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Abstract: Rolled carbon steel sheets used in industrial and construction sites are formed by passing
metal stock between two rotating rolls using a rolling mill, and the work roll is an essential part of
the rolling mill. As the work rolls are in direct contact with the workpiece, the process quality is
highly sensitive to their surface integrity, which is maintained through rough and finish cuttings;
ultrasonic inspection is often performed after rough cutting the surfaces of work rolls. Ultrasonic
inspection signals comprise signals reflected from and below the surface. Depending on the size of the
subsurface defects, the thickness of the finish cutting is determined. The signals reflected by defects
close to the surface overlap with those from the work roll surface, which is referred to as the ultrasonic
dead zone and makes defect detection difficult. Since visual detection of flaws is not possible from
signals collected from the dead zone, finish cutting is commonly performed up to the dead zone
depth; this requires unnecessary cost and process time, which must be improved. Therefore, in
this study a convolutional neural network is used to improve defect detection performance in the
ultrasonic dead zone during the inspection of work rolls.

Keywords: ultrasonic dead zone; convolutional neural network; work roll; ultrasonic testing; detectability

1. Introduction

Large-scale cold rolling processes generally use a 6-high tandem rolling mill consisting
of work rolls, intermediate rolls, and backup rolls. The rolling mill used in the process
feeds high-temperature or room-temperature metal stock between two rotating rolls to
form materials in various shapes. Among the components, the work roll is a core part of
the rolling mill; since the work roll is in direct contact with the workpiece to produce cold
rolled carbon sheets of the required thickness, it must have very high strength and hardness.
In particular, if there are micro-defects near the surface of the work roll, they may cause
damage to the rolled product. Therefore, meticulous monitoring and control of the surface
of the work roll to a certain depth are required, and ultrasonic inspection is used for this
purpose. Currently, work rolls are roughly cut prior to conducting ultrasonic inspection,
and based on the results of the inspection, finish cutting is performed. However, a dead
zone for the inspection signals is seen in ultrasonic inspection owing to the initial ultrasonic
signals, and if the defect signals overlap in the dead zone, it is difficult to identify defects.
Therefore, finish cutting of the work rolls is performed based on the flaws detected in the
region beyond the dead zone. However, this may incur unnecessary processing time and
cost, which may result in significant losses to the manufacturer. Hence, detecting defects in
the ultrasonic dead zone is instrumental in the industrial process [1–3].

To reduce the ultrasonic dead zone, one of the methods employed is to minimize the
initial pulse of the ultrasonic waves by adjusting the band width, and another method is to
shift the ultrasonic frequency to a higher frequency to reduce ultrasonic ringing. Further,
there is a method of minimizing the initial pulse using a dual ultrasonic probe, and another
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method of removing the initial pulse effects by introducing a gap between the specimen
and ultrasonic probe using an immersion transducer. However, even with the immersion
transducer, the ultrasonic dead zone is formed near the surface by the reflected signals
generated at the interface between the water and the specimen. Therefore, although the
size of the dead zone can be reduced by adjusting different variables, such as the general
method of ultrasonic inspection and the transducer, it is difficult to fundamentally remove
the dead zone [4–6].

Therefore, most studies on work rolls mainly investigate methods to increase the
hardness and strength of the work roll itself rather than ultrasonic inspection techniques.
Lim et al. studied the forging process using ultrahigh carbon steel for the work roll [7],
and Park et al. developed the N_HSR1 with improved wear resistance and roll failure in
response to the changing rolling conditions [8]. Garza-Montes-de-Oca et al. investigated
degradation mechanisms for abrasive wear and thermal fatigue on the surface of the
work roll [9]. In addition, Li et al. investigated the surface temperature field of the work
rolls using finite element method (FEM) simulations based on the thermal conduction
equation and analyzed the work roll surface temperature, thermal stress, and thermal
fatigue [10]. Benasciutti et al. used the FEM to investigate a simplified numerical approach
for calculating heat by the rotation acting on the surface of the work roll and load generated
in the cooling process [11]. Among these previous studies, a few were based on ultrasonic
inspection of the work rolls, and it is seen that further research is needed on methods
to reduce the problems of cost and time in the manufacturing process of the work rolls.
Therefore, the signals from the dead zone, which are difficult to detect by human judgment
based on visual observations, are acquired in this study through a standard specimen, and
a convolutional neural network (CNN), which is one of the types of deep-learning network,
is used to determine the status of defects in the dead zone and classify them.

2. Experimental Procedures
2.1. Specimen

In current practice, ultrasonic inspection of work rolls is performed by applying the
local water immersion method using a resolution-type immersion transducer (Olympus,
Seoul, Korea, 10 MHz, 0.25′′). Figure 1 shows the typical ultrasonic inspection system for
work rolls employed in industrial sites.
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In the actual site, the minimum defect size that can be detected by ultrasonic inspection
of the work rolls is 0.4 mm, and the ultrasonic signals are amplified to detect the micro-
defects. As the gain of the ultrasonic pulser receiver increases, the signals from the work
roll surface generated at the interface between the water and the work roll overlap with
the defect signal generated immediately below the surface. Figure 2 presents a schematic
illustration of the inspection of a work roll.
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Figure 2. Schematic of ultrasonic inspection of the work roll.

In this study, to improve the problem caused by the dead zone in the ultrasonic
inspection of work rolls using deep learning, a standard specimen modeling the subsurface
defects in the work roll was fabricated. The standard specimen was made of AISI 304L,
a material similar to that of the work roll, with defects of size 0.4 mm; the defects are of
the side drilled hole (SDH) type and are located at depths 1 mm, 2 mm, 3 mm, and 4 mm
below the surface. The spacing between the defects is set as 20 mm so as not to affect the
ultrasonic signals. Figure 3 shows the fabricated standard specimen.
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2.2. Experimental Setup

The signals from the subsurface defects were acquired using the standard specimen,
and the sensor module of the ultrasonic inspection system for the work rolls was modeled
with an ultrasonic C-scanner, as shown in Figure 4. Figure 4 shows a photograph of the
ultrasonic C-scanner used in the experiments.
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Figure 4. Ultrasonic C-scanner used in this study.

The transducer used in the experiment was a water-immersion-type device (Olympus,
10 MHz, 0.25′′) that is used in actual industrial sites. Moreover, the gain of the ultrasonic
pulser receiver was adjusted to detect and differentiate the defect signals. Figure 5 shows
the ultrasonic A-scan signals of the defects in the standard specimen for the respective
cases. Figure 5a shows signals with no defects, and Figure 5b–e shows the signals of the
defects at depths of 1 mm, 2 mm, 3 mm, and 4 mm below the surface, respectively. In
Figure 5d,e, the signals reflected from the surface and those from the subsurface defects
are observed to overlap, which actually shows similar signal patterns to those in Figure 5a
without the defects. This indicates that in such cases it is difficult to determine the presence
or absence of defects by intuitive human judgment based on visual observations.
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3. Database Implementation
3.1. Ultrasonic Database

To train the CNN, a database was developed from the collected ultrasonic signals, as
shown in Figure 5, and the database specifications are as shown in Table 1.
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Table 1. Ultrasonic defect database.

Label Training Database Test Database

Flaw No. of Signals Flaw No. of Signals

0 Without defects 600 Without defects 100

1 1 mm below the surface 300 1 mm below the surface 50

2 2 mm below the surface 300 2 mm below the surface 50

Total 1200 200

In the case of signals without defects, 700 sets of data were collected, and 350 signals
each were collected for defects at depths of 1 mm and 2 mm below the surface. In addition,
to test the performance of the trained neural network, 20% of the collected signals were
randomly selected; the training database was constructed with 1200 signals, and the test
database was separately constructed with 200 signals.

3.2. Database Augmentation

A total of 1400 ultrasonic signals were collected, including the training and test data,
but this amount of data is insufficient considering the reliability of deep-learning results.
Therefore, the database was augmented using two methods [12–14], and the effectiveness
of these two methods has been verified in the previous studies. First, white Gaussian
noise (WGN) with a signal-to-noise ratio (SNR) was added to the existing signals for
data augmentation. Because the ultrasonic inspections are generally performed in harsh
environments, the signals are highly sensitive to noise; in particular, since the inspection
results may be compromised by electrical noise that occurs as WGN, the data was increased
by adding WGN with SNR. Hence, based on the number of existing data, the total amount
of data increased sixfold from 1400 to 8400.

Second, the data were augmented by simulating the time-axis shifting of the ultrasonic
signals. For ultrasonic signals, the time axis of the defect reflection signals may shift owing
to the influence of the experimental settings and equipment. Based on the existing signal
data, the number of data was increased by shifting the time axis by 0.5–1.5 µs, and the total
number of data increased sixfold from 1400 to 8400. Figure 6 shows the ultrasonic signals
of the augmented data, and Table 2 shows the composition of the augmented database
based on the original database.
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Table 2. Augmented database.

Label Training Database Test Database

Flaw No. of Signals Flaw No. of Signals

0 Without defects 7200 Without defects 1200

1 1 mm below the surface 3600 1 mm below the surface 600

2 2 mm below the surface 3600 2 mm below the surface 600

Total 14,400 2400

4. Artificial Neural Networks

Artificial neural networks (ANN) refer to statistical learning algorithms used in ma-
chine learning and cognitive sciences inspired by neural networks in biology. The first
ANN was proposed by McCulloch and Pitts [15]; then, Rosenblatt [16,17] developed the
perceptron, which is an ANN for supervised self-learning; the essence of training the
neural network is the backpropagation algorithm, which was proposed by Werbos [18] and
Rumelhart [19].

The ANN consists of an input layer, a hidden layer, and an output layer. Each layer
contains nodes assigned with weights and is a feed-forward network with the inputs
processed only in the forward direction to all nodes in the next layer. In the learning process
of a neural network, the external data are first received from the input layer, features of the
data are extracted from the hidden layer, and the output layer produces a result derived
from the extracted features and presents this result as an output. In most cases, neural
network models have one each of the input and output layers, but the number of hidden
layers can vary depending on the complexity of the problem. The case with more than
one hidden layer is referred to as a deep neural network (DNN). Given the same data
output from the previous layer, different features are extracted for each neuron from the
same input data, and the output is calculated using weighted summation and activation
functions during feature extraction. After calculating the output, the error between the real
data and the predicted output is provided using a loss function, and the backpropagation
algorithm is used to reduce the error as well as fine-tune the weights again [17,20–22].

4.1. CNN

The CNN is a class of ANN proposed by Le Cun et al. [23] and follows the design
concept and model architecture of the neocognitron [24] while adopting the backpropaga-
tion algorithm for learning; it is currently the most commonly applied ANN. The CNN
can be divided into one part for extracting the features of the input data and another part
for classifying these features. The feature extraction part is divided into the convolutional
and pooling layers. In the convolutional layer, the main operation is a convolution, and
the pooling layer provides spatial transformation invariance via a pooling operation. The
convolutional and pooling layers correspond to the simple and complex cell layers of the
neocognitron, respectively, and the convolutional layer is an essential element for introduc-
ing an activation function after applying a filter to the input data. The pooling layer of the
neural network performs subsampling of the input data to reduce the computational load
and prevent overfitting; however, as it increases the complexity, its use can be selected de-
pending on the problem. For classification, a flatten layer is located in the middle, through
which the data are transformed into an array connection to a fully connected layer. With
the CNN, a pattern can be learned in one location and determined in another location,
which is possible by sharing the same parameters in the filter [13,25–27]. Figure 7 shows
the architecture of the CNN described above.
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4.2. Architecture of the CNN

In this study, a CNN designed with Keras based on TensorFlow (Google “open-source
software for deep learning”) was used, which consists of an input layer, three convolutional
layers, three pooling layers, a fully connected layer, and an output layer. The number of
nodes in the input layer is 2500, which is the same as the number of sampling points in the
signals. Table 3 outlines the parameters used in the CNN.

Table 3. Parameters of the CNN.

Layer Type Kernel Size/
Stride Feature Maps Output Size

1 Conv1 1 × 16/1 × 8 128 313 × 128

2 Dropout 1 0.5 - -

3 Max Pool 1 1 × 2/1 × 2 - 156 × 128

4 Conv2 1 × 8/1 × 2 32 78 × 32

5 Dropout 2 0.5 -

6 Max Pool 2 1 × 2/1 × 2 39 × 32

7 Conv 3 1 × 8/1 × 2 8 20 × 8

8 Dropout 3 0.5 -

9 Max Pool 3 1 × 2/1 × 2 10 × 8

10 Fully Connected 300 -

11 Dropout 0.5 -

12 Softmax with
Cross Entropy 3 3

The filter size of the first convolutional layer was set to 1 × 16 to achieve good
performance even in conditions with excess noise in the signals [13]; to prevent overfitting
during training, a dropout layer was added after each convolutional layer. In addition, to
reduce the computational load and prevent overfitting, a pooling layer was added after
the dropout layer, and the kernel size (1 × 2) and stride (1 × 2) were set. The filter sizes
of the second and third convolutional layers were reduced to 1 × 8 each, and a dropout
and pooling layers were added, respectively. The dropout parameter was set to 0.5. The
number of nodes of the fully connected layer was set to 300, and the number of nodes that
provided good performance was selected through multiple trials.

For the output layers, since there are three types of signals, namely signals without
defects and defect signals from depths 1 mm and 2 mm below the surface, the number was
set to 3. For the activation function used in the convolution layer, the ReLU function was
used, which showed good performance for deep learning [13,27–30]; the sigmoid function
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was not used because the output value of the function converges to 0 when there are many
layers [13,25]. The ReLU function is expressed as Equation (1) below.

Relu =

{
(x < 0) f (x) = 0
(x ≥ 0) f (x) = x

(1)

In addition, sparse categorical cross-entropy was used as the loss function and is
expressed as Equation (2).

−∑D
i=1 yi log(pi) (2)

where D is the number of data, y is a vector of the true labels, and p is the vector of predicted
labels. Sparse categorical cross-entropy provides results in integer form and is widely used
for multiclass classifications. For the output layer activation function, softmax is used and
is expressed as Equation (3) below:

σ(yi) =
eyi

∑K
k=1 eyk

(3)

where y is the input vector to the output layer, and i indexes the output nodes, i = 1, 2, . . . ,
k. In this study, the number of classes is 3, so k = 3.

4.3. Performance Evaluation of the CNN

The performance of the proposed CNN was evaluated using the augmented database
in Table 2. Figure 8 shows the performance of the CNN for 500 epochs. The black line
in Figure 8 represents the training accuracy, and it can be seen to start with an accuracy
of 50.8%, to rapidly increase to 95.8% until 50 epochs, and to further increase to 99% at
250 epochs, thus confirming that the training reaches saturation. The red line indicates the
test accuracy, which starts at 58.58% in the first epoch, increases rapidly to 94.04% until
90 epochs, and reaches saturation at about 280 epochs with a gradual increase to 98.54%.
Subsequently, at about 225 epochs, there is no further improvement in the performance.
When the epoch number was 90 ≤ epoch ≤ 300, the accuracy was 95.58% ± 1.28%, and
when the epoch number was 300 < epoch ≤ 500, the accuracy was 98.57% ± 0.66%. If
90 epochs are considered as the saturation point, then the accuracy is 97.19% ± 1.8%.
Figure 9 illustrates the evaluation of the defect classification accuracy of the proposed CNN.
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The probability of accurately classifying a signal without defects was 99.83%, and
the probability of incorrect classification as defect at 2 mm below the surface was 0.17%.
Correct classification was performed for defects that were 1 mm below the surface; the
probability of incorrect classification of the defects at 2 mm below the surface as defects at
1 mm below the surface was 1%, and the probably of correct classification of the defects
at 2 mm below the surface was 98.83%. In most cases, it is confirmed that the prediction
performance for defect classification was almost accurate.

5. Conclusions

A rolling mill is an equipment used to produce cold-rolled carbon steel sheets, and
its main component is the work roll. Because the work roll affects the product quality of
the cold-rolled carbon sheets based on its surface integrity, quality control is performed
with strict standards; to this end, ultrasonic inspections are often performed. In this study,
we investigated a method for improving the detectability in the dead zone for ultrasonic
inspection performed to evaluate the integrity of the work rolls.

First, a standard specimen model of a work roll with defects was fabricated, and defect
signals were collected according to signal type using an ultrasonic C-scanner as in the real
ultrasonic inspection system for work rolls. In the collected ultrasonic signals, overlaps
were observed between the ultrasonic signals reflected from the work roll surface and
subsurface defect signals. In the case without defects, signal patterns for the defects 1 mm
and 2 mm below the surface were similar, rendering differentiation by visual observation
difficult. However, for defects 3 mm and 4 mm below the surface, differentiation by visual
observation was possible. For signals that could not be differentiated by visual inspection,
about 1400 signals were acquired, and the database was expanded by data augmentation.
Then, deep learning was performed using a CNN. Through the process of training and
testing, it was confirmed that the CNN could achieve an accuracy of about 97.19% ± 1.8%.
In future research, it is expected that practical industrial site-oriented investigations may
be required to overcome the difficulties arising with the use of the developed CNN when
applied to data at real industrial sites.
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