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Abstract: This paper presents a tracking control scheme for nonlinear systems with input constraints
by combining the continuous-time model predictive control and the feedback linearization. Although
there are some similar combinations for nonlinear systems presented in literature, their formulations
are complex and massive computations are unavoidable. This study aims to simplify the formula-
tions and reduce the computational loads by imposing the Laguerre functions to approximate the
control signals. Since the Laguerre functions have the property of orthogonality, the tracking control
problem, by applying the combination, leads to a constrained quadratic optimization problem in
terms of the coefficients associated with the Laguerre functions, where the input constraints are
converted so as to be state-dependent, based on feedback linearization. The Hildreth’s quadratic
programming algorithm is used to solve the optimization problem, so as to determine the coefficients.
Moreover, this study also summarizes some common linearization schemes and shows their pros
and cons. Furthermore, the proposed approach is applied to two illustrative examples, and the
control performances are compared with those by linear control strategies combined with those
linearization schemes.

Keywords: model predictive control; feedback linearization; Laguerre functions; input constraint

1. Introduction

The model predictive control (MPC) is a controller that predicts real-time input of the
system to obtain the desired optimal output solution based on the previous and current
information in each time step [1]. However, the MPC applied to nonlinear systems needs
heavy computational loads [2]. To alleviate the loads, an institutive idea is to transform a
nonlinear system to a linear one, and feedback linearization (FL) is a common approach to
design a controller through transforming a nonlinear system into a linear system, which
then can be controlled by applying linear control theory [3]. Thus, there are many papers
investigating various applications combining the MPC and FL.

Kurtz and Henson applied the combination to a continuous stirred tank reactor with
both the input and output constraints, where the input-output feedback linearization was
used to obtain a linear model and then the model was discretized to apply a discrete-time
MPC [4]. Roca et al. applied the combination to the outlet water temperature in a solar
collector field, where the input–output FL was applied first to have a linear model and
then a discrete-time filtered Smith predictor-based model predictive control algorithm was
used to deal with disturbances and system uncertainties [5]. Mohammed et al. applied the
combination to a quadriceps muscle actuated knee joint, which were decoupled as inner-
and outer-loop dynamics. The inner-loop dynamics control was performed by using a
pole placement controller, and the outer-loop dynamics control was controlled by an input-
output FL cascaded with the MPC, where the inner-loop dynamics stability was proved [6].
Schnelle and Eberhard applied the combination to the trajectory tracking control of a serial
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manipulator with a passive joint, where the underactuated system was converted by the
input–output FL first, and then a discrete-time MPC. with both the input and input rate
constraints, was applied [7]. Chen et al. applied the combination to the temperature control
of a greenhouse, where the discrete-time unscented Kalman filter was used to estimate
the parameters and states of the system first, and then an input-state FL cascaded with
a discrete-time MPC was applied [8]. Sotelo et al. applied the combination to a single-
link flexible joint robot and the inverted pendulum, where the nonlinear systems were
transformed into linear systems by input-state FL through the Lie derivative. Besides this,
the nonlinear output equations were approximated by using the finite-dimension Taylor
expansion, and then the Euler backwards method was used, leading to discrete-time modes
for applying the discrete-time MPC [9]. Yue et al. applied the combination to the trajectory
tracking control of an underactuated two-wheeled inverted pendulum vehicle, where
an approximated input-output feedback linearization was used to reduce computational
burden, and then a discrete-time MPC with input and state constraints was applied [10].
Carron et al. applied the combination to a compliant 6-DOF robotic arm, where an inverse
dynamics FL was used to obtain a discrete-time linar model, the extended Kalman filter
was used to estimate the states, and a discrete-time MPC was incorporated with the
model [11]. Bao et al. presented the combination to a hybrid neuroprosthetic system,
where an FL was used to reduce computational loads, and then an MPC was applied
through a barrier cost function to deal with the nonlinear input constrains, originally
converted from linear ones [12]. Chen et al. presented the combination in cascade and
applied it to the control of automotive fuel cell oxygen excess ratio, where an FL cascaded
with a continuous-time MPC was used to perform anti-disturbance control. Besides, an
extended state observer was used to overcome the slow responses and interference errors
from measurements [13]. Guo et al. applied the combination to the secondary voltage and
frequency control of islanded microgrid, where each distributed generator was individually
controlled by a discrete-time MPC cascaded with an input-output FL to have a sparse
communication network [14]. Quan et al. applied the combination to the hydrogen excess
ratio regulation of proton exchange membrane fuel cells, where a pseudo-reference discrete-
time MPC cascaded with an input-output FL was developed to reduce the overshoots of
responses [15]. Liu et al. applied their combination to the eddy current de-tumbling of
space tumbling targets, where an input-output FL cascaded with a discrete-time MPC with
input constraints was developed to form a quadratic programming problem [16]. Cai et al.
applied the combination to a quadcopter, where a discrete-time MPC cascaded with an
input-output feedback linearization was applied to perform a trajectory tracking control.
Furthermore, a disturbance observer was designed to estimate wind disturbances [17].
Naimi et al. applied the combination to a pressurized water reactor, where a dynamic
neural network model of the reactor was identified by using the quasi-Newton algorithm,
and a discrete-time MPC cascaded with an input-output FL was applied, based on the
identified neural network model [18].

In review of literature, there are diverse combinations of the MPC and FL applied
to nonlinear systems with constraints. However, it is difficult to implement the complex
formulations in the real systems, and the required computational cost is high. Moreover,
there are a limited number of papers addressing input constraints. In this study, the
combination of the continuous-time MPC and FLis still proposed, but the combination aims
to simplify the formulations and reduce computational cost for trajectory tracking control
of nonlinear systems with constraints. The proposed approach first applies input-state
feedback linearization to obtain the canonical form of a linear system, and the control
signal is converted to be a virtual input signal, which is a function of the states of the
original nonlinear system. Further to this, the input constraints are converted to be state-
dependent. To simplify the formulations, and to reduce the computational cost, a limited
number of Laguerre functions are utilized to approximate the control signals in the MPC,
and then the approximated signals are substituted into the input constraints and the
linear state equations. Therefore, a constrained quadratic optimization problem can be
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formulated, where the determined design parameters are the coefficients associated with
the Laguerre functions, and the Hildreth’s quadratic programming algorithm is used
to determine the coefficients. Moreover, this study also summarizes several schemes to
perform the linearization of nonlinear systems, and the illustrative examples show the
control performance comparisons of the schemes, combined with linear control strategies.
The rest of the paper is organized as follows. Section 2 presents common linear or linear-like
formulation schemes. Section 3 proposes a new combination of the MPC and feedback
linearization. Section 4 demonstrates two examples, the SISO and MIMO systems. Section 5
summarizes significant findings.

2. Linear or Linear-like Formulations of Nonlinear Systems

This section reviews some common techniques to transform a nonlinear system
into a linear or linear-like system, which includes Jacobian linearization, feedback lin-
earization, state-dependent coefficient (SDC) parameterization, and Takagi-Sugeno (T-S)
fuzzy modeling.

A nonlinear system is considered as

.
x = f(x) + g(x)u, y = h(x) (1)

where x is a state vector; u is a control input vector; y is an output vector; f(x), g(x), and
h(x) are nonlinear functions of the states and time.

The following subsection will present several schemes transforming Equation (1) into
the linear or linear-like systems as the form:

.
z = Az + Bv, w = Cz (2)

where z, v and w are new state, control and output vectors, respectively; A, B and C are
matrices derived from Equation (1). If they are not functions of z, Equation (2) is a linear
system. In contrast, Equation (2) is linear-like system.

2.1. Jacobian Linearization

Jacobian linearization (JL) is a common approach, which uses a linear system to
approximate a nonlinear system based on equilibrium points [19]. Thus, referring to
Equation (2), the relevant variables are defined as

z = x− xe, v = u, w = y− h(xe), A = ∇f|x=xe
, B = ∇g|x=xe

, C = ∇h|x=xe
(3)

where xe refers to equilibrium points. Since A, B and C are not functions of z, the obtained
equation in Equation (2) is linear.

Since a nonlinear system might have multiple equilibrium points, each equilibrium
point corresponds to a linear equation, such as Equation (2), which can be individually
designed to have a controller. Thus, a common control scheme is called gain scheduling,
and switches the controllers corresponding to different linear equations [20,21].

2.2. Feedback Linearization

Feedback linearization (FL) is a technique to algebraically transform a nonlinear to a
linear system in another space by the exact transformation [22]. There are two types of FL
which are the input-state and the input-output FL. They will be introduced below.

2.2.1. Input-State FL

One considers single-input nonlinear systems for input-state FL. To ensure that a
linearization exists, both controllability and involutivity conditions should be satisfied. The
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linearization is performed based on a new state, where the first state can be determined by
solving the equations [23]:

∇z1adi
fg = 0 (i = 0, . . . , n− 2 ), ∇z1adn−1

f g 6= 0 (4)

where adi
fg is the adjoint representation of Lie algebra, and n is the number of states.

Then, the new state z can be defined as

z = [z1 Lfz1 . . . Ln−1
f z1]

T
(5)

where Lfz1 and Ln−1
f z1 are Lie derivatives.

Based on the new defined state z, a linear system can be formulated as Equation (2),
where:

A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0

, B =


0
0
...
0
1

, v = β−1(u− α) (6)

in which

α = −
Ln

f z1

LgLn−1
f z1

, β =
1

LgLn−1
f z1

(7)

The input-state FL only transforms the state equation, so a linear output equation
is not available. Besides, the obtained equation in Equation (2) is linear. For controller
design, all linear control design schemes can be applied to have the control v, which can be
transformed to the control u by Equations (6) and (7), where β cannot be zero.

2.2.2. Input-Output FL

One considers single-input-single-output nonlinear systems for input-output FL. The
linearization is performed by differentiating the output equation in Equation (1) repeatedly
until the input appears. Thus, the final equation will be [23]

y(r) = Lr
fh(x) + LgLr−1

f h(x)u (8)

where r is the number of differentiation and is called the relative degree of the system.
Define a new state z as

z = [y
.
y . . . y(r−1)]T (9)

Thus, Equation (8) can be formulated to be the same linear system as Equations (2) and (6),
but the control v, the output w and the parameter C are written as

v = Lr
fh(x) + LgLr−1

f h(x)u, w = y, C = 1 (10)

Similarly, the obtained equation in Equation (2) is linear. Besides, the control v can
be designed by all linear control schemes, and then the control u can be determined by
Equation (10), where LgLr−1

f h(x) cannot be zero.

2.3. State Dependent Coefficient Parameterization

The state dependent coefficient (SDC) parameterization is a method that transforms
a nonlinear to a linear-like system by factorizing the nonlinear functions [24]. Thus,
Equation (1) can be rewritten as

.
x = f(x) + g(x)u = A(x)x + B(x)u, y = h(x) =C(x)x (11)

where f(x) = A(x)x, g(x) = B(x), and h(x) =C(x)x .
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Define the new state, control and output the same as the original ones:

z = x, v = u, w = y (12)

which lead to the new state and output equations as Equation (2). Note that Equation (2)
in this scheme is a set of linear-like equations. The major benefit of this scheme is design
flexibility, but the stability and controllability it yields depend on the form of factorization.

Regarding control design, the state-dependent Riccati equation (SDRE) control is
mostly applied to Equation (2). The design procedure of the control scheme is similar to the
linear quadratic regulator (LQR), but the Riccati equations become functions of the states.
This is the reason the control scheme is called the SDRE control, and the difficulty of the
control scheme is solving the state-dependent Riccati equations.

2.4. Takagi–Sugeno Fuzzy Model

The Takagi–Sugeno fuzzy (TSF) model is a technique that locally linearizes a nonlinear
system to linear subsystems. After that, fuzzy if-then rules are applied to choose and blend
those linear subsystems for particular cases. The Takagi-Sugeno fuzzy models are given
as [25]

The ith rule is expressed as
If ξ1 is Mi1 and . . . and ξq is Miq, then

.
x = Aix + Biu, y = Cix, i = 1, 2, · · · , p (13)

where ξi are premise variables which are functions of the state variables; Mij is the fuzzy
set; p is the number of If-then rules; q is the number of the premise variables; Ai, Bi, and Ci
are state, input, and output matrices of the linear state-space of the ith rule.

Thus, the fuzzy systems are inferred as Equation (2), where:

A =
p

∑
i=1

hi(ξ) ·Ai, B =
p

∑
i=1

hi(ξ) · Bi, C =
p

∑
i=1

hi(ξ) ·Ci (14)

in which

hi(ξ) = (
q

∏
j=1

Mij)/(
p

∑
i=1

q

∏
j=1

Mij) (15)

Note that the stability of the system is proved using Lyapunov function [26].

2.5. Comparisons of the Three Linear-like Structures

Jacobian linearization is based on Taylor’s series expansions, and only the first-order
terms are remained. Thus, the transform systems are linear but approximate the original
systems. The transformation is unique and is performed easily. The FL aims to have
linear systems by defining new states and inputs. Thus, the transform systems present the
original systems exactly, but the transformations of states and inputs are nonlinear and
not unique. The non-unique property makes systems have design flexibilities for various
applications. However, some conditions should be satisfied. The state dependent coefficient
parameterization seeks a linear-like form, which can be directly applied by linear control
theorems. This expression is exactly the same as the original one, but the state, input and
output matrices become state-dependent. This transformation is not unique, and some
conditions should be satisfied. For instance, the determinant of the state matrix cannot
be infinite at any instant. The TSF models try to have a set of locally linear subsystems to
express the original systems by imposing a set of membership functions. However, the
new systems are approximately linear-like, due to state-dependent membership functions.
Table 1 lists the comparisons of these schemes.
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Table 1. Comparisons of the four transformations.

Transformation
Schemes JL FL SDC

Parameterization TSF Model

Redefine states and
inputs N Y N N

Linear or linear-like Linear Linear Linear-like Linear-like
Approximated or

same representations Approximated Same Same Approximated

Condition satisfied N Y Y N
Design flexibility N Y Y Y

Formulation
complexity N Y N Y

Computation cost Low Low High High

3. Nonlinear Model Predictive Control Formulation

This section presents a nonlinear model predictive tracking control with input con-
straints based on FL, where Laguerre functions are applied to reduce computation burdens,
and the formulated control problem is solved by using Hildreth’s quadratic program-
ming [27]. The detailed formulations are presented as follows.

3.1. Problem Description

Consider a nonlinear system as Equation (1) with input constraints as

u− ≤ u ≤ u+ (16)

where u− and u+ are the lower and upper bounds of the inputs.
By performing FL as shown in Section 2.2, a nonlinear system in Equation (1) with the

input constraints in Equation (16) can be transformed as Equation (2) with the new input
constraints as

v− ≤ v ≤ v+ (17)

where v− and v+ are the new lower and upper bounds of the new inputs, which are
obtained through Equation (6).

3.2. Laguerre Functions

The Laguerre functions are the set of the orthonormal basis functions, and they will be
used to approximate the control signals to decrease the computational time of the model
predictive control [28,29]. The set of Laguerre functions can be arranged in the matrix
form as

L(t) = eAl tL(0) (18)

where:

Al =


−p 0 · · · 0
−2p −p · · · 0

...
...

. . .
...

−2p · · · −2p −p


N×N

, L(0) =
√

2p


1
1
...
1


N×1

, p > 0 (19)

in which p is a scaling factor which implies the exponential decay rate; N is the number of
coefficients. As N increases, the estimated input signal is closer to the real value. Figure 1
shows an input signal approximated by using the Laguerre functions. It is worth to note
that the Laguerre functions have the property of orthonormality.
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Figure 1. A signal approximated by using 2, 4 and 6 Laguerre functions.

3.3. Model Predictive Control with Input Constraints

The MPC computes a control signal by optimizing the outputs based on a predicted
model within a limited time window. Thus, the MPC can be formulated as an optimization
problem subjected to some constraints, and the MPC formulations are shown as follows.

Define a new state as
χ = [

.
zT eT ]T (20)

where e is the tracking error defined as

e = y− r f (21)

in which r f is a constant reference signal to be tracked by the output y.
Taking the derivative of the state-space equation in Equation (2) with respect to time

leads to
..
z = A

.
z + B

.
v (22)

Also, the time derivative of Equation (21) leads to

.
e =

.
y = C

.
z (23)

Based on the definition of the new state shown in Equation (20), combining
Equations (22) and (23) become to the augmented model as

.
χ = Agχ+ Bg

.
v, e = Cgχ (24)

where:

Ag =

[
A 0T

nout×nstate
C 0nout×nout

]
, Bg =

[
B

0nout×nin

]
, Cg = [ 0nout×nstate Inout×nout ] (25)

in which nin, nout and nstate are the numbers of inputs, outputs and states, respectively.
Therefore, the MPC optimization problem can be formulated as [29]

Min J =
∫ Tp

0
(χT(ti + τ)Qχ(ti + τ) +

.
vT

(τ)R
.
v(τ))dτ (26)
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subjected to the augmented equations as (24) and the input constraints as (17), where ti is
the current time in the model predictive control; Tp is the time of horizon window; Q and
R are the weighting diagonal matrices for state and input, respectively.

The Laguerre functions are applied to estimate the control signal expressed as

.
vi(t) = Li

T(t)ηi (27)

where vi(t) is the ith control signal in vector v(t); Li(t) and ηi are two (Ni × 1) vectors
associated with the control vi(t), and Ni is the number of the Laguerre functions regarding
to the ith control vi(t).

Since the Laguerre functions have the property of the orthonormality, Equation (27)
substituted into (17) and (24) leads to

Mη ≤ γ (28)

χ(ti + τ) = eAgτχ(ti) +φT(τ)η (29)

where η is a vector consisting all ηi, and

M =

[
diag(LT

1 (0)∆t, LT
2 (0)∆t, · · · , LT

nin
(0)∆t

diag(−LT
1 (0)∆t,−LT

2 (0)∆t, · · · ,−LT
nin

(0)∆t

]
(30)

γ =
[
v+

1
− v1(ti − ∆t) −v−

1
+ v1(ti − ∆t) · · · v+nin

− vnin (ti − ∆t) −v−nin
+ vnin (ti − ∆t)

]T
(31)

φT(τ) =
∫ τ

0
eAg(τ−γ)

[
B1L1

T(γ) B2L2
T(γ) . . . Bnin Lnin

T(γ)
]
dγ (32)

in which Bi is the ith column of the Bg matrix and τ is the time between 0 and Tp.
The equality constraint shown in Equation (29) can be substituted into (26) to eliminate

a constraint in the optimization problem, and it can be reformulated as

min J = [η+ Ω−1Ψχ(ti)]
T

Ω[η+ Ω−1Ψχ(ti)]

+χT(ti)(
∫ Tp

0
eAT

g τQeAgτdτ)χ(ti)− χT(ti)Ψ
TΩ−1Ψχ(ti)

(33)

subjected to Equation (28), where:

Ω =
∫ Tp

0
φ(τ)QφT(τ)dτ + RL, Ψ =

∫ Tp

0
φ(τ)QeAgτdτ (34)

The optimization problem can be solved by using the Hildreth’s quadratic program-
ming [27] to obtain

η = −Ω−1Ψχ−Ω−1MT
λ (35)

where:
λ = [λ1 · · · λi], i = 1, 2, . . . , 2nin (36)

which can be obtained by

λm+1
i = max

(
0, Λm+1

i

)
, m = 1, 2, . . . , ncons (37)

where ncons is the number of input constraints, and

Λm+1
i (t) = − 1

Hii

[
Ki +

i−1

∑
j=1

Hijλ
m+1
j (t) +

ncons

∑
j=i+1

Hijλ
m
j (t)

]
(38)
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in which Ki and Hij are the components of matrices

K = γ+ MΩ−1Ψχ, H = MΩ−1MT (39)

Thus, the new control
.
v is obtained through Equation (27), where the vector η is

calculated by using Equation (35). The vector η is in terms of the vector λ, which is
determined by Equation (37). Each element in vector λ is either zero or positive values,
which refer to non-active or active constraints, respectively. If there are no active constraints,
λ will contain only zero and the control

.
v can be expressed as

.
v = −KMPCχ (40)

where:
KMPC = LT(0)Ω−1Ψ (41)

The proposed approach is flexible for control design, because there are five controller
parameters tuned to enhance control performances. The five parameters are the scaling
factor p, the numbers of the Laguerre functions Ni regarding to the ith control, the time of
horizon window Tp, and the weighting matrices Q and R respectively for the augmented
states and the new control rates. The scaling factor is the decaying rate of the Laguerre
functions, which affect the approximations of the control rates. The more the numbers of
the Laguerre functions are, the closer the approximated control rates are to the real ones,
but the penalty is the computational cost. If the time of horizon window approaches infinity,
the model predictive control is similar as the LQR control. Obviously, the weight matrices
affect the minimizations of the augmented states and the new control rates. From the
perspective of practical control, the parameter tuning procedure is summarized as follows.

Select the scaling factor, which is related to the convergence rates of the Laguerre functions.
Equation (18) can be used to test the convergence rates by selecting various scaling factor.
It is suggested that a trial starts from p = 1.
Select the numbers of the Laguerre functions, which are related the approximation accuracy
of control signals. Using more Laguerre functions causes better approximates but more
computational time. It is suggested that a trial starts from Ni = 3.
Select the time of horizon window, which is related to the time to predict the response.
There are no general rules to select the time, but it is suggested that a trial starts from
Tp = 100.
Select the weighting matrices, which are related to the minimizations of the states and con-
trol. Since they are usually contradictive, it is suggested that a trial starts from Q = R = I.
After performing the first trials, all parameters can be adjusted by several trials based on
the trial results.

4. Illustrative Examples

This section demonstrates two examples: a flexible-joint mechanism and a two-
link robot arm, which are a single-input single-output system (SISO) and as a multiple-
input multiple-output system (MIMO), respectively. To demonstrate the control perfor-
mances, the three control schemes in literature listed below are applied to compare their
simulation results.

1. Linear quadratic tracking (LQT) control based on FL: this scheme applies the input-
state FL shown in Section 2.2.1. first, and then the LQT control is applied to design a
control. This scheme is abbreviated as LQT-FL in the following simulations.

2. MPC based on the TSF model: this scheme applied the TSF model to obtain a linear-
like model first, and then the MPC is used to design the control. This scheme is
abbreviated as MPC-TSF in the following simulations.

3. SDRE control: this scheme applies the SDC parameterization shown in Section 2.3.
to nonlinear systems first, and then the control is obtained by solving the SDRE.
The control design process is similar to the LQR control, so this scheme is like an
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LQR based on the SDC. In this study, this scheme is abbreviated as SDRE in the
following simulations.

As a matter of fact, the proposed scheme applied the input-state FL first, and then the
MPC is used to design a control. Thus, the proposed scheme is abbreviated as MPC-FL in
the following simulations. Obviously, the proposed scheme is compared with the MPC-TSF
to show the effects of the linearized-like scheme; the proposed scheme is compared with
the LQT-FL to show the effects of control designs; the proposed scheme is compared with
the SDRE to show both the effects of linearized-like schemes and control designs. Note that
a saturation function is applied to the three compared control schemes in order to satisfy
the input constraints.

4.1. Flexible-Joint Mechanism

The dynamics model of the flexible-joint mechanism, shown in Figure 2, is given by

Im
..
qm1

+ MmgLm sin qm1 + Km(qm1 − qm2) = 0, Jm
..
qm2
− Km(qm1 − qm2) = um (42)

where um is the motor torque defined as the input signal; qm1 is the angular displacement of
the joint attached with the link defined as the output signal; qm2 is the angular displacement
of the joint attached with the motor.

Figure 2. Flexible-joint mechanism.

To perform the tracking control, one intends the angle qm1 to reach 0.6 rad by applying
the aforementioned four control schemes. The parameters applied in the simulation are
defined in Table 2, and the controller parameters are selected as

p = 0.5, N = 5, Tp = 100, Q = I, r = 1 (43)

Table 2. Parameters of the flexible-joint mechanism.

Parameters Symbols Values Units

Inertia of the link Im 1 kg·m2

Inertia of the motor Jm 1 kg·m2

Mass of the link Mm 1 kg
Distance between the joint and the link center Lm 1 m

Spring constant Km 100 N/rad
Gravitational constant g 9.81 m/s2

For comparisons, the controller parameters of the other three schemes are selected as

SDRE : Q = I, r = 1 (44)

MPC-TSF : p = 0.5, N = 5, Tp = 100, Q = I, r = 1 (45)

LQT-FL : Q = I, r = 1 (46)

Note that the controller parameter values are the same in the four control schemes.
Case A: Control without input constraints for the flexible-joint mechanism
Figure 3a shows the output responses by applying the four control schemes without

input constraints. The results show that the responses of the SDRE and LQT-FL have
overshoots and oscillations. In contrast, the proposed control MPC-FL and the MPC-TSF
model provide smooth responses. Moreover, the proposed control has the smallest settling
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time, compared with the other three control schemes. Figure 3b shows the control signals
by applying the four control schemes without input constraints, and the results show that
the proposed control MPC-FL and the MPC-TSF have smoother and smaller control signals,
compared with the other two control schemes. Table 3 shows the control performance
comparisons by applying the four control schemes, where there are six performances
indices selected for comparisons, which are the rising time, the settling time, the maximum
overshoots, the ranges of input signals, the computational time, and the root-mean square
errors (RMSEs). The results show that the smallest rising and settling come from the LQT-
FL and the proposed MPC-FL, respectively; the proposed MPC-FL provides the smallest
and near-zero overshoots; the MPC-TSF provides the smallest range of input signals; the
LQT-FL takes the shortest computational time; the MPC-TSF provides the smallest RMSE.
Although the proposed control scheme has only two first places in the six performance
indices, the scheme has the other four second places. Therefore, speaking overall, the
proposed scheme is superior to the other schemes in this example.

Figure 3. Flexible-joint mechanism by applying the four control schemes without input constraints:
(a) output responses; (b) input signals.

Table 3. Performance comparisons of applying the four control schemes to the flexible-joint mecha-
nism without input constraints.

Controller Rising Time
(s)

Settling Time
(s)

Max. Overshoot
(Rad) Input Ranges (N·m) Computational

Time (s)
RMSE
(Rad)

SDRE 1.1120 15.8700 0.3589 (−1.9091, 0.9438) 43.0110 0.0688
MPC-TSF 13.3184 20.1470 0.0002 (−0.0004, 0.5991) 45.0750 0.1333
LQT-FL 6.1280 48.8000 0.4638 (−4.9458, 5.5785) 1.5310 0.1918
MPC-FL

(proposed) 9.2668 12.6885 0.0000 (−0.0004, 1.0480) 15.5830 0.1564

Case B: Control with input constraints for the flexible-joint mechanism
Similar simulations are performed in this case, except for the control with input

constraints. To test the capability of enduring input constraint ranges, the range starts from
a bigger value and is then followed by smaller values. One selects the input constraints
as ±4.5, ±1.9, ±1.8, ±0.59, and ±0.56, and Figures 4–8 show the output response and the
input signals associated with the constraints, respectively. Regarding the input constraints
±4.5, the constraints are active only for the LQT-FL, but the response has huge overshoots.
Regarding the input constraints ±1.9, the constraints are active for the LQT-FL and SDRE.
Although both can reach the desired angle, the LQT-FL has huge overshoots. Regarding the
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input constraints ±1.8, the constraints are active for the LQT-FL and SDRE, where the LQT-
FL has not only huge overshoots but also fluctuations at the steady state, while the SDRE
cannot track the reference signal. Regarding the input constraints ±0.59, the constraints are
active for all controllers, where only the LQT-FL, MPC-TSF and proposed MPC-FL can track
the reference signal, but the LQT-FL has huge overshoots and the MPC-TSF has a longer
settling time, compared with the proposed MPC-FL. Regarding the input constraints ±0.56,
the constraints are active for all controllers but only the proposed MPC-FL and LQT-FL
could track the reference signal effectively, although the LQT-FL still has huge overshoots.
Table 4 shows the performance indices, which are the rising time, the settling time, the
maximum overshoots, the ranges of input signals, and the RMSEs. The results show that a
larger input constraint range can be satisfied by all control schemes. However, as the range
increases, some control schemes may not track the reference signal. Even though some of
them track the signal effectively, the performance indices are worse than those obtained by
the proposed MPC-FL.

Figure 4. Flexible-joint mechanism by applying the four control schemes with input constraints
±4.5 N·m: (a) output responses; (b) input signals.

Figure 5. Flexible-joint mechanism by applying the four control schemes with input constraints
±1.9 N·m: (a) output responses; (b) input signals.
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Figure 6. Flexible-joint mechanism by applying the four control schemes with input constraints
±1.8 N·m: (a) output responses; (b) input signals.

Figure 7. Flexible-joint mechanism by applying the four control schemes with input constraints
±0.59 N·m: (a) output responses; (b) input signals.

Figure 8. Flexible-joint mechanism by applying the four control schemes with input constraints
±0.56 N·m: (a) output responses; (b) input signals.



Appl. Sci. 2022, 12, 5016 14 of 20

Table 4. Comparisons of control performances by applying the four control schemes with input
constraints to the flexible-joint mechanism.

Input Constraints
(N·m) Controllers Rising Time (s) Settling Time (s) Max. Overshoot

(Rad) RMSE (Rad)

±4.5

SDRE 1.1120 15.8700 0.3589 0.0688
MPC-TSF 13.3184 20.1470 0.0002 0.1333
LQT-FL N/A 44.7200 N/A N/A

MPC-FL (proposed) 9.2668 12.6885 0.0000 0.1564

±1.9

SDRE 1.1360 18.7600 0.3588 0.0766
MPC-TSF 13.3184 20.1470 0.0002 0.1333
LQT-FL N/A 45.7200 N/A N/A

MPC-FL (proposed) 9.2668 12.6885 0.0000 0.1564

±1.8

SDRE 0.7194 N/A 0.3500 0.1324
MPC-TSF 13.3184 20.1470 0.0002 0.1333
LQT-FL N/A 46.7000 N/A N/A

MPC-FL (proposed) 9.2668 12.6885 0.0000 0.1564

±0.59

SDRE N/A N/A N/A N/A
MPC-TSF 13.6132 23.2655 0.0000 0.1334
LQT-FL N/A 47.4700 N/A N/A

MPC-FL (proposed) 15.0869 20.5160 0.0000 0.1807

±0.56

SDRE N/A N/A N/A N/A
MPC-TSF N/A N/A N/A N/A
LQT-FL N/A 50.3700 N/A N/A

MPC-FL (proposed) 15.3072 20.5160 0.0000 0.1840

Note: N/A refers to the values much greater than the others or non-existent.

4.2. Two-Link Robot Arm

The dynamics model of the system is (shown in Figure 9) given by

Mr(θr)
..
θr + Cr(θr,

.
θr) = ur (47)

where θr and ur are vectors of the link angles and applied torques, respectively; Mr(θr) is
a mass matrix function of θr and Cr(θr,

.
θr) is a Coriolis force vector function of θr and

.
θr,

and both are given as

Mr(θr) =

[
(mr1 + mr2)L2

r1
+ mr2 L2

r2
+ 2mr2 Lr1 Lr2 cos θr2 mr2 L2

r2
+ mr2 Lr1 Lr2 cos θr2

mr2 L2
r2
+ mr2 Lr1 Lr2 cos θr2 mr2 L2

r2

]
,

Cr(θr,
.
θr) =

[
−mr2 Lr1 Lr2(2

.
θr1

.
θr2 +

.
θr1

2) sin θr2

−mr2 Lr1 Lr2

.
θr1

.
θr2 sin θr2

] (48)

in which mr1 and mr2 are the masses of links; Lr1 and Lr2 are the lengths of links; θr1 and θr2

are the joint angles; the subscripts 1 and 2 refer to the first and second links, respectively.
In this study, the joint torques are the control inputs, and the joint angles are the

outputs. Thus, this system has two inputs and two outputs. The system parameters are
shown in Table 5. The tracking control is performed to track the reference signals 0.5 for
both joints. Similar to the previous example, the four control schemes were applied to
compare their control performances. The robot parameters are listed in Table 4, and the
controller parameters are given as

Q = 150I, R = I, p = 0.9, N = 7, Tp = 15 (49)

For comparisons, the controller parameters of the other three schemes are selected as

SDRE : Q = 150I, R = I (50)
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MPC-TSF : Q = 150I, R = I, p = 0.9, N = 7, Tp = 15 (51)

LQT-FL : Q = 150I, R = I (52)

Figure 9. Two-link robot arm.

Note that the controller parameter values are the same in the four control schemes.

Table 5. Two-link robot arm parameters.

Parameters Symbols Values Units

Mass of link 1 mr1 1 kg
Mass of link 2 mr2 0.5 kg

Length of link 1 Lr1 1 m
Length of link 2 Lr2 0.8 m

Case C: Control without the input constraints for the two-link robot arm
Figure 10 shows the output and input responses by applying the control schemes.

The results show that all schemes can track the reference signals but the response of the
MPC-TSF is much slower than that of the other schemes. To distinguish the three schemes,
Figure 11 shows their transients, and the results show that the overshoot of the LQT-FL is
greater than those of the other two schemes. Table 6 shows the control performances by
applying the four control schemes. The results show that the LQT-FL has the smallest rising
and settling time. The SDRE and MPC-TSF have near-zero overshoots, and the overshoot
of the proposed MPC-FL is smaller than that of the MPC-TSF. The proposed MPC-FL has
the smallest input range, which implies that its control effort is smallest. The RMSEs of the
proposed MPC-FL are smallest. Speaking overall, the proposed MPC-FL has the first or
second places in the six performance indices, and its performances are better than others in
this case.

Table 6. Comparisons of control performances by applying the four control schemes without input
constraints to the two-link robot arm.

Controller Joint Rising Time
(s)

Settling Time
(s)

Max. Overshoot
(Rad)

Input Ranges
(N·m)

Computational
Time (s) RMSE (Rad)

SDRE
1 4.4800 6.6400 0.0000 (−0.9893, 6.4839)

167.4830
0.3419

2 4.3040 5.8200 0.0000 (−0.3345, 6.1237) 0.2807

MPC-TSF
1 110.7220 147.5750 0.0000 (0.0000, 5.8805)

39.4840
0.1776

2 107.8150 137.2700 0.0000 (0.0000, 6.1647) 0.1045

LQT-FL 1 1.1840 2.4400 0.0250 (−10.4705, 18.5682)
6.4400

0.2572
2 1.1360 2.4100 0.0260 (−3.5592, 6.3192) 0.2543

MPC-FL
(proposed)

1 3.9240 5.4250 0.0028 (−0.5592, 1.9739)
6.5200

0.0409
2 3.7480 5.3320 0.0028 (−0.1901, 0.6711) 0.0407
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Figure 10. Two-link robot arm by applying the four control schemes without input constraints:
(a) output responses of joint 1; (b) output responses of joint 2; (c) input signals of joint 1; (d) input
signals of joint 2.

Figure 11. Two-link robot arm by applying the four control schemes with input constraints ±6.1 N·m:
(a) output responses of joint 1; (b) output responses of joint 2; (c) input signals of joint 1; (d) input
signals of joint 2.
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Case D: Control with the input constraints for the two-link robot arm.
Similar to case C, one reduces the input constraint range to test the capabilities of en-

during the minimum range, and the ranges are selected as ±6.1, ±6.0, and ±1.5/±0.3 N·m
for both joints. Regarding the range ±6.1 N·m for both joints, the results are shown in
Figure 11. The results show that all control schemes can track the reference signals, where
the input constraints for the MPC-TSF, LQT-FL, and SDRE are active. Besides this, the
proposed MPC-FL converges faster than the others, and it has smaller overshoot. Regarding
the range ±6.0 N·m for both joints, the results are shown in Figure 12. Although the range
is a little smaller than the previous range, the results are much different. The results show
that the input constraints for all control schemes are active, but the SDRE cannot track the
reference signals in contrast to other control schemes. Furthermore, the proposed MPC-FL
has less rising and settling time. Regarding the range ±1.5/±0.3·m for each joint, the
results are shown in Figure 13. The results show that the input constraints of all control
schemes are active, so the input signals reach the constraint bounds. Besides this, the output
signals of the SDRE and MPC-TSF cannot track the reference signals, and the proposed
MPC-FL has smaller overshoot. Table 7 summarizes the performance indices with the three
input constraint ranges, and the results show that the LQT-FL has the smallest rising and
settling time, and the proposed MPC-FL has the smallest ranges of inputs and RMSE.

Figure 12. Two-link robot arm by applying the four control schemes with input constraints ±6.0 N·m:
(a) output responses of joint 1; (b) output responses of joint 2; (c) input signals of joint 1; (d) input
signals of joint 2.
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Figure 13. Two-link robot arm by applying the four control schemes with input constraints ±1.5 and
±0.3 N·m respectively for joints 1 and 2: (a) output responses of joint 1; (b) output responses of joint
2; (c) input signals of joint 1; (d) input signals of joint 2.

Table 7. Comparisons of control performances by applying the four control schemes with input
constraints to the two-link robot arm.

Input Constraint
Range (N·m) Controllers Joints Rising Time (s) Settling Time (s) Max. Overshoot

(Rad) RMSE (Rad)

±6.1

SDRE
1 28.1920 127.3500 0.5094 0.5005
2 7.8480 10.6800 0.0059 0.4903

MPC-TSF
1 110.4480 138.7900 0.0000 0.1884
2 88.1920 119.3350 0.0000 0.1253

LQT-FL 1 0.2560 2.0900 0.4310 0.1785
2 0.6720 2.0200 0.0327 0.6997

MPC-FL (proposed) 1 3.9240 5.4250 0.0028 0.0409
2 3.7480 5.3320 0.0028 0.0407

±6.0

SDRE
1 N/A N/A N/A N/A
2 N/A N/A N/A N/A

MPC-TSF
1 125.3890 156.7362 0.0000 0.4993
2 104.8225 131.0281 0.0000 0.4740

LQT-FL 1 0.2160 2.3000 0.4383 0.1789
2 0.6640 2.1300 0.5421 0.7034

MPC-FL (proposed) 1 3.9240 5.4250 0.0028 0.0409
2 3.7480 5.3320 0.0028 0.0407

±1.5/±0.3

SDRE
1 N/A N/A N/A N/A
2 N/A N/A N/A N/A

MPC-TSF
1 N/A N/A N/A N/A
2 N/A N/A N/A N/A

LQT-FL 1 0.8480 2.1700 0.0379 0.1539
2 0.0560 1.6700 0.9551 0.1528

MPC-FL (proposed) 1 3.5800 5.4100 0.0028 0.0409
2 4.1360 5.6600 0.0031 0.0567

Note: N/A refers to the values much greater than the others or non-existent.
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5. Conclusions

This paper presents a continuous-time model predictive tracking control, based on
input-state feedback linearization for nonlinear systems with input constraints. Although
literature shows some similar control schemes, their formulations are quite complex and
they need high computational costs. To reduce formulation complexities and computational
loads, this study considers the control signals to be approximated with Laguerre functions,
and the control problem is formulated as a constrained quadratic optimization problem
solved by the Hildreth’s quadratic programming procedure. Since the proposed control is
based on linear systems, which are obtained through feedback linearization, this study also
investigates the effects of linearization or linearization-like effects. The relevant developed
schemes include not only feedback linearization but also Jacobian linearization, state-
dependent factorization, and the Takagi–Sugeno fuzzy model. Based on these schemes
integrated in the model predictive control, the linear quadratic tracking control, and the
state-dependent Riccati method control, the proposed control is applied to two nonlinear
systems to demonstrate it controls performances, and the results show that the proposed
control is superior to the others.
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