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Abstract: Impact dampers or vibration systems with gaps are common in engineering applications,
and the impact effects introduced by the gaps make such systems strongly nonlinear. In this paper,
a model with an elastic stop is established, considering the stiffness and damping characteristics
of the stop, which is a novel kind of impact damper and can be applied in a rotor system. The
amplitude–frequency and phase–frequency response of the system at different gaps are obtained by
the harmonic balance method with the alternating frequency–time scheme (HBM-AFT). The stability
of the periodic solution is analyzed by the Floquet theory, and the time history and frequency spectra
of the unstable point are analyzed by the numerical integration method. In the results, there can
be more than one steady-state response at unstable points for a given excitation frequency, and the
jump phenomenon occurs. The elastic stop is effective in the vibration amplitude suppression if its
stiffness has been designed properly. This study provides an insight into the dynamic responses and
its applications of the system with gaps, which is guidance for the analysis of pedestal looseness
faults and vibration suppress methods.

Keywords: impact dampers; nonlinear dynamics; stability analysis; jump phenomenon;
vibration suppression

1. Introduction

Impact dampers or vibration systems with gaps are common in engineering ap-
plications, and the impact effects introduced by the gaps make such systems strongly
nonlinear. These systems are generally simplified to spring–mass systems with dis-
placement limits, and the limiting effects are expressed using piecewise linear functions.
Thompson et al. [1,2] carried out numerical simulations of a single-degree-of-freedom (Dof)
model with piecewise linear stiffness properties, showing a series of sub-harmonic fre-
quency components in the response, finding that period-doubling bifurcation is one of the
causes of the chaotic motion.

Shaw et al. [3,4] developed a one-dimensional impact damper model. They derived
its response using analytical methods to theoretically verify and analyze the mechanism
of the harmonic frequency components in the response and the bifurcation phenomenon.
Moreover, this paper introduced the early studies of the single-Dof model with impact
problems. In the subsequent investigations, most scholars used this model as the basis
and mainly explored the analytical methods and the influence of system parameters on the
free vibration and forced response. Hindmarsh et al. [5] established the one-dimensional
bilinear stiffness model, investigated the stability of the periodic motion and the bifurcation
characteristics using analytical methods, and explored the relationship between the stability
and bifurcation phenomenon. Peterka [6] compared the effects of a rigid and elastic stop
on the dynamics of the system with impact effects and then summarized the similarities
and differences between the response of elastic and rigid stops. Bapat [7] derived an exact
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solution for the response of a one-dimensional system with a one-sided stop. The governing
equations are established by bilinear stiffness and bilinear damping.

In the study of single-Dof models, the nonsmooth properties of the stop can be
expressed in various approximate functional forms such as piecewise nonlinear functions
or Taylor expansions, in addition to being characterized by piecewise linear functions.
Kong and Wen [8] studied the guideway motion by reducing it to a one-dimensional
dynamical system with piecewise nonlinear stiffness and used the incremental harmonic
balance method to obtain the amplitude–frequency curves, where a significant hardening
spring phenomenon can be seen in the results. Wang et al. [9] proposed an improved
incremental harmonic balance method and used the proposed approach to analyze the
dynamic response of a one-dimensional system containing piecewise nonlinear stiffness.

The studies above analyzed the dynamical characteristics of one-dimensional non-
smooth systems in terms of frequency spectra, stability, bifurcation phenomena, chaotic
motion, etc. Many scholars tried to introduce this nonsmooth model into multi-Dof systems
and studied their effects on the dynamical response. Aidanpaa and Gupta [10] established a
two-Dof nonsmooth model, in which, due to the assumption of absolute rigid stop, there is a
significant cut-off phenomenon in the response. Natsiavas [11] introduced nonsmooth func-
tions to general multi-Dof systems, analyzed a model with two-Dof, and found Hopf and
period doubling bifurcations, as well as the 2:1 and 3:1 internal resonance phenomena. Luo
and Xie [12] investigated the Hopf bifurcation behavior of a two-Dof system with impact
effects and verified the analytical results through numerical simulations. Valente et al. [13]
studied the impact of a fixed stop on the two-Dof system based on a piecewise linear model.
Pascal [14,15] investigated the effect of the stiffness of the stop on the dynamic response of
the two-Dof system based on analytical approaches and compared the characteristics of the
time-domain response of the system under rigid and elastic stops.

In addition to discrete models, the above analytical methods and conclusions are
generally applicable to the response analysis of a continuous model with nonsmooth con-
straints based on piecewise linear functions. For example, Brake [16] introduced nonsmooth
constraints with piecewise linear stiffness into a continuous beam model. It analyzed the
effect of the stop on the frequency domain components and the stability of the periodic
solution. Studies of the piecewise linear or nonlinear systems can explain and analyze the
dynamical behavior of structural systems containing stops, which is essential guidance for
engineering applications. In addition, the analysis of such nonlinear systems can also be
applied to develop vibration suppression or control methods for general structural systems.
For example, a stop was applied to develop a nonlinear dynamic absorber for vibration
suppression of single-Dof systems [17].

Dynamic responses of the system with impact effects are strongly nonlinear, and a very
general method to solve them does not exist. As for the case of the system with piecewise
linear functions, the dynamic behavior can be usually obtained by using the experimental
rig and semi-analytical methods. Ing et al. [18] studied the bifurcation diagrams of an
impact oscillator with a one-side elastic constraint based on the mapping theory, and they
performed relevant experiments to verify the results. Bureau et al. [19] investigated the sta-
bility and bifurcation of an impact oscillator experimentally. Tan et al. [20] investigated the
vibration behavior of a piping system with delimiters to passively suppress the vibrations
by using experimental rigs. Although the results of experiments are most persuasive, carry-
ing out experiments may be expensive and difficult. Therefore, semi-analytical methods
like the harmonic balance method (HBM) with alternating frequency/time method (AFT)
can be applied more easily. Yoon et al. [21] studied the gear system with piecewise-type
nonlinearities using the HBM. Pei et al. [22] computed the periodic orbits of a piecewise
linear oscillator by HBM and AFT. Moreover, the perturbation technique is also a highly
efficient method to investigate nonlinear systems. Amer et al. [23] promoted a novel
nonlinear system and gave essential insights into a new vibrating dynamical motion by
the perturbation technique of multiple scales. Abdelhfeez et al. [24] explored interesting
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behaviors of a novel dynamical system with nonlinearities caused by the triple pendulum
using the multiple scales method.

Mechanical systems with piecewise-type nonlinearities are common in machinery.
For example, pedestal looseness of a rotor–support system is one of the common faults
that occur in rotating machinery. It is usually caused by the poor quality of assembly or
long-term vibration. Goldman and Muszynska [25,26] simplified the pedestal looseness
rotor as a single-Dof vibration system with bi-linear form stiffness and performed analytical,
numerical, and experimental investigations on the dynamic behavior. Super-harmonic
and sub-harmonic frequency components were found, which implied synchronous and
sub-synchronous fractional motions. Chu et al. [27,28] studied the periodical motions and
stabilities of a simplified pedestal looseness rotor and verified sub-synchronous motions
with an experimental rig. Ma et al. [29] established a pedestal looseness model by combining
FEM and piecewise linear form and studied the influences of the gap size on the response.
Lu et al. [30] studied a multi-disk rotor with the pedestal looseness fault based on HBM.
Chen et al. [31,32] investigated the super-harmonic frequency components by a numerical
method and verified by experiments. Although the above papers provide an important
insight into the pedestal looseness faults caused by loosed bolts between the bearing house
and pedestal for most rotating machinery, few studies focused on the other kind of pedestal
looseness fault caused by the gap between the bearing outer ring and the bearing house.
Chen et al. [33,34] considered the fitting clearance between a bearing and its bearing house,
and performed numerical and experimental investigations on the dynamic response.

As far as we know, although systems with piecewise type nonlinearities have been
investigated from many aspects, the mass of the elastic stop has been usually ignored in
the existing studies. Therefore, in this paper, based on the piecewise linear model of a
single-Dof system, a novel two-Dof model with an elastic stop considering the stop’s mass,
stiffness, and damping is established. The effect of impact on the dynamics of the system is
studied in detail, which is important for explaining the dynamical behavior or the design
of dynamic characteristics of such systems. In addition, based on the results of the two-Dof
model, the characteristics of a new pedestal loosening rotor with an overhanging disk and
three supports have been investigated, and the feasibility of vibration suppression of a
flexible rotor using an elastic stop has been discussed.

2. Model and Solving Method
2.1. Model

In this paper, a two-Dof model with an elastic stop is established, as shown in Figure 1,
and the influence of the stop on the dynamic characteristics of the system is investigated.
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Figure 1. Pedestal with an elastic stop and its dynamic model: (a) pedestal with an elastic stop;
(b) dynamic model.
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A typical system with gaps is a pedestal with a stop in a rotating mechanical system,
shown in Figure 1a. In general, its stiffness and damping characteristics caused by intermit-
tent contact can be characterized by a piecewise linear function, and this paper establishes
a dynamic model as shown in Figure 1b.

The governing equations can be derived by Appendix A and are shown as follows:[
m1

m2

]{ ..
x1..
x2

}
+

[
c1

c2

]{ .
x1.
x2

}
+

[
k1

k2

]{
x1
x2

}
+ fnl =

{
F0 cos ωt

}
(1)

in which m1 and m2 are the mass of the two Dofs; c1 and c2 are the damping of the two Dofs;
k1 and k2 are the stiffness of the two Dofs; F0 is the amplitude of the external excitational
force; and the stop is present by a piecewise stiffness so that the nonlinear force fnl is as
follows:

fnl = kp

{
x1 − x2 − δ0
−(x1 − x2 − δ0)

}
H(x1 − x2 − δ0)

= kpw
(

wT
{

x1
x2

}
− δ0

)
H
(

wT
{

x1
x2

}
− δ0

)
= kpw fc

(
wT
{

x1
x2

}
− δ0

) (2)

in which, the nonlinear force is denoted by the function fc(•) defined as follows,

fc(•) = •H(•) (3)

where H(•) is the Heaviside function, namely, H(•) =

{
1, • ≥ 0
0, • < 0

; kp is the penalty

stiffness of the elastic stop, w =
[

1 −1
]T . A nominal restoring force F∗ is assumed to

obtain dimensionless equations, and let
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In general, F∗ is usually assumed to be k1δ0, which implies δ = 1 and [y] = [x]/δ0.
Substitute Equation (4) into Equation (1); then, dimensionless governing equations are
derived as follows:[

1
α

]{ ..
y1..
y2

}
+

[
ζ

βζ

]{ .
y1.
y2

}
+

[
1

γ

]{
y1
y2

}
+ κw fc

(
wT [y]− δ

)
=

{
F̂ cos ω̂τ

}
(5)

In the subsequent analysis, the dimensionless parameters are α = 1, β = 1, γ = 2 and
ζ = 0.03, F̂ = 1 if not specified.

2.2. Solving Method

One of the most popular methods for approximating the frequency response of a
nonlinear system is known as the harmonic balance method (HBM) with the alternating
frequency/time frame (AFT), which has been widely used in the nonlinear dynamic analy-
sis. As for the above dynamic equations which are strongly nonlinear, steady-state periodic
responses can be easily obtained by using the HBM-AFT methods. Thus, in this paper, the
HBM-AFT method [35,36] and the shooting method are used to obtain their steady-state
responses. The results are verified and supplemented by numerical integration methods.
The critical process of the main techniques is given in the following.

The governing equations of a discrete system containing nonlinear forces can be
expressed in the unified form:

M
..
x(t) + D

.
x(t) + Kx(t) + g

(
x(t),

.
x(t)

)
= Fex(t) (6)

where, x,
.
x and

..
x are the displacement, velocity, and acceleration vectors of the general-

ized degrees of freedom, respectively; M,D,K and are the mass, damping, and stiffness
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matrices of the linear part; g
(
x(t),

.
x(t)

)
denotes the nonlinear forces related to velocity and

displacement, and Fex(t) is the external excitations.
When the external excitation of the system is a single sinusoidal excitation, the external

excitation can be specified as
Fex(t) = F0 sin νωt (7)

where F0 is the vector of excitation magnitude, ω is the excitation frequency, and ν is the
coefficient of the excitation frequency.

Based on the Fourier transform, the periodic solution of the response and the nonlinear
forces are represented in the frequency domain by harmonic terms:

x(θ) = A0 +
l

∑
k=1

(Ak cos kθ + Bk sin kθ) (8)

g(θ) = P0 +
l

∑
k=1

(Pk cos kθ + Qk sin kθ) (9)

where l is the order truncated of harmonic terms, θ = ωt, Pk, Qk, Ak and Bk are the constant
vectors to be determined.

Since there is a nonlinear functional relationship between the nonlinear force and
displacement in the time domain, there is a nonlinear functional relationship among Pk,Qk,
Ak and Bk. However, for the generic nonlinear force, this inner relationship is not explicit
in the frequency domain; thus, the time-frequency transformation technique is applied,
and the principle is shown in Figure 2.
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First, given the coefficients of a specific order harmonic term, define the number of
time samples of the IFFT (IDFT) in one cycle as Nts, then the value of the response of the
nonlinear system at the rst discrete-time can be calculated as follows:

x̃r = real

{
l

∑
k=0

(Ak + jBk)

(
cos

2πkr
Nst

+ j sin
2πkr
Nst

)}
, r = 0, 1, 2, · · · , Nst − 1, j =

√
−1 (10)

Then, the nonlinear force is
g̃r = g

(
x̃r,

.
x̃r

)
(11)

Finally, the values of the nonlinear forces at all times are calculated, and the results
of the nonlinear forces on the first-order harmonics in the frequency domain are obtained
according to the DFT as

g̃k =
Ψ

Nst

Nst−1

∑
r=0

g̃rej(− 2πkr
Nst

), Ψ =

{
1, k = 0
2, k 6= 0

(12)

Therefore, the implicit functional relationship between the harmonic coefficients in
the frequency domain can be determined.
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For the balancing process, substituting Equations (11) and (12) into Equation (9) and
balancing each harmonic coefficient, the nonlinear algebraic equations with Ak and Bk is
organized as:

l

∑
k=1

{ (
−k2MAk + kDBk + Pk

)
cos kθ

+
((
−kDAk − k2MBk + Qk

)
sin kθ

) }+ KA0 + P0 = F0 sin νθ (13)

Balance each term, so that constant terms:

KA0 + P0 = 0 (14)

Cosine terms:
−k2MAk + kDBk + Pk = 0, k = 1, 2, · · · , l, (15)

Sinusoidal terms:

−kDAk − k2MBk + Qk = φF0, φ =

{
1, k = ν

0, k 6= ν
, (16)

For the sake of easy programming, Equations (14)–(16) are presented in matrix form as

K
Γ1

. . .
Γk

. . .
Γl





A0
Z1
...

Zk
...

Zl


=



−P0
Θ1

...
Θk
...

Θl


(17)

in which

Γk =

[
−k2M kD
−kD −k2M

]
, Zk =

[
Ak
Bk

]
, Θk =

[
−Pk

−Qk + φF0

]
.

As for Equation (17), there are many solving methods, for example, the Newton-type
method, which is not introduced in detail here. As for the stability analysis method, the
Floquet theory [20] is applied.

Solving the above nonlinear algebraic equations is the process of obtaining the fixed
point of the function Zk. In addition, the Newton–Raphson iteration method can be applied.
The algebraic equations are rewritten in the residual form, as follows:

R(z, ω) = Λz− J = 0 (18)

For a local optimum problem, first given a reasonable initial value (in the convergence
domain, in general, the derived linear system response can be taken as the initial value),
iterate according to the most rapid gradient descent method by Equation (19):

R
(

z(j+1)
)
≈ R

(
z(j)
)
+

∂R
∂z

∣∣∣∣
(z(j))

(
z(j+1) − z(j)

)
(19)

where ∂R
∂z =

[
∂Ri
∂zj

]
i,j=1,2,··· ,dim(z)

is the Jacobi matrix.

If the error ε is given, the convergence criterion is

‖R
(

z(j+1)
)
‖ < ε. (20)
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3. Dynamic Response
3.1. Amplitude–Frequency Characteristics

Let κ = 1, δ = 100, 20, 10, 5, 2. The amplitude–frequency and phase–frequency charac-
teristics are obtained using the HBM-AFT, as shown in Figures 3 and 4:

(1) When δ = 100, the gap is large enough, and Dof-1 and Dof-2 never come into contact,
and the amplitude–frequency characteristic is the forced excitation response of Dof-1.

(2) When δ < 100, Dof-1 and Dof-2 contact; the amplitudes are larger than the gap with
some excitation frequencies, and the amplitude–frequency curves are similar to that
of the system with a hardening spring showing the resonance peak bending to the
right.

(3) When the gap changes from 100 to 2, the peak of frequency amplitude curves shifts
from point F1 to point F2, and the resonance frequency increases from 1.0 to 1.1
correspondingly.

(4) When the gap decreases from 100 to 2, the amplitude of the resonance peaks decreases
from 33.3 to 27.3 (−18%); the vibration suppression efficiency (18%) of the elastic stop
structure on Dof-1 is not very good, which depends on the parameters κ, γ. In the
following, the vibration suppression of an elastic stop with different stiffensses is
investigated.

(5) The phase–frequency characteristics of Dof-2 have difficulty finding a common rule.
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The amplitudes of the harmonic terms of each order (1~8th) are shown in Figures 5 and 6,
and the relative values are normalized by the amplitude of the fundamental frequency
component. The harmonic index corresponds to the subscript index k in Equation (8).
When the harmonic index is 1, the frequency component is the fundamental frequency
(denoted by 1X). When the harmonic index is higher than 1, the frequency component is
the super-harmonic term. It obvious that the amplitudes of super-harmonic components
are relatively smaller compared with the first order and are less than 10%. Moreover, the
relative amplitudes of high-order components are larger when the gap is smaller. In the
following analysis, this study focuses on the amplitudes of the first-order component.
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3.2. Stability and Frequency Components

In this paper, the analysis focuses on the curves with the “bending” phenomenon.
Taking δ = 10 as an example, the amplitude–frequency characteristic of the system is
obtained by the shooting method (SM). The stability of the periodic solution under different
excitation frequencies is analyzed according to the Floquet theory, as shown in Figure 7,
with four bifurcation points, namely Period Doubling, Neimark–Sacker, Branching Point,
and Branching Point. The particular parts on the amplitude–frequency curves are marked
as A, B, and C to study their frequency spectra, respectively.
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Based on the Ode15s solver in Matlab R17b, the initial displacement and velocity are
0 (if not specified). The time history and frequency spectra of the system at excitation
frequencies of 0.95, 0.97, 1.02, and 1.06 are shown in Figures 8–12, where the frequency
spectra are normalized by the excitation frequency. When the excitation frequency is located
in region A, the frequency spectrum of the system includes 0.5ω and (n + 0.5)ω, in addition
to the multiplier frequency nω; when the excitation frequency is located between 1.046 and
1.077, the curve between regions B and C cannot be realized, and the response amplitude is
located in regions B or C depending on the initial value, that is to say, there can be more than
one steady-state response for a given excitation frequency at these unstable points. This
bi-stable regime implies the jump phenomena, and the jump point is the branching point.
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(a) time history; (b) frequency spectrum.
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Figure 12. Time history and frequency spectrum of the system with an excitation frequency of 1.06
(Initial displacement is [3, 20], the initial velocity is [0, 0]): (a) time history; (b) frequency spectrum.

The excitation frequency of 1.06 is used as an example to explore the domain of
attraction of the bi-stable periodic solution to the initial displacement, with the intervals of
[0–40] and [0–8] for the initial displacements of the two Dofs. The distribution of the domain
of attraction is shown in Figure 13, where the amplitude of the steady-state response tends
to B is marked as red+, and C is marked as blue circles. As we can see, there exists a clear
boundary between the different attractions.
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Figure 13. Characteristics of the attraction domain distribution of the two steady-state solutions at an
excitation frequency of 1.06: (a) overall scope; (b) local scope.

3.3. Sweep Frequency Response

The sweep method can simulate the jump phenomenon in the process of excitation
frequency increase and decrease. The Ode15s solver in Matlab is used, and the continuous
sweep response of the system at the excitation frequency of 0.9–1.1, where the total time is
1×106s, and the rate of frequency change is 2×10−6s−1. The response of the system during
the increase and decrease of the excitation frequency is shown in Figure 14, where the jump
phenomenon occurs during both the increase and decrease of the excitation frequency.
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Figure 14. Continuous sweep response of the system at the excitation frequency of 0.9–1.1:
(a) frequency increase (speed-up); (b) frequency decrease (coast down).

The excitation frequency–frequency spectrum–amplitude three-dimensional water-
fall of Dof-1 in the continuous sweep process is shown in Figure 15, and the frequency
components in the response are different in different excitation frequency intervals. The
amplitude–frequency characteristics in the previous subsection correspond to the stability
analysis results, that is, the excitation frequency changes from small to large: the two de-
grees of freedom do not contact, the frequency component is only the excitation frequency
1X; intermittent contact, the frequency component is composed of 0.5X, (n + 0.5)X and
nX; intermittent contact; however, 0.5X, (n + 0.5)X disappears. In addition, it can be seen
that the jump phenomenon is mainly caused by the change of the fundamental frequency
amplitude. However, in the continuous sweep process, as the excitation frequency is always
varying, the response is in the transient state. Therefore, the amplitude of the sweeping
process is the same as the amplitude of the steady-state response at a fixed excitation
frequency.
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3.4. Vibration Suppression

To achieve vibration suppression, influences of the stiffness κ and γ on the response
are studied. Taking the system with δ = 10, and κ = 1, 2, 5, 10, 50, 1000 as an example, the
amplitude–frequency and phase–frequency characteristics of Dof-1 and Dof-2 are shown in
Figure 16. The stiffness κ changes the amplitude and frequency of the resonance point to
a certain extent; however, it does not change the shapes of the amplitude–frequency and
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phase–frequency curves. When the stiffness κ is not smaller than 50, it can be considered as
rigid as enough to design a rigid stop for the vibration suppression purpose.
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Figure 16. Influences of κ on amplitude–frequency and phase–frequency characteristics of Dof-1:
(a) amplitude–frequency characteristics; (b) phase–frequency characteristics.

The stiffness γ of the elastic stop affects the response of the system as well. Taking
δ = 10, κ= 50, and γ = 1, 2 (original system), 10, 50, 100 as the example, the influences of
stiffness on the amplitude–frequency and phase–frequency characteristics are shown in
Figure 17. The stiffness γ will not only affect the amplitude and frequency of the resonance
point, but also change the shape of the amplitude–frequency and phase–frequency curves.
However, the amplitude–frequency curve is roughly similar to the system with a hardening
spring. When the stiffness γ is not less than 10, the response amplitudes of Dof-1 are not
large than 13.7, which is very close to the limit amplitude of 10. Therefore, to realize the
amplitude suppression of primary system of the Dof-1 based on the impact damper of
Dof-2, it is necessary to reasonably design the stiffness κ and γ of the elastic stop, and
comprehensively consider the amplitude of the full frequency range and the position of the
resonance point.
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4. Application to a Flexible Rotor

In this section, the nonlinear dynamics of the impact system are applied to a flexible
rotor–support system considering the pedestal–looseness fault. The rotor is modeled based
on the finite element method using Timoshenko’s thick beam formulation, and the pedestal–
looseness fault is considered by the nonlinearity of an elastic stop. In the meantime, the
loosed pedestal designed artificially can be used for the purpose of vibration suppression.

4.1. Model of the Rotor

A flexible rotor–support system is shown in Figure 18. There exist three bearings: 1#
bearing, 2# bearing, and 3# bearing. The 1# bearing is ball bearing, 2# and 3# bearing are
roller bearing. The material is assumed to be 45# steel, of which the density is 7800 kg/mm3

and the elastic modulus is 210 Gpa. The stiffness of the 1# bearing-support is 1 × 108 N/m,
and the stiffness of the 2# and 3# bearing-support is 3 × 106 N/m. The mass of the 1#
pedestal is 2 kg (mb1) and the masses of the 2# and 3# pedestal are 1 kg (mb2) and 1.5 kg
(mb3), respectively. In Ansys19.0, the beam element Beam188 is used to model the rotor
shaft, the Combin14 element is used to simulate the support, and the Mass21 element is
used to simulate the pedestal mass. The first and second order natural vibration modes
of the derived linear rotor system are shown in Figure 19, and the corresponding natural
frequencies are 57.6 Hz and 159.7 Hz. In engineering, the rotor is often operating above the
first critical speed; thus, the excitation frequencies near the first resonance peak are focused
on in the following analysis.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 16 of 24 
 

4. Application to a Flexible Rotor 

In this section, the nonlinear dynamics of the impact system are applied to a flexible 

rotor–support system considering the pedestal–looseness fault. The rotor is modeled 

based on the finite element method using Timoshenko’s thick beam formulation, and the 

pedestal–looseness fault is considered by the nonlinearity of an elastic stop. In the mean-

time, the loosed pedestal designed artificially can be used for the purpose of vibration 

suppression. 

4.1. Model of the Rotor 

A flexible rotor–support system is shown in Figure 18. There exist three bearings: 1# 

bearing, 2# bearing, and 3# bearing. The 1# bearing is ball bearing, 2# and 3# bearing are 

roller bearing. The material is assumed to be 45# steel, of which the density is 7800 kg/mm3 

and the elastic modulus is 210 Gpa. The stiffness of the 1# bearing-support is 1 × 108 N/m, 

and the stiffness of the 2# and 3# bearing-support is 3 × 106 N/m. The mass of the 1# ped-

estal is 2 kg (mb1) and the masses of the 2# and 3# pedestal are 1 kg (mb2) and 1.5 kg (mb3), 

respectively. In Ansys19.0, the beam element Beam188 is used to model the rotor shaft, 

the Combin14 element is used to simulate the support, and the Mass21 element is used to 

simulate the pedestal mass. The first and second order natural vibration modes of the 

derived linear rotor system are shown in Figure 19, and the corresponding natural fre-

quencies are 57.6 Hz and 159.7 Hz. In engineering, the rotor is often operating above the 

first critical speed; thus, the excitation frequencies near the first resonance peak are fo-

cused on in the following analysis. 

L2=540 L3=60 L4=120

D2=20

D3=42 D4=34

D5=126

Front support  Rear support

1# Bearing 2# Bearing
3# 

Bearing

L5=30
L1=80

D1=26

K1

K2 K3 K4

K5 K6

 
(a) 

Bearing 1# 

DiskBearing 2# 

x

y

z

O
mb1

mb2

Support 1#

Support 2#

Bearing 3# 

Support 3#
mb3 Nonlinear 

element

 
(b) 

Figure 18. The flexible rotor–support system with three bearings and an overhanging disk: (a) struc-

ture and parameters; (b) nonlinear finite element model. 
Figure 18. The flexible rotor–support system with three bearings and an overhanging disk:
(a) structure and parameters; (b) nonlinear finite element model.



Appl. Sci. 2022, 12, 5103 16 of 23

Appl. Sci. 2022, 12, x FOR PEER REVIEW 17 of 24 
 

 

 
(a) 

 

 
(b) 

Figure 19. Natural vibration modes of the derived linear rotor system: (a) the first mode; (b) the 

second mode. 

To analyze the nonlinear behavior, the model of elastic stop is introduced into the 

governing equations at the node of 3# bearing. The governing equations can be derived 

by using the method in Appendix B and are as follows: 

( ) nl ex+ + +Mq + C G q Kq F = F  (21) 

in which M, ωG, and K are the matrix of mass, gyroscopic moment, and stiffness, and are 

obtained by the finite element method; C is the damping matrix and is obtained by 
c c = +C M K  

(22) 

1 2

1 2

2
c



 
=

+
 (23) 

1 2

2
c



 
=

+
 (24) 

  is damping ratio, which is 0.03 in this paper; 1


 and 2


 are the lower and upper 

bounds of the considered frequency, which are 62.8 rad/s(10 Hz) and 6283.2 rad/s(1000 

Hz) in this paper. 

ex
F

 is the unbalance excitation force; nl
F

 is the nonlinear force caused by elastic stop 

model and is expressed as 

( ) ( ) ( )( )nl 1 1 2 21 T T

p ck f r
r




 
= − − + 

 
F w w q w w q  (25) 

1
w

 and 2
w

 are the vectors indicating the direction of the nonlinear force in the sys-

tem; r  is the radial displacement amplitude and is calculated by 

 ( )  ( )
2 2

1 2r x x= +w w  (26) 
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To analyze the nonlinear behavior, the model of elastic stop is introduced into the
governing equations at the node of 3# bearing. The governing equations can be derived by
using the method in Appendix B and are as follows:

M
..
q+(C + ωG)

.
q + Kq + Fnl=Fex (21)

in which M, ωG, and K are the matrix of mass, gyroscopic moment, and stiffness, and are
obtained by the finite element method; C is the damping matrix and is obtained by

C = cαM + cβK (22)

cα =
2ζω1ω2

ω1 + ω2
(23)

cβ =
2ζ

ω1 + ω2
(24)

ζ is damping ratio, which is 0.03 in this paper; ω1 and ω2 are the lower and upper
bounds of the considered frequency, which are 62.8 rad/s(10 Hz) and 6283.2 rad/s(1000
Hz) in this paper.

Fex is the unbalance excitation force; Fnl is the nonlinear force caused by elastic stop
model and is expressed as

Fnl = kp

(
1− δ

r

)
fc(r− δ)

(
w1

(
wT

1 q
)
+ w2

(
wT

2 q
))

(25)

w1 and w2 are the vectors indicating the direction of the nonlinear force in the system;
r is the radial displacement amplitude and is calculated by

r =
√
(w1[x])

2 + (w2[x])
2 (26)

The harmonic responses of the linear system without pedestal looseness are obtained
by Ansys19.0 and MatlabR2017b (the program of the HBM method in Section 2.2), respec-
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tively. In the analysis, the unbalance forces are located at the disk and the middle of the
shaft, and the unbalanced forces are 10 g·mm. The response of the disk and the support of
3# bearing are shown in Figure 20. The frequency of the resonance peak is 59.7 Hz due to
the gyroscopic effect. The amplitudes obtained by Matlab are higher than the one obtained
by Ansys by the ratio of 6%, which verifies the solving method.
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4.2. Amplitude–Frequency Characteristics

Let kp = 3 × 108 N/m (100 times of stiffness of 3# bearing-support), and δ = 0.01, 0.02,
0.03, 0.05, 0.1, 0.2, 0.3 mm. The amplitude–frequency and phase–frequency characteristics
of the disk and the 3# bearing-support are obtained using the HBM-AFT, as shown in
Figures 21 and 22: As the gap size decreases, the resonance point gradually shifts to
the right, while the amplitude of the resonance point does not change too much. This
phenomenon is similar to the result of the mechanism model in Section 3.
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Figure 22. Amplitude–frequency and phase–frequency characteristics of the 3# bearing-support:
(a) amplitude–frequency characteristics; (b) phase–frequency characteristics.

The frequency sweep method is used to simulate the jump phenomenon in the process
of speeding up, and Ode15s in Matlab R17b is chosen as the solver. The transient response
of the system is obtained with the rotational speed range of 1800–4200 rpm (30–70 Hz). The
total time span is 20 s, and the speed change rate is 60 rpm/s. The time history responses of
the system with a small clearance of 0.02 mm and a large clearance of 0.1 mm are as shown
in Figure 23a,b. The results are consistent with the results of amplitude–frequency curves
obtained by HBM, by comparing the small gap of 0.02 mm and the large gap of 0.1 mm.
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4.3. Vibration Suppression

According to the research results of the mechanism model in Section 3, it can be seen
that the effect of the elastic support is closely related to the stiffness of the 3# support.
Thus, a stiffness coefficient γ is set, indicating that the stiffness of 3# support is γ times
of the original stiffness (3 × 106 N/m). Taking γ = 1 (the original system), 2, 5, 10, 20, 50,
100, 500 as the example, the influences of 3# support stiffness on the amplitude–frequency
and phase–frequency characteristics are shown in Figures 24 and 25. As the stiffness of 3#
support increases, the resonance point amplitude at the 3# support gradually decreases,
and the resonance point shifts to the right gradually. When the 3# support stiffness is the
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original one with 3 × 106 N/m, the frequency of the resonance point is 56.1 Hz and the
amplitude is 0.21 mm; when the 3# support stiffness is 10 times (3 × 107 N/m) that of the
original one, the frequency of the resonance point is 73.8 Hz, and the amplitude is 0.09 mm,
which is 57% lower than the amplitude of the original system. In addition, the amplitude is
close to the limit of 0.05 mm, when the 3# support stiffness is not less than 3 × 107 N/m.
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The vibration suppression of 3# support is of great significance for reducing the
dynamic load of the local structure near 3# support and controlling the local deformation
of the support structure. However, when the vibration suppression of the rotor–support
system is realized through the design of the elastic stop, it is necessary to reasonably design
every single parameter, and comprehensively consider the deformation of each key position
of the rotor–support system.
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5. Conclusions

In this paper, a novel vibro-impact system with an elastic stop present by piecewise-
type nonlinearities is promoted, and its vibration behaviors are studied in detail. From the
results, some useful conclusions can be drawn, which can give some guidance on predicting
resonance frequencies and amplitudes, analyzing frequency components, detecting faults,
and suppressing vibration.

(1) As for the frequency amplitude response, the amplitude–frequency curve of a system
with an elastic stop is similar to the system with a hardening spring showing the
resonance peak bending to the right. As for the “bending” curves, the periodic
solution is unstable, and there can be more than one steady-state response for a given
excitation frequency, and jumps occur in the process of speed-up and speed-down.
In engineering, it is important to be concerned about the jumping phenomenon in a
system with gaps.

(2) When the gap becomes small gradually, the resonance peak shifts from a low frequency
to a high frequency, and the amplitude of the resonance peaks decreases. Thus, it
is feasible to use an elastic stop for suppressing vibration in practical applications.
However, the stiffness of the elastic stop will influence the efficiency of suppression,
and the characteristics of the elastic stop should be designed properly.

(3) In addition, at the unstable point, the frequency spectrum includes 0.5X, (n + 0.5)X
and nX, in addition to the fundamental frequency 1X; and investigating frequency
components is an effective method for detecting vibration faults induced by gaps.

(4) The amplitudes of super-harmonic components are relatively smaller compared with
the fundamental frequency, and are less than 10%. Moreover, the relative amplitudes
of high-order components are larger when the gap is smaller. Thus, in most cases
of engineering problems, it will be useful to focus on the fundamental frequency
component if excess vibration occurs and vibration suppression is required.

(5) The application of the elastic stop to a specific rotor support system is investigated.
A new pedestal loosening rotor with an overhanging disk and three supports is
promoted and investigated. The dynamic responses of the rotor with an elastic stop
are similar to that of the two-Dof model with piecewise linear functions. In the
meantime, the feasibility of vibration suppression of a flexible rotor by using an elastic
stop has been verified in this paper.

Therefore, the results of this paper can not only explain some dynamic behaviors of
the system with an elastic stop, but also provide some guidance for the design of impact
dampers in engineering.
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Appendix A

The governing equations of the system in Figure 1 can be derived by the Lagrange
method. When the nonlinear force and damping are not considered, the kinetic and
potential energies of the system are

T =
1
2

(
m1

.
x2

1 + m2
.
x2

2

)
(A1)
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V =
1
2

(
k1x2

1 + k2x2
2

)
(A2)

The generalized forces are

Q1 = F0 cos ωt , Q2 = 0 (A3)

Substitute Equations (A1)–(A3) into the Lagrange equation:

d
dt

(
∂T
∂

.
xj

)
− ∂T

∂xj
+

∂V
∂xj

= Qj, j = 1, 2 (A4)

Then, the governing equations are[
m1

m2

]{ ..
x1..
x2

}
+

[
k1

k2

]{
x1
x2

}
=

{
F0 cos ωt

}
(A5)

The damping forces applied on the two degree-of-freedom are c1
.
x1 and c2

.
x2; the

nonlinear force is denoted by fnl ; thus, the governing equations are obtained as follows:[
m1

m2

]{ ..
x1..
x2

}
+

[
c1

c2

]{ .
x1.
x2

}
+

[
k1

k2

]{
x1
x2

}
+ fnl =

{
F0 cos ωt

}
. (A6)

Appendix B

The governing equations of the rotor system can be obtained by using the commercial
software Ansys17.0. The procedure is shown in Figure A1. First, the finite element model
is established based on the Beam element. Second, the mass and stiffness matrix and
mapping vectors are output in HBMAT format by the HBMAT command, and the matrix
is transformed into a full format according to the mapping vector. Third, the damping
matrix, external force vector, and nonlinear force vector are formed. Finally, the governing
equations with nonlinear forces are assembled.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 22 of 24 
 

( )2 2

1 1 2 2

1

2
T m x m x= +  (A1)  

( )2 2

1 1 2 2

1

2
V k x k x= +  (A2)  

The generalized forces are 

1 0 2cos , 0Q F t Q= =  
(A3)  

Substitute Equations (A1)–(A3) into the Lagrange equation: 

, 1,2j

j j j

d T T V
Q j

dt x x x

   
− + = = 

    
 (A4)  

Then, the governing equations are 

1 1 1 1 0

2 2 2 2

cosm x k x F t

m x k x

        
+ =        

        
 (A5)  

The damping forces applied on the two degree-of-freedom are 1 1c x  and 2 2c x ; the 

nonlinear force is denoted by nlf ; thus, the governing equations are obtained as follows: 

1 1 1 1 1 1 0

2 2 2 2 2 2

cos
nl

m x c x k x F t

m x c x k x

            
+ + + =            

            
f . (A6)  

Appendix B 

The governing equations of the rotor system can be obtained by using the commercial 

software Ansys17.0. The procedure is shown in Figure A1. First, the finite element model 

is established based on the Beam element. Second, the mass and stiffness matrix and map-

ping vectors are output in HBMAT format by the HBMAT command, and the matrix is 

transformed into a full format according to the mapping vector. Third, the damping ma-

trix, external force vector, and nonlinear force vector are formed. Finally, the governing 

equations with nonlinear forces are assembled. 

Step 1: Finite element model based on Beam element

Step 2: Forming mass, stiffness matrix and mapping vectors

Step 3: Forming the damping matrix, external force vector and 
nonlinear force vector

Step 4: Assembling the governing equations with nonlinear 
forces

 

Figure A1. The procedure of obtaining governing equations by using commercial finite element 

software. 

References 

1. Thompson, J.; Ghaffari, R. Chaos after period-doubling bifurcations in the resonance of an impact oscillator. Phys. Lett. A 1982, 

91, 5–8. 

2. Thompson, J.M.T. Complex dynamics of compliant off-shore structure. Proc. Proc. R. Soc. Lond. Math. Phys. Sci. F 1983, 50, 849–

857. 

3. Shaw, S.; Holmes, P. A periodically forced impact oscillator with large dissipation. J. Appl. Mech. 1983, 50, 849–857. 

Figure A1. The procedure of obtaining governing equations by using commercial finite element
software.

References
1. Thompson, J.; Ghaffari, R. Chaos after period-doubling bifurcations in the resonance of an impact oscillator. Phys. Lett. A 1982, 91,

5–8. [CrossRef]
2. Thompson, J.M.T. Complex dynamics of compliant off-shore structure. Proc. Proc. R. Soc. Lond. Math. Phys. Sci. F 1983, 50,

849–857.
3. Shaw, S.; Holmes, P. A periodically forced impact oscillator with large dissipation. J. Appl. Mech. 1983, 50, 849–857. [CrossRef]
4. Shaw, S.W.; Holmes, P. A periodically forced piecewise linear oscillator. J. Sound Vib. 1983, 90, 129–155. [CrossRef]

http://doi.org/10.1016/0375-9601(82)90248-1
http://doi.org/10.1115/1.3167156
http://doi.org/10.1016/0022-460X(83)90407-8


Appl. Sci. 2022, 12, 5103 22 of 23

5. Hindmarsh, M.; Jefferies, D. On the motions of the offset impact oscillator. J. Phys. A Math. Gen. 1984, 17, 1791–1804. [CrossRef]
6. Peterka, F. Dynamics of oscillator with soft impacts. Int. Des. Eng. Tech. Conf. Comput. Inf. Eng. Conf. 2001, 80296, 2639–2645.
7. Bapat, C. Exact solution of stable periodic one contact per N cycles motion of a damped linear oscillator contacting a unilateral

elastic stop. J. Sound Vib. 2008, 314, 803–820. [CrossRef]
8. Kong, X.; Sun, W.; Wang, B.; Wen, B. Dynamic and stability analysis of the linear guide with time-varying, piecewise-nonlinear

stiffness by multi-term incremental harmonic balance method. J. Sound Vib. 2015, 346, 265–283. [CrossRef]
9. Wang, S.; Hua, L.; Yang, C.; Han, X.; Su, Z. Applications of incremental harmonic balance method combined with equivalent

piecewise linearization on vibrations of nonlinear stiffness systems. J. Sound Vib. 2019, 441, 111–125. [CrossRef]
10. Aidanpää, J.-O.; Gupta, R. Periodic and chaotic behaviour of a threshold-limited two-degree-of-freedom system. J. Sound Vib.

1993, 165, 305–327. [CrossRef]
11. Natsiavas, S. Dynamics of multiple-degree-of-freedom oscillators with colliding components. J. Sound Vib. 1993, 165, 439–453.

[CrossRef]
12. Luo, G.-W.; Xie, J.-H. Hopf bifurcation of a two-degree-of-freedom vibro-impact system. J. Sound Vib. 1998, 213, 391–408.

[CrossRef]
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