP FN
1 FP TN

TN: true negative; FP: false positive; FN: false negative; TP: true positive.

However, when the imbalance of data is high, which means the number of positive
data and the number of negative data have a large deviation, the ACC indicator does not
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work well [32]. Moreover, the area under the curve (AUC) indicator can deal with the
problem of dataset imbalance [33].

AUC refers to the area under the receiver operating characteristic (ROC) curve. The
horizontal axis of the ROC curve is false positive rate (FPR), and the vertical axis is the true
positive rate (TPR). The value of the area (i.e., AUC) is between 0 and 1. The closer the
value of AUC is to 1, the better the performance of the model is.

TPR =
TP

TP + FN
(5)

FPR =
TN

FP + FN
(6)

3. Result and Discussion
3.1. Statistics of Behavior in Mechanical Ventilation Operation
3.1.1. Operation Duration of the Mechanical Ventilation System

An r value is defined below to describe the operation duration of the mechanical
ventilation system:

r =
TO
Ta
× 100% (7)

where TO and Ta are the operating time of the system and the total time in a certain period,
respectively.

Figure 4 shows the Pareto chart of r of all monitored households. It is clear that r is
mainly distributed between 0–0.2, 0.2–0.4 and 0.8–1. With 0.8 as the limit, the households
are divided into two categories: system being on nearly all-day and system being on
intermittently. There are 20 (24%) households in the former, and the average operating
time is more than 20 h per day, while the average operating time of the latter households
is 7 h per day. This suggests that the mechanical ventilation system operating-behavior
varies greatly among these households. In the following, an analysis is conducted for the
households that operated systems intermittently.
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3.1.2. Operation Behavior in the Split and Centralized Mechanical Ventilation Systems

Figure 5 shows the boxplot of the average daily operation duration of the two mechan-
ical ventilation systems in different seasons. Similar patterns could be observed between
the two systems across four seasons, i.e., both of them had the longest operating-time in
spring, followed by winter, and the shortest in summer and autumn. This is not consistent
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with what has been reported in Zhao’s study [10], probably due to differences of sample
size, region, system brand and system type, etc. In addition, the average daily operation
duration of the centralized system was longer than that of the split system in each season,
which showed a difference of 1.3 h/day on average. Meanwhile, as shown in Figure 6, the
operation of the split system over a year was more frequent than that of the centralized
system, with an average operation of 192 and 145, respectively. According to these results,
it can be seen that the split system was operated more frequently and flexibly, usually for a
shorter duration, while the centralized system is responsible for supplying fresh air for the
entire house, covering a larger area, and residents were more inclined to keep it operating
for a longer period of time to maintain air quality in activity areas.
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systems in different seasons.
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3.1.3. Operation Ventilation Flow Rate of Split and Centralized Mechanical
Ventilation Systems

Figure 7 shows the boxplots of the ventilation flow rates of the two types of systems
in different seasons. For the split system, the highest average ventilation volume was ob-
served in spring, at 25.7 m3/h, while the lowest was observed in summer, at 13 m3/h. For
the centralized system, the highest was observed in winter, at 94.4 m3/h, while the lowest
was observed in autumn, at 50.4 m3/h. According to the Indoor Air Quality Standard
(GB/T 18883-2002), the fresh air volume of residential buildings should not be less than
30 m3/h per person. Thus, the minimum fresh air volume of households with the split
system should be 60 m3/h for two individuals, and the centralized system is 90 m3/h for
three individuals. Since there are no window opening data in this study, without consider-
ing natural ventilation, it seemed that only the average mechanical ventilation volume of
most households could not meet the fresh air need of human health. Relatively, the actual
ventilation volume per person of households with the centralized system was better.
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the split system and the centralized system.

In addition, it was found that the variation of the mechanical ventilation volume of
the centralized system in summer was larger than in other seasons, indicating that there
were obvious differences (with p-value being 0.018 less than 0.05) in the usage behavior
among different households in summer. Some households chose not to run the system
or kept lower ventilation volumes probably because the air conditioner was turned on in
summer, and the introduction of outdoor air through mechanical ventilation system would
increase indoor temperatures and lead to a waste of energy. However, some occupants
were willing to spend money on energy when the health requirement could be met by
mechanical ventilation [9].

3.1.4. The Long-Term IAQ of Households with Mechanical Ventilation Systems

Figure 8 shows the boxplots of the percentage of time that the hourly average indoor
CO2 concentration exceeded 1000 ppm and when the indoor PM2.5 concentration exceeded
35 µg/m3. Not considering outliers, for households that run the system nearly all day,
the hourly average CO2 concentration is above 1000 ppm for 0–14% of a year, and for
households that run the system intermittently, it is 0–23%. Regarding indoor PM2.5, corre-
spondingly, the percentages of a year with concentration exceeding 35 µg/m3 is 0–49% in
the former households and 7–76% in the latter households. Overall, the indoor air quality
of the households using the system almost all day was better than that of intermittent
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use. However, different from the simulation results [15], even with the system operating
throughout the day, IAQ cannot be good (with CO2 concentration below 1000 ppm and
PM2.5 concentration below 35 µg/m3) at any time in reality.
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Figure 8. Percentage of time with hourly average indoor CO2 concentration exceeding 1000 ppm and
indoor PM2.5 concentration exceeding 35 µg/m3.

In addition, several outliers on the boxplot are observed. For example, the proportion
of indoor CO2 concentration exceeding the standard is greater than 0.4, and the indoor
PM2.5 concentration exceeding the standard proportion is close to 0.8. This may be because
the system has been running for a long time without cleaning and maintenance, and
the dust of the filter element has accumulated substantially, increasing wind resistance,
resulting in a reduction in the actual air supply volume, and secondary pollution will
also occur, which affects purification effects. Therefore, it is necessary to replace the filter
regularly for the households who often use the mechanical ventilation system.

3.2. Modeling of Behavior in Mechanical Ventilation Operation

The variables in this study include indoor CO2 concentration (CO2_In), indoor PM2.5
concentration (PM2.5_In), indoor temperature (T_In), outdoor PM2.5 concentration (PM2.5_Out),
outdoor temperature (T_Out), outdoor relative humidity (RH_Out), hour (H), month (M)
and the seasons (spring, summer, autumn and winter) that may have an impact on the
system usage behavior. Moreover, the descriptive statistics information relative to them are
shown in Table 3.

Table 3. The descriptive statistics information of some variables.

CO2_In PM2.5_In T_In PM2.5_Out T_Out RH_Out

mean 678.46 53.45 24.69 56.92 13.52 49.58
std 398.55 157.47 3.77 55.08 12.50 24.13
min 400.00 0.00 5.00 0.00 −20.20 0.00
50% 646.00 20.00 25.00 41.00 14.80 48.00
max 5000.00 1000.00 38.00 500.00 41.5 100.00
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3.2.1. K-Means Clustering

As observed from the previous analysis, there were differences in the behavior of
operating mechanical ventilation systems among different households, where it requires
multiple models to cover all cases. In this regard, K-means cluster analysis would be
helpful. Moreover, the Pearson correlation coefficients between the status of the mechanical
ventilation system and external factors were used as the input feature of the cluster analysis.

The inertia and silhouette coefficients were calculated for K from 2 to 7, as shown
in Figure 9. When K = 5, the inertia is smaller and the silhouette coefficient is greater
than that of K = 6 or 7. Therefore, these households are divided into five clusters. The
clustering centers of the five clusters are provided in Table 4. Five motivation patterns
were discovered.
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Figure 9. Inertia and silhouette score of models when K changes from 2 to 7.

Table 4. Cluster centers of the behavior in operating the mechanical ventilation system.

Cluster CO2_In PM2.5_In T_In PM2.5_OutT_Out RH_Out H M Spring Summer Autumn Winter

1 0.1 −0.03 −0.13 0.4 −0.06 0.07 −0.01 −0.09 0.18 −0.18 −0.06 0.08
2 0.02 −0.13 −0.2 0.14 −0.32 −0.07 −0.04 −0.05 −0.09 −0.23 −0.07 0.34
3 0.12 −0.1 0.31 0.03 0.35 0.13 0.03 −0.51 0.24 0.36 −0.33 −0.27
4 0.05 −0.12 −0.28 0.26 −0.36 −0.12 −0.03 −0.37 0.23 −0.4 −0.19 0.34
5 0.08 −0.06 −0.02 0.04 0.07 −0.01 0.04 0.16 −0.01 −0.01 0.1 −0.04

(1) Outdoor air PM2.5 concentration-driven (Cluster 1): In this cluster, the Pearson’s cor-
relation coefficient between the outdoor PM2.5 concentration and the state of the me-
chanical ventilation system is significantly higher than the other factors (with p-value
being 0.00). This indicated that households of this cluster might have been sensitive
to the outdoor air quality when they chose to switch on the ventilation system.

(2) Outdoor temperature-driven (Cluster 2): In this cluster, only the Pearson’s correlation
coefficient between outdoor temperature and the state of system is significant as
−0.32 (absolute value greater than 0.2). Figure 10 shows the relationship between
mechanical ventilation system operation rate and outdoor temperature. The 50%
operation rate point and the value of the outdoor temperature at this point are marked.
Thus, households of this cluster may be susceptible to outdoor temperature and tend
to close the window and switch on mechanical ventilation system when outdoor
temperatures drops to 6.8 ◦C.
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Figure 10. Relationship between mechanical ventilation system operation rate and outdoor tempera-
ture in cluster 2 households.

(3) Temperature and time-driven (Cluster 3): In this cluster, the Pearson’s correlation
coefficients of indoor and outdoor temperature (with the status of the system) are
both greater than 0.3, while that related to the month is −0.51. This indicated that
these households were more inclined to switch on the system in spring and summer
seasons. When the temperature increased, the air conditioner would be switched on
and the windows would be closed in summer, while they were more willing to keep
the system operating for ventilation.

(4) Mixed factors-driven (Cluster 4): In this cluster, the correlation coefficient of indoor
and outdoor temperature, outdoor PM2.5 concentration and month (with the status of
the system) are all significant. This suggests that the system operation behavior of
this cluster could be affected by a combination of these factors.

(5) Random behavior (Cluster 5): In this cluster, the correlation coefficients of all these
factors (with the status of the system) are not significant. It could be that households
in this cluster were not easily affected by these objective factors, but possibly by
subjective factors, where behavior was more likely to be random.

3.2.2. Feature Selection

In order to reduce the workload of training and the modeling time, feature selection
was performed on the dataset. The input feature of the model is the factor for which its
absolute value of the Pearson’s correlation coefficient with the status of the ventilation
system is greater than 0.1 [34]. Table 5 shows the selected features of the five clusters.

Table 5. The selected features of the five clusters.

Cluster Selected Features

1 PM2.5_Out, T_In, T_Out, RH_Out, H, M, spring, summer, autumn, winter
2 PM2.5_Out, T_Out, M, summer, autumn, winter
3 PM2.5_In, PM2.5_Out, T_Out, RH_Out, spring, summer, autumn, winter
4 PM2.5_ Out, T_In, T_Out, RH_Out, H, M, summer, autumn, winter
5 PM2.5_In, PM2.5_Out, spring, summer
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3.2.3. Predictive Modeling

For the five clusters, the household dataset of each cluster is merged for next prediction
modeling. The amount, imbalance rate and baseline accuracy of these datasets are listed
in Table 6. In this study, logistic regression and random forest are used for modeling and
comparison. The selected variables were used as input features of the models and min–max
normalized, which are defined in Equation (8). The hyperparameters of random forest are
default values. The logistic regression estimates coefficients of the five clusters are listed
in Table 7:

m =
x− xmin

xmax − xmin
(8)

where m is the transformed value, x is the original value, xmin is the minimum value in the
variable column and xmax is the maximum value in the variable column.

Table 6. The amount, imbalance rate and baseline accuracy of datasets.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Non-Clustered

Turned off ‘0’ 313,539 650,844 727,724 189,814 1,464,552 3,346,473
Turned on ‘1’ 198,744 400,476 466,301 164,897 259,305 1,489,723

Imbalance rate 22.4% 23.8% 21.9% 7.0% 69.9% 38.4%
Baseline accuracy 0.612 0.619 0.609 0.535 0.85 0.692

Table 7. The logistic regression estimates coefficients of the five clusters.

Cluster CO2_In PM2.5_In T_In PM2.5_Out T_Out RH_Out H M Spring Summer Autumn Winter

1 - - 0.0081 0.1323 −0.0489 0.0046 −0.0046 −0.2086 −0.9559 −3.0263 −2.6139 −1.6464
2 - - - −0.0563 0.0409 - - 0.132 - −0.3494 0.5361 0.4178
3 - −0.0091 - 0.0694 −0.0457 0.0071 - - −1.9499 −2.5650 −2.5533 −1.4521
4 - - 0.0015 0.2067 0.0135 0.0093 0.0162 −0.2557 - −4.2519 −5.1079 −4.4742
5 - −0.0234 - 0.0554 - - - - −3.4051 −5.7716 - -

Pipeline is a tool in machine learning. It chains multiple estimators into one and is
very convenient. In this paper, pipeline was developed, which combined dataset division,
classification algorithms and model evaluation [35]. Using the pipeline, it can avoid data
leakage, such as disclosing some testing data in training data, and result in more accurate
assessment of the generalization ability of the models.

The fitting results of logistic regression and random forest on training datasets are
shown in Table 8. Moreover, the evaluation on the predictions by logistic regression and
random forest models using the test dataset are provided in Tables 9 and 10, respectively. It
is clearly that the accuracy of the non-clustered models is lower than those of the clustered
models, supporting the fact that cluster analysis is necessary before mega-data modeling. It
is notable that the higher the imbalance rate of a dataset, the worse the result of the logistic
regression model, i.e., the imbalance rate of Cluster 5 is as high as 69.9%, and its ACC value
of 0.698 just reached the baseline ACC value (0.692). Meanwhile, the evaluation indicators
all show that the performances of random forest both on the training and test dataset are
significantly better than logistic regression, and the performance is also very stable even if
the dataset is very imbalanced, similarly to Cluster 5.

Table 8. The fitting results of logistic regression and random forest using the training datasets.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

LR
ACC 0.784 0.665 0.717 0.785 0.874
AUC 0.773 0.649 0.703 0.792 0.806

RF
ACC 0.999 0.994 0.994 0.999 0.998
AUC 0.999 0.994 0.994 0.999 0.998
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Table 9. The predictive results of logistic regression using the test datasets.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Non-Classified

ACC 0.785 0.664 0.718 0.784 0.875 0.698
AUC 0.774 0.650 0.700 0.790 0.807 0.647

Table 10. The predictive results of random forest using the test datasets.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

ACC 0.999 0.985 0.989 0.992 0.994
AUC 0.999 0.985 0.989 0.992 0.990

The predictive accuracy of the mechanical ventilation operation behavior models
developed by random forest algorithm in this study is as high as 0.992 on average, which
is higher than other occupant behavior models [23,25,36,37]. This may be attributed to
the larger data volume and the smaller sampling interval. In addition, clustering the
households before modeling should have also improved prediction accuracies.

4. Conclusions

In this study, a mechanical ventilation system of the same brand was used in 85 houses
in different cities in the cold region of China, and indoor air parameters were monitored
for a year. We statistically analyzed the operation duration, behavior patterns, ventilation
volume and IAQ of households with different types of mechanical ventilation systems.
Clustering analysis was utilized to classify households, which revealed the similarity and
diversity in behaviors of different occupants. Logistic regression and random forest were
used to develop models for predicting mechanical ventilation behavior with all features
inputted, and their prediction results were compared. It fills the gap in the mechanical
ventilation model of residential building and contributes to future studies on improving
the accuracy of building simulations. The main conclusions are as follows:

(1) About 24% households operated mechanical ventilation system nearly all day. The
average daily operating system duration of the centralized system was 7.3 h/day,
which was longer than that of the split system. The split system was operated more
frequently. The IAQ of the households using the system almost all-day is better than
that of intermittent operation.

(2) Using K-means clustering, five patterns were discovered for the behavior of mechani-
cal ventilation operation, including outdoor air PM2.5 concentration-driven, outdoor
temperature-driven, temperature and time-driven, mixed factors-driven and random
behavior pattern.

(3) Based on the five clusters of households, the models established by the random forest
algorithm showed a better performance than that of logistic regression, and guar-
anteed high accuracy even when the imbalance rate of dataset was high. Therefore,
the random forest algorithm can well predict the behavior in mechanical ventilation
operation in residential buildings, and it can be applied in building simulation to
improve the performance in future studies.
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