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Abstract: To solve the problem of low automatic number plate recognition (ANPR) data integrity
and low completion accuracy of incomplete traffic data, which affects the quality and utilization of
ANPR data, this paper proposed a model for estimating the travel time of the road link that considers
the heterogeneity of the driving styles. The travel time of historical road sections in the road network
was extracted from ANPR data. The driving crowd was clustered through density-based spatial
clustering of applications with noise (DBSCAN) based on the time slot, the number of trips, and the
travel time. To avoid the excessive data difference between different classes and the distortion of
the complement data, the Lagrange interpolation method was adopted to complement the missing
road link travel time within each cluster. Taking Ningbo city in China as an example, the travel time
completion accuracies of the proposed method and the direct interpolation method were compared.
The results show that the interpolation method considering the heterogeneity of driving styles is
more sufficient to increase the completion accuracy by 37.4% compared with the direct interpolation
manner. The comparison result verifies the effectiveness of the proposed method and can provide
more reliable data support for the construction of the transportation system.

Keywords: automatic number plate recognition (ANPR); density-based spatial clustering of
applications with noise (DBSCAN); outliers supplement; travel time estimation (TTE); heterogeneity
of driving styles

1. Introduction

The continuous advancement of urbanization has caused many urban road transporta-
tion systems to face increasing congestion, which threatens the environment and transport
efficiency [1]. To address issues such as traffic congestion, understanding the traffic state is
critical at many levels of traffic management and traffic policy. With the rapid development
of computer science and the progress of traffic system sensors, the collection of massive
traffic data has shown its advantages in traffic decision-making [2]. ANPR is one of the deci-
sive components of intelligent transportation systems [3]. It is often used in traffic big data
analysis such as travel time estimation, OD (Origin–Destination) estimation, commuting
recognition, etc. The ANPR uses image processing technology to collect vehicle information
at the time of the shooting, such as shooting time, vehicle type, vehicle license plate, etc.,
which can obtain a large amount of traffic information [4]. There is much helpful traffic
information in these data, and some characteristics related to traffic flow can be obtained
through traffic data mining technology [5]. Thereby, traffic big data can be converted into
readable information for traffic information prediction and management control [6]. By
mining ANPR data, researchers can obtain the travel characteristics of travelers and judge
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the status of the transportation network, which can provide traffic managers with a reliable
basis for policy design and implementation [7].

Many researchers have conducted research on ANPR data, mainly in the fields of
OD estimation, travel time estimation, road traffic state estimation, etc. [8]. Jing Liu et al.
proposed a dynamic OD prediction method for ANPR data and combined it with the
Kalman filter framework for prediction [9]. Li Wan et al. studied the non-commuter travel
demand of car commuters by using ANPR data. Suggestions were made for traffic demand
and management after COVID-19 [7]. Hamid Mirzahossein et al. carried out real-time
OD matrix estimation based on large-scale ANPR data and proposed an OD estimation
method based on the Trip–Vehicle Matrix [10]. Mei Lam Tam et al. used real-time ANPR
data to estimate the real-time traveler information system (RTIS) [11]. In the absence of
real-time AVI data, the travel time of other road links can be inferred through the spatial
variance–covariance between the historical travel time and the road network. Xiaoliang
Ma et al. proposed an online and historical travel time prediction method based on the
Extended Kalman Filter (EKF). This method uses ANPR data to quickly identify the traffic
state when congestion appears or dissipates [12]. However, this method does not consider
the correlation between different road links. Jie Li et al. pointed out a wavelet analysis
method to identify travel time outliers extracted from Changsha ANPR data. A conclusion
is drawn by comparing the two data processing methods [13]. Fangfang Zheng et al.
proposed a linear relationship model between travel time and traffic characteristics such as
standard deviation and skewness. Statistical analysis was performed on simulated data
from a delay distribution model and real data from an ANPR camera [14].

Road link (a single segment of a road) travel time (TT) is becoming more and more
essential in urban traffic travel information in nowadays society. Travel time estimation
(TTE) has become a very crucial requirement. Accurate TTE is one of the core tasks of traffic
modeling and is of great significance in many fields [15]. For example, providing accurate
TTE can help travelers arrange travel routes reasonably, and the government and traffic
management departments can perceive traffic conditions and ensure the smooth operation
of traffic flow [16]. Driving styles vary widely among different drivers, so personalized
TTE is meaningful for different styles of drivers. With information and personalized
recommendations, individuals and fleet management companies can arrange their trips
more accurately and improve the efficiency of the system [17].

In recent years, the problem of link TTE has been extensively studied [15]. According
to the types of data used, existing methods can be roughly divided into two categories. The
first category of methods focuses on modeling link-based data from various sources [18–21],
and the other category focuses on modeling emerging trip-based data to estimate link
TT [22–24]. Chaoyang Shi et al., proposed a TT distribution estimation method considering
variance. The TT distribution is the sum of the deterministic link TT and the random
turn delay at the intersection [25]. Xiaoqian Luo et al. used the data obtained by the
point-to-point detector to analyze the traffic state of vehicles before the signal and estimate
the arterial travel time on a more microscopic level [26]. Jinjun Tang et al. came up with
an improved Markov chain method to estimate TT. This method considers the temporal
and spatial correlation between road links and performed better when traffic conditions
change [27]. Nonetheless, the model’s mobility is poor, and the details on the road section
are not considered. Kun Tang et al. recommend a tensor-based urban TTE model based
on GPS data. A third-order tensor model is established to model the TT of different road
sections under other traffic conditions in a specific period [28]. The missing items in the
tensor model are estimated by tensor decomposition. HongJian Wang et al. used large-scale
trip data to estimate TT between origins and destinations in a very efficient manner. These
adjacent trips were used to estimate TT, and experiments were performed on two large, real
datasets [24]. Kunpeng Zhang et al. proposed a Trip Information Maximizing Generative
Adversarial Network (T-InfoGAN) based on deep learning [29].

Through the literature review study on the estimation of the road link travel time in
the past, we found that the ANPR data mainly focus on commuter vehicle recognition or
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trajectory recognition. Although the ANPR data contain ample information about traffic
conditions, there is merely limited attention to the quality of the data [13]. Secondly, the use
of ANPR data for TTE mainly focuses on mathematical methods for processing and less
consideration of individual driver heterogeneity. Few studies on traffic guidance provided
TTE based on user driving styles.

In this paper, we propose a road link TTE method that considers the heterogeneity
of driving styles. The DBSCAN algorithm uses tensor-based urban personalized travel
time modeling, and interpolation methods supplement the missing travel time items. TTE
uses only limited information, i.e., urban ANPR data [30]. While performing DBSCAN
on the tensor model, we estimate the travel time of road links in different periods. This
method combines the spatial correlation between different road links and the heterogeneity
among individual driving styles of other drivers. In addition, the variability caused by the
inherent uncertainty of the urban road network is also considered.

The rest of the paper is organized as follows: Section 1 presents related work. Sec-
tion 2 introduces tensor model establishment, travel time cluster analysis, and outlier
supplementation. Section 3 presents a specific case study of TTE in Ningbo City, China.
Finally, Section 4 summarizes the results of this work and puts forward the implication for
future research.

2. Materials and Methods
2.1. Multi-Dimensional Tensor Model of Road Network Travel Time

Generally, the travel time of a vehicle passing through two adjacent detectors A and B
can be calculated by the following formula:

tAB = tA − tB (1)

where:

tAB is the travel time of the vehicle between road link AB.
tA is the time when the vehicle passes detector A.
tB is the time when the vehicle passes detector B.

However, the calculation of travel time is usually inaccurate. The ANPR equipment
may record a car’s license plate repeatedly for a short time. Due to factors such as misidenti-
fication, identification failures, or driver stops, vehicle travel time is not accurately obtained.
The travel time obtained after data processing and the actual value may have many errors.
These data need to be revised scientifically.

The tensor model is one of the most commonly used methods to describe the multi-
modal correlation of data, which has been successfully applied to signal processing, pattern
recognition, and personalized recommendation [28]. In recent years, methods based on
tensor models have also been proven effective for processing traffic data, such as traffic
flow and travel time. Personalized TTE refers to providing travel time information, con-
sidering the traffic conditions and driving behavior and habits, such as driving speed.
Essentially, the driver’s driving characteristics are hidden in travel time data extracted from
the ANPR data.

Considering that the complexity of the urban road network and the travel time of road
links are affected by a variety of complex factors, the relationship between travel time and
its influencing factors is modeled. According to the travel time data obtained in ANPR, a
model with a fourth-order tensor is obtained. As is shown in Table 1, each dimension of
the tensor represents the driver K, the time slot M, the road link N, and the number of trips
L. The value of each item represents each driver and the number of trips L on the Nth road
link in the Mth time slot of the Kth driver [28]. This approach is associated with the spatial
correlation between different road links, the deviation between different drivers, and the
correlation between traffic volume differences in time slots on travel time.
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Table 1. Examples of tensor model.

CarID Travel Time (Second) Hour Road Link Number of Trips

1 51 12 33-22 5
1 67 12 22-75 5
1 255 12 75-98 5
1 8558 12 98-34 5
1 32 15 34-78 5

2.2. Driver Classification and Outlier Supplement

As Tillman and Hobbs described, driving behavior is influenced by many factors such
as lifestyle and personality [31]. There are considerable discrepancies in different drivers’
driving styles. First, there are differences in the performance between different brands of
vehicles, such as acceleration and deceleration. Second, there is a stark difference between
the driving styles of autonomous vehicles and manually driven vehicles. Autonomous
driving may be safer, energy-efficient, and more environmentally friendly than human
driving. [32] There are also differences in driving habits between the young and the old [33].

For the outliers and missing values in the travel time, if the data are supplemented
directly based on the comprehensive data of all driving people as the standard, it will lead
to too many reference sources for the supplementary data, which may cause the additional
data to be distorted. Hence, to achieve higher supplementation accuracy, it is necessary
to classify the driving crowd and supplement the abnormal and missing data within each
category to avoid mutual influence between data with lower correlation. We consider
using the DBSCAN algorithm to identify driver or travel time heterogeneity from ANPR
data. It is an effective density-based clustering method. Compared with other clustering
methods, the DNSCAN algorithm can split the data into arbitrary-shaped clusters and does
not require an a priori number of groups, which is, likewise, not sensitive to the order of
points in the data [34]. For the travel time dataset X, the basic definition of the DBSCAN
algorithm is as follows [35]:

ε-close neighbor: For xj ∈ X, the ε-close neighbor contains samples in the dataset X
whose distance from xj is not greater than ε, that is Nε

(
xj
)
=

{
xi ∈ X

∣∣dist
(

xi, xj
)
≤ ε

}
.

The core point xj is the point that contains no less than MinPts (a number) samples in
the ε-close neighbor of the point.

If xj is located in the ε-close neighbor of xi, and xi is the core point, then it is defined
that xj is directly density-reachable (DDR) by xi.

For xj and xi, if there is a sample sequence p1, p2, . . . , pn, where p1 = xi, pn = xj and
pi+1 is DDR by pi, then the xj is density-reachable (DR) by xi.

For xj and xi, if xk i s DR, then the xj is density-connected (DC) by xi.
The DBSCAN algorithm can cluster dense data of any shape, and it is not sensitive to

abnormal points in the dataset, and the clustering results are not biased. In contrast, the
k-means algorithm is generally only suitable for convex datasets.

The input parameters of the DBSCAN algorithm are MinPts and the radius of the
ε-close neighbor, and the outputs are the clustering results and noise data of the sample
points. The DBSCAN algorithm finds some clusters of DC objects to achieve the maximum
density. The specific steps of the DBSCAN algorithm considering the heterogeneity of
driving styles are as follows [36,37]:

1. Aimlessly select one of the unprocessed objects for the sample set X. The object xj is a
core point when there are more than MinPts points in the ε-close neighbor of xj.

2. Amass all the objects in the sample set X that are DR to the object xj and regard them
as a cluster.

3. Over the process of DC, produce the final cluster.
4. For the remaining objects, repeat steps 2 and 3 until all objects have been handled.

The number of clusters in the output results varies significantly with the input param-
eter values of the DBSCAN algorithm.
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Due to equipment identification errors and long-term parking of vehicles on the
road, there will be abounding missing values of travel time in the travel time dataset [13].
Therefore, outliers need to be identified and processed. The processing methods for missing
values include deletion and interpolation. To ensure data integrity, we choose to impute it
as a missing value. Generally, outliers need to be identified. There are many commonly
used outlier identification methods, such as 3σ principles, box plot analysis, etc. [38].

A box chart is a commonly used statistical chart to describe the distribution of data,
which is named after its shape of a box. Since the advantage of the box chart is that it is not
affected by outliers and can accurately depict the discrete distribution of travel time data,
we choose this box chart analysis method to identify outliers.

After the outliers are identified, they need to be supplemented. Common interpolation
methods include Lagrange interpolation and Newton interpolation.

The basic idea of the Lagrange interpolation method is to rewrite the polynomial of the
degree n interpolation function to be obtained in another representation and then use the
interpolation conditions to determine the undetermined function, to find the interpolation
polynomial [39].

Given n points (x1, y1), (x2, y2), . . . , (xn, yn), a polynomial y = a0 + a1x + a2x2 + . . . +
an−1xn−1 of degree n−1 can be found, and the interpolation value ŷn+1 can be obtained by
substituting the unknown point xn+1 through the polynomial, i.e.,

ŷn+1 =
n

∑
i=0

yi

n

∏
j=0,j 6=i

(
x− xj

)(
xi − xj

) (2)

3. Case Study
3.1. Data Preprocessing

In Ningbo, Zhejiang Province, China, the ANPR system is installed at almost every
intersection. The license plate recognition data contains the following information about
each passing vehicle: The detector device number, license plate, time of passage, vehicle
type, and the number of lanes. After checking the original data, we found that there are
problems such as rapid vehicle speed, insufficient light, insufficient equipment recognition
accuracy, etc. [13]. There is a considerable number of wrong recognition data or repeated
recognition data.

The license plate recognition data used in this study derive from the urban road data
in the central metropolitan area of Ningbo on 5 June 2018. We screened all data within the
study area by detector device numbers. Duplicate, erroneous, and unchecked data were
removed. To reduce the computer memory space occupied by the long detector device
number and vehicle number in the original data, they are renamed. The travel time of each
road section is extracted from the preprocessed data.

Initially, the population characteristics are analyzed based on travel time data. We
selected three specific road links. The histograms of the travel time distribution frequency
distribution of road links 1, 2, and 3 are shown in Figure 1. It can be seen from the figure that
the travel time of most travelers is concentrated within a specific range. The peak frequency
of travel time of road link 1 is concentrated at approximately 50 s, and the peak frequency
of travel time of road link 2 is focused on about 40 s. The peak travel time-frequency of
road link 3 is concentrated in 70–80 s. There are two frequency peaks in road links 1 and 2.
The second peak of road link 1 occurred at around 115 s. The second frequency peak of
road link 2 appears in about 100 s. Although the second peak in Section 3 is not apparent,
it can also be observed that the second peak appears around 150 s. The travel time of most
drivers on the same road link is similar. The driving time of vehicles is mainly concentrated
on a particular road link, indicating that the driving time of different drivers has a certain
similarity. Therefore, we consider a clustering analysis of drivers with similar travel times
to study the driving characteristics of different groups of people.
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Figure 1. Frequency histograms of travel time distribution. (a) Road Link 1. (b) Road Link 2. (c) Road
Link 3.

Figure 2 shows the hourly distribution of travel time for road links 1, 2, and 3. It can
be seen from the figure that there is a certain similarity in the full-day travel time between
three road links. The travel time of each road link is the lowest from 0 a.m. to 5 a.m. The
morning peak appears from 7 a.m. to 9 p.m., and the evening peak appears from 5 p.m.
to 7 p.m. It can also be seen from Figure 2c that the travel time of road link 3 at 8 a.m. is
significantly longer than other periods. The sharp increase in travel time may be due to an
increase in the morning rush hour, changes in signal timing, or other traffic management
controls. In the meantime, there are many discrete points in the figures. These points are
exceedingly different from the travel time of most vehicles, which are abnormal values of
the travel time and need to be corrected.

3.2. Cluster Analysis of Drivers

The travel time of the road section is affected by various endogenous and exogenous
factors. Effectively modeling the correlation between different influencing factors is a
complex task. Investigation of the estimation of the travel time of the road link is conducive
to improving the level of service and traffic capacity of the road link and the reasonable
choice of the route by travelers.

The travel time data of Road Link 1 is drawn as a box plot, as shown in Figure 3. In
Figure 3, the yellow lines in the graph represent the medians. The upper and lower sides of
the rectangle represent the upper quartile (Q3) and lower quartile (Q1), respectively. The
short horizontal lines at the upper and lower ends represent the upper and lower edges,
respectively. The Inter Quartile Range (IQR) can be calculated by Formula (3). The points
outside Q1− 1.5IQR and Q3 + 1.5IQR are called outliers.

It can be seen from the figure that there are many discrete points in the box plot, and
these points belong to abnormal values. The occurrence of these unusual points may be
caused by factors such as vehicle parking, congestion, or speeding. We treat these outliers
as missing values for travel time and supplement them. Some scholars have proposed
an interpolation method based on accurate velocity. Although the TTE method based
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on accurate speed interpolation has high accuracy, it may cause severe errors on some
congested road sections. The reasons may be the beginning of congestion or the evacuation
of congestion [40].
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For different MinPts input values, the results of the output clusters will also be de-
cidedly various. The input and output results of the DBSCAN algorithm are shown in
Figure 4. Considering the accuracy and efficiency of the completion, 20 MinPts points and
3 types are selected as the basis for supplementing the abnormal value of the travel time.
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3.3. Supplement of Travel Time Outliers

First, we use the box plot to filter out the outliers in the data, i.e., the discrete points in
Figure 3. When supplementing, we determine its location beforehand. Then, we filtered
out all the data with the same road link, cluster category, and time slot, and interpolated the
missing travel time item based on Lagrange interpolation based on the travel time value of
these data. The revised travel time results are shown in Figures 5 and 6. The structure of
Figure 5 is similar to that of Figure 3. Figure 6 is a Hexbin diagram of the distribution of the
travel estimation results in Figure 5. The shades of color on the right represent the number
of scatter points within the hexagonal area. The darker the color, the more scattered points
there are in the region. Compared with Figure 3, it is not arduous to recognize that the
outliers have been significantly reduced. The abnormal driving time has also been reduced
to a certain extent. The missing travel time items have been better corrected.
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To verify the effectiveness of the method, a method that does not consider the results
of DBSCAN and directly performs interpolation is selected for comparison. Five thousand
points are randomly chosen from the travel time data to estimate the travel time. The direct
interpolation method and the interpolation method based on the DBSCAN results are used
for comparative analysis. The results are shown in Figure 7. The abscissa is the actual value
of the travel time, and the ordinate is the estimated value. The regression equations of the
estimated and actual values of the two methods are, respectively:

(1) The direct interpolation method: y = 0.9356x + 5.9443 (Figure 7a), where R2 = 0.5756.
(2) The interpolation method based on the DBSCAN results: y = 0.9695x + 2.5443

(Figure 7b), where R2 = 0.7572.
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The results show that the coefficient of the regression equation considering the differ-
ence in driving style of the crowd is closer to 1, with a larger R2 compared with the direct
interpolation method. The mean value of the deviation between the estimated value and
the actual value of the method proposed in this paper is 5.7 s, with a variance of 18.2 s2.
In contrast, the mean value of the deviation between the estimated value of the direct
interpolation method and the actual value is 9.1 s, with a variance of 44.4 s2. The accuracy
of the proposed method is improved by 37.4%. It shows that the estimated travel time of
the algorithm proposed in this paper is closer to the actual value, and the algorithm has a
higher estimation accuracy.

4. Conclusions

ANPR data may contain relevant information such as driving habits and traffic condi-
tions, making it possible to study the heterogeneity of traffic. This paper classifies drivers
with different driving styles based on the travel time of vehicles extracted from ANPR
data. According to different temporal and spatial situations, the DBSCAN algorithm is
employed. The missing items of the travel time are supplemented based on the results of
the clusters. The driver’s crowd heterogeneity and other factors are considered when the
travel time is estimated. In this way, the TTE of the road link considering the difference in
the crowd is realized. The results show that compared with the direct interpolation method,
the algorithm proposed in this paper can improve the estimation accuracy by 37.4% and
provide more reliable data support for subsequent transportation network research.

However, this article also has some limitations. In the tensor modeling part of this
study, due to the restriction of the data format, it is not possible to obtain more attributes
about the travelers themselves. Therefore, the specific attributes or characteristics of a
particular driver, such as age, driving experience, etc., should be combined in follow-
up research.
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