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Abstract: As Earth’s shallow coal resources are gradually depleted, humans turn their mining
operations to deeper regions. However, because the mechanics of deep-rock masses have not been
fully established, the development of deep resources lacks theoretical guidance, and the continuity of
such engineering activities is poor. The basis of deep-rock mechanics theory is to achieve deep in
situ rock fidelity coring (including the maintenance of pore pressure and temperature). To achieve
this goal, deep in situ pressure-holding coring technology is needed. The pressure-holding controller
is the key corer component for realizing deep in situ pressure-holding and coring technology. The
flap-valve-type pressure-holding controller driven by an elastic force or gravity alone is not enough
to provide the initial sealing pressure for the sealing surface. Therefore, a trigger mechanism that
assists the pressure-holding controller in achieving closing and initial sealing was designed. Then,
the action and friction characteristics of the triggering mechanism were calculated according to the
experimental dynamics simulation calculations of different closing characteristics that are affected by
gravity in pressure-holding controller space. Optimization was conducted to determine the optimal
values of the trigger mechanism spring stiffness, wedge angle, and other parameters. The mechanism
can provide technical support for deep pressure-holding coring and improve the pressure-holding
power of deep in situ rock coring.

Keywords: pressure-holding coring technology; pressure-holding controller; trigger mechanism;
structural design; dynamic simulation optimization

1. Introduction

Coal resources have been mined for hundreds of years. The depth of coal mining has
reached 1500 m. Coal resources in the shallow part of Earth have gradually been exhausted,
and coal mining has gradually shifted to the deep part of Earth [1]. Coal resources buried
below 1000 m in China amount to 5.57 trillion tons, accounting for 53% of known coal
resources. Therefore, mining coal resources needs to be implemented in the deep part
of Earth. Due to the gradual deepening of mining depth, traditional mining technology
faces problems of a low mining rate, ecological environment degradation, and frequent
disasters. Xie et al. [2] proposed a fluidized mining system that converts minerals in deep
formations into gas, liquid, electricity, heat, or mixed gas–liquid–solid substances, and
transports them to the surface to realize clean, efficient, and environmentally friendly deep
resource mining. This mining method is a large change from traditional mining, which
uses an unmanned shield boring machine to cut coal ore, and mechanical crushing or
chemical methods to further process mineral rocks. The disturbance generated by this
process inevitably damages, deforms, and destroys local rocks. Exploring rock mechanics
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theory regarding the disturbance of in situ mechanical fluidized mining of deep-rock mass
is one of the key theories for the fluidized mining of deep resources [3–5]. However, current
deep-rock mass engineering operations are far ahead of deep-rock mass mechanics theory.

A deep in situ pressure-holding coring tool can be used to obtain the in situ pressure-
holding core of deep-rock mass, which is necessary to explore the nonlinear mechanical
behavior of deep-rock mass in a mining stress state [6–10]. Pressure-holding coring is
mostly used in the exploration and evaluation of resources such as oil, natural gas, and nat-
ural gas hydrate. A representative pressure core barrel (PCB) was developed by the Deep
Sea Drilling Program (DSDP) [11], advanced piston corer and pressure core samplers were
developed by the Ocean Drilling Program (ODP) [12,13], hydrate autoclave coring equip-
ment (HYACE) and hydrate rotary corer (HRC) were developed for research sponsored
by the European Union’s Marine Science and Technology Program [14,15], and multiple
autoclave corer (MAC) and dynamic autoclave piston corer (DAPC) were developed by
the University of Bremen, Germany [16]. There is also a gravity piston-type gas hydrate
high-fidelity coring device that was developed by Zhejiang University in China [17], a
pressure and temperature preservation system (PTPS) that was developed by Zhu et al. [18],
and an ice-valve-based pressure-coring system that was developed at Jilin University to
replace traditional mechanical valves for gas hydrate coring experiments [19,20].

In recent years, the application of pressure-preserving and gas-preserving coring in
deep coal seams has gradually increased for the prevention and control of coal mine gas
disasters, and for the exploration and evaluation of coalbed methane resources [21,22]. The
State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University,
China uses a freezing sampler for methane-bearing coal sampling [23]. Gao et al. [3,7,24],
and others developed a pressure-maintaining gas-retaining coring tool to achieve low-
disturbance coring in deep coal.

Xie et al. [25], and others proposed a pressure-holding controller for a deep in situ
pressure-holding corer, as shown in Figure 1, which uses a geometrical die intersecting a
hollow cylinder and a cone to design and complete the sealing of a large-flow fluid at the
bottom of the hole. The controller consists of three parts: a valve cover, valve seat, and
hinge; the valve cover is turned 90 degrees along the hinge to complete the closing. Maximal
bearing pressure of more than 100 MPa can be achieved [26–29], so the application of this
controller is relatively extensive. However, when the pressure-holding controller enters the
soft sealing state or the metal sealing state, since the metal surface has a machining tool path
that is not completely flat, a specific liquid flow channel is formed along the middle of the
contact surface [30]. This renders the face leak rate of the packing controller exponentially
dependent on the initial pressure. To allow for the pressure-holding controller to enter
the initial sealing stage, the O-ring seal must obtain sufficient initial compression to form
a dense main contact surface [31,32]. In this paper, a mechanical trigger mechanism for
applying a pressure-holding controller was designed to improve the reliability of flap-valve
sealing, and the mechanism dynamics was optimized to improve the performance of a
deep in situ pressure-holding corer controller in terms of holding success rate.
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Figure 1. Physical diagram of pressure-holding controller based on principle of geometric intersection
of cylinder and cone.

2. Trigger Mechanism Structural Design

Due to the need to reserve space for the extraction channel of the core, the available
design space in the coring chamber is very limited. Therefore, a mechanical trigger mech-
anism using a combination of spring force and a contact pin was designed to assist the
pressure-holding controller in completing the initial sealing. The structure can conserve the
internal space of the pressure-maintaining core-removing device. As shown in Figure 2a, in
the initial state of the core remover, the trigger mechanism was installed at the bottom of the
core pressure-holding tank, and it sits on the valve seat of the pressure-holding controller
to fix the valve cover of the pressure-holding controller at the position where it fits with
the inner wall of the outer cylinder of the pressure-holding chamber (initial position). The
trigger mechanism consists of the following parts: a pressure spring, a stabilizing sleeve,
three contact pins spaced 120 degrees apart, the outer tube of the corer, a core barrel, and
its tube shoe. The pressure-holding controller and the trigger mechanism work together to
ensure that the deep in situ core corer pressure-holding chamber maintains deep in situ
pressure; the valve cover of the pressure-holding controller is installed in the interlayer
space between core corer outer tube and core barrel, and valve. A tension spring is arranged
between seat and valve cover to provide power to close the valve cover. When the corer
completes the drilling action, the core tube is filled with the in situ core obtained from
drilling. At that time, the pressure-holding corer starts the pressure-holding operation
process, as shown in Figure 2b. This process can be divided into the four following stages:
(1) Drilling: the corer follows the outer drill to complete the drilling, the core barrel is filled
with the captured in situ core, and the core barrel is pulled upwards. (2) Triggering: when
the tube shoe of the core barrel is in contact with the contact pin of the trigger mechanism,
it starts to drive the contact pin and the sleeve to lift up and compress the pressure spring.
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(3) Locking: the contact pin reaches the groove position on the inner wall of the outer cylin-
der of the pressure-holding chamber, and the contact pin rotates along its axis to insert into
the groove and lock the sleeve at that vertical height. Since the pressure-holding controller
is not fixed by the sleeve, it is closed by its own weight and spring force. (4) Unlocking:
the tube shoe of the core barrel is further raised to the target position, the contact pin
self-unlocks, and the sleeve springs back.
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Figure 2. (a) Cross-sectional view of pressure-maintaining corer structure; (b) sectional view of
pressure-maintaining coring process.

The three contact pins were evenly installed on the stable sleeve at a circumferential
interval of 120 degrees. During the entire action process of the pressure-maintaining coring
operation, the trigger mechanism can easily reach a state of force balance in the horizontal
direction, preventing the damage caused by the core tube and the core. The mechanism is
stuck due to the eccentric moment of the stabilizer sleeve.

3. Kinetic Model of Trigger Mechanism
3.1. Dynamic Model of Closing and Sealing Mechanism of Pressure-Holding Controller

The spring between the valve cover and valve seat of the pressure-holding controller,
and the self-gravity of the valve cover provide the power to close the valve cover. Since
the valve cover is affected by the gravitational field, the closing characteristics of the valve
cover are different when the core is cored at different azimuth angles. The closing time
of the valve cover and the maximal jump height determine the allowable rebound time
of the sleeve in the trigger mechanism. It is necessary to explore the closing laws of the
pressure-holding controller with different azimuth angles through the closed model that is
established under the influence of elastic force and gravity field.

To ensure that there is enough pressure to allow for the closed pressure-holding con-
troller reach the initial sealing state, the pressure spring must have sufficient pretightening
elastic force. Moreover, when the pressure-holding controller is closed, the sleeve must
rebound at a lower speed to ensure safety. The sequence in which the valve cover of
the pressure controller first closes the sleeve and then rebounds is usually contradictory.
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Therefore, to restrain the growth of the sleeve kinetic energy during the rebound process
and increase the closing time of the valve cover, the viscous friction force of the O-ring
is used to reduce the rebound speed of the stable sleeve to ensure that the valve cover of
the pressure-holding controller is closed first and stably. The action sequence of the rear
compression of the sleeve simultaneously ensures a sufficient initial sealing pressure for
the pressure-holding controller. To render the trigger mechanism robust, the springback
time of the sleeve must be higher than a certain safety threshold of the closing time of the
pressure-holding controller when coring is required at all angles.

The nitrile rubber material O-ring is a viscoelastic body that has the characteristics
of geometric nonlinearity, material nonlinearity, and contact nonlinearity within a certain
range. For surface contact between O-ring and metal parts, the increase in surface roughness
and compression rate of the metal parts causes the surface friction force of the two to rapidly
increase. When the surface roughness and compression rate of the sleeve tube are the same,
friction force increases with relative sliding speed. According to the actual machining
roughness level of the sleeve parts, the simulated surface roughness was 0.8 µm, and the
interpolation function of the sleeve springback is calculated from 0 to 400 mm/s using an
O-ring of nitrile rubber material with a compression rate of 0.1. Experimental data of the
friction force of the sliding speed can be fitted with a quadratic parabola within a certain
relative sliding speed range [33], and the fitting curve of the friction force with relative
sliding speed is shown in Figure 3. The fitting function is:

f = 0.00309v2 − 0.08308v + 6.6039 (1)
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The springback law of the sleeve is explored with different inclination angles and
spring stiffnesses of the corer under the action of the frictional resistance of the O-ring. The
springback model is equivalent to a quadratic parabolic single-degree-of-freedom vibration
model with a variable damping coefficient. The sleeve moves under the combined action of
its own gravity, the elastic force, and the O-ring frictional resistance. Comparing the spring
drive with the general fixed damping ratio, the spring model with a variable damping
coefficient of quadratic parabola had a better effect on speed control. Its vibration equation
is as follows:

T = T0 + k(l − x) (2)

ma = T + mg cos θ − f (3)

where T is spring force, x is displacement, k is stiffness, l is total stroke length, and θ is the
angle between coring device and vertical direction during coring. Elastic force T0 of the
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initial seal was set to 100 N. The springback simulation model under different angles could
be established by using ADAMS software.

3.2. Contact Mechanics Modelling of Contact Pins

The impact-function and compensation methods were used to calculate contact force.
For contact modelling under ADAMS, we adopted the collision-function method. The
shock-function method calculates contact force on the basis of Hertzian elastic contact the-
ory, which is essentially modelled as a nonlinear spring damper [34]. Through simulation,
ADAMS/Solver can produce a continuous stream of responses, including the acceleration,
velocity, position, and force of all elements and points of contact [35]. Contact force is
divided into two parts, elastic force and damping force [36]. Taking the collision contact
between a small ball and a plane as an example, as shown in Figure 4, the normal force of
the contact is given by the following relation:

FN =

{
kδe + step(δ, 0, 0, dmax, cmax)

.
δ, δ > 0

0, δ ≤ 0
(4)

where FN is the normal contact force, and k is the contact stiffness coefficient, which depends
on the material and the radius of curvature of the contacting solid surface, and can be
expressed by the following formula:

k =
4

3π
(
hi + hj

)R
1
2 , R =

RiRj

Ri + Rj
, hk =

1 − v2
k

πEk
, k = i, j (5)

where Ri, vi, and Ei represent the curvature radius, Poisson’s ratio, and the elastic modulus
of element i (the 304 stainless steel material designed in this paper had an elastic modulus
of 220 GPa), respectively; δ is the penetration depth of the contact point; e is the shape index,
which determines the shape of the force-displacement curve. For the material defined in this
model, e = 1.5; step is the step function; dmax is the maximal allowable mutual penetration
depth; cmax is the maximal value of the damping coefficient; and

.
δ is the penetration velocity

of the contact point. In ADAMS, the instantaneous damping coefficient is a cubic step
function of the penetration:

step(δ, 0, 0, dmax, cmax) =


0, δ ≤ 0

cmax

(
δ

dmax

)2(
3 − 2 δ

dmax

)
, 0 < δ < dmax

cmax δ > dmax

(6)

Friction between contacting surfaces is defined as the Coulomb friction:

f = µsFN (7)
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Figure 5 shows the movement state and force diagram of the contact pin in the trigger
mechanism during the whole process from starting to locking and unlocking. The three
pictures correspond to the actions in Figure 2b, and describe the force state of the locking
and unlocking actions. If the simulation experiment of the mechanism could reach the
motion state of the third picture, the design could meet the functional requirements, that is,
the sleeve could achieve the rebound giving the initial pressure to the valve cover. Figure 6
is the 3-dimensional design diagram of the trigger mechanism installed in the corer that
shows the specific shape of the trigger mechanism. The interaction between contact pin
and core tube, tube shoe, and the inner wall of the outer tube is defined as the contact force
and Coulomb friction force. To simplify the force model and reduce the calculation amount
of the numerical simulation, the constraint relationship between sleeve and contact pin
is defined as a hinge pair. The groove depth of the outer tube is a, the thickness of the
tube shoe is b, the radius difference between core barrel and outer tube is B, and angles
between the inclined plane of the tube shoe and the groove of the outer tube, and the
vertical direction are α and β, respectively. The radii of the two circular contact surfaces are
r1 and r2, and distances from the center of the circle to the center of rotation of the contact
pin were R1 and R2, respectively. The angle between R1 and R2 was γ, and the distance
between the centers of the two circles is r. The design principle of the contact pin relies
on the contact force between the tube shoe and the contact surface to push the contact
pin to rotate and reach the groove of the outer tube. According to the designed geometric
relationship, rotation angle θ and included angle γ of the contact pin can be calculated as:

θ = sin−1 b
B

(8)

γ = cos−1 R1

R2
(9)

The annular space of radius difference B between core barrel and outer tube is the
design space of the contact pin, and its relationship with the design size of the contact
pin is:

B = r + r1 + r2 (10)
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The action process of the trigger mechanism is as follows: the core tube is driven by
the top to lift at a constant speed of v1, the contact force of the core tube to the contact
pin is TN1, the contact pin transmits pressure FN2 to the inner wall of the outer tube, and
the contact stiffnesses corresponding to the two contact forces are K1 and K2. The relative
motion produces kinetic friction forces f 1 and f 2, which are simultaneously affected by
elastic force T from the spring. The dynamic equation of the contact pin rotation can be
simplified to the following formula:

M1 = FN1R1 cos(α + θ) (11)

M f 1 = µFN1R1 sin(α + θ) (12)

M2 = FN2R2 sin
(

θ + β + γ − π

2

)
(13)

M f 2 = µFN2R2 cos
(

θ + β + γ − π

2

)
(14)

The geometric relationship designed by the mechanism and the expression of M2
above are easy to obtain. Only when γ + β ≥ π

2 does the direction of FN2 allow for M2 to
act as the driving torque for the rotation of the contact pin during the rotation of the contact
pin, namely,

J
dω1

dt
= M1 + M2 − M f 1 − M f 2 (15)

When γ + β + θ ≤ π
2 , the direction of FN2 enables M2 to act as a resistance torque

during the rotation of the contact pin, namely:

J
dω1

dt
= M1 − M2 − M f 1 − M f 2 (16)

After the core barrel and the pipe shoe had been lifted and removed, the contact pin
needs to be able to self-unlock to complete the unlocking. From a dynamic point of view,
when γ+ β ≥ π

2 , M2 becomes the resistance torque for the contact pin to flip in the opposite
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direction, which renders the contact pin incapable of self-unlocking, so it is required to be
located between γ, β, and θ. The corresponding satisfaction relationship is:

γ + β + θ ≤ π

2
(17)

The kinetic equation for unlocking the contact pin is:

J
dω2

dt
= M2 − M f 2 (18)

Three different angle combinations were used to simulate the contact pin mechanism
(γ = θ = 15◦, scheme 1: α = 30◦, β = 60◦; scheme 2: α = 45◦, β = 45◦; scheme 3:
α = 60◦, β = 30◦). According to the contact-pin self-unlocking condition described in
Formula (17), on the basis of the optimal combination of α and β angles, parameters γ and
θ are changed within a reasonable range, and optimal α and β values are explored. On the
basis of the combination scheme, the best combination of γ and θ angles was obtained.

In ADAMS, for dynamic differential equations, the backward differentiation formula-
tion (BDF) rigid integration program with variable coefficients is used to solve the rigidity
problem of mechanical system characteristics [37]. The smaller the simulation step size is,
the greater the simulation accuracy. After comprehensive comparison and consideration,
the GSTIFF/SI2 integration method was selected in this paper. GSTIFF/SI2 is a stabilized
Index-2 method that is a variant of the GSTIFF method. This integration method provides
better error control over velocity and acceleration terms in equations of motion. If the mo-
tion is smooth enough, GSTIFF/SI2 velocity and acceleration results are more accurate than
those calculated using GSTIFF or WSTIFF. GSTIFF/SI2 is also more accurate for smaller
step sizes, but slower than the GSTIFF method. The high-acceleration calculation accuracy
requirements of this model can be met [38]. The simulation step size was set to 0.003 s. The
axial length of the locking and unlocking device of the trigger mechanism was effective at
50 mm, the lifting speed of the core barrel shoe was 100 mm/s, and the solution time was
0.5 s. Considering a damping ratio of only 1%, individual components were considered
to be rigid in the simulated tests. Kinematic pair definitions and simulation parameter
settings among the components are shown in Tables 1 and 2. The dynamic modelling of
the trigger mechanism based on ADAMS is shown in Figure 7.

Table 1. Definition of relationship between motion and force of each component in ADAMS trig-
ger mechanism.

Component Core Barrel Boot Sleeve Contact Pin Outer Tube

Core barrel boot
Sleeve Translational joint

Contact pin Contact force Revolute joint,
Contact force

Outer tube None
Translational joint

(with friction),
spring force

Contact force
(with Coulomb

friction)

Table 2. ADAMS simulation parameters of the trigger mechanism.

Elastic modulus E (GPa) 220
Poisson’s ratio µ 0.27

Static friction coefficient µ0 0.3
Coefficient of kinetic friction µs 0.18

Contact stiffness K1 (N/mm) 6.5 × 105

Contact stiffness K2 (N/mm) 6.5 × 105

Drive speed v1 (mm/s) 100
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4. Simulation Result Analysis

Figure 8a shows the required closing time for the elastic pressure-holding controller
to close at different azimuth angles under the influence of gravity and the flip angle
curve of the valve cover during the entire closing process, as calculated by numerical
simulation with ADAMS software. According to the continuous flow of position response
that ADAMS/Solver can provide, the time it takes to use its sensor to capture the angular
displacement of the bonnet up to 90◦ is the closing time. Summarizing the closing time
law at different azimuth angles determined that, when the horizontal core operation was
performed and the hinge of the pressure-holding controller was at the lowest position, the
spring bonnet overcame the bonnet’s own gravity to work the most, the closing time was
the longest, and the bonnet was closed. The shortest and longest times were 0.077 and
0.158 s, respectively. In Figure 8b, simulation models at three typical azimuth angles are
shown, located at points A, B, and C in Figure 8a.
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Figure 8. (a) Distribution law of valve cover closing time for pressure-holding controller under
different azimuth deflection angles. (b) Closing simulation model of pressure-holding controller at
three typical azimuth angles of A, B, and C (Figure 6a).

When the viscous resistance encountered by the sleeve is as described in Section 3.1,
the corer uses several springs with different stiffness levels in the range of 0.075–0.11 N/mm
to the same initial elastic force at 4 azimuth angles from 0 to 90 degrees. The required time
to drive the sleeve to rebound is shown in Figure 9. The figure shows that the smaller
the spring stiffness is, the longer the rebound time because spring force decreases with
increasing rebound distance, and stiffness likewise decreases. The larger the spring force
is, the greater the elastic potential energy and the kinetic energy after dissipation are. To
ensure that the sleeve falls back after the valve cover is closed during the coring operation
at various angles, it is necessary to select a stiffness value whose rebound time is greater
than 0.158 s at each inclination angle, so the selected stiffness was 0.08 N/mm.
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inclination angles.

The plane motion trajectory of points A, B, and C on the contact pin member in
Figure 4 is shown in Figure 10, where point A is located at the center of rotation, and its
displacement was pulling along the core barrel. Displacement in the direction of the x axis
was extremely small and could be ignored. The motion trajectories of the centers of contact
arc surfaces B and C showed that the mutual intrusion between contact surfaces was within
a reasonable range. Additionally, the corresponding ADAMS simulation showed that there
was no serious jumping phenomenon in the trajectory curve [37], which could be used as a
basis for judging the reasonableness of the simulation, that is,

ri − dmax ≤ di ≤ ri i = 1, 2 (19)

where di is the real-time normal distance between points B and C from the contact sur-
face during the movement of the component, and ri is the curvature radius of the two
contact surfaces.
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As shown in Figure 11, when angle γ of the stylus, flip angle θ of the stylus, and
simulation parameters are the same, when three different angle combination schemes
are used for simulation, the trigger mechanism can complete the action from locking to
unlocking, but the flipping angular velocity of the stylus and contact positive pressure FN1
and FN2 had different trends with time. scheme 2 took the shortest time to complete the
action, so its action performance was better. When different schemes are adopted, stable



Appl. Sci. 2022, 12, 4961 13 of 16

values and changing trends of the two contact positive pressures were completely different.
From the perspective of the energy efficiency of the mechanical system process, in the
process of the trigger mechanism, the core barrel is lifted up to work. Except for elastic
potential energy EP converted into the spring, the rest of the energy is manifested in the
frictional heat generated by the positive pressures FN1 and FN2. Since the compression of
the spring was the same for the three schemes, and the resulting Q was different, there
was a gap in the energy efficiency of the trigger mechanism from the mechanical system
process, namely,

Q =
∫ θ

0
µ(FN1(t)R1 sin (α + θ(t)) + FN2(t)R2 cos (θ(t) + β + γ − π

2
))dθ (20)

EP =
1
2

kx2 (21)

η =
EP

EP + Q
(22)
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The negative work of friction in the three-angle scheme was 2.52, 1.98, and 2.96 J for
each of the three angles. Then, when the effective outputs of the three schemes were the
same elastic potential energy, scheme 2 had the least input energy. Therefore, compared
with the three schemes, scheme 2 achieved better performance.

On the basis of the optimal combination of α and β angles (scheme 2: α = β = 45◦),
parameters γ and θ varied between 5◦ and 40◦. Figure 12 shows the law of input energy
dissipation values under different combinations of angles γ and θ. According to the
simulation data, no corresponding data could be obtained when α = β = 45◦. This is
because a simulation showed that, when the sum of the two angles was greater than 40◦,
the trigger mechanism was unable to complete the self-unlocking and springback action of
the sleeve, so these data points are meaningless. When angle values of γ and θ were 15◦

and 25◦, respectively, the frictional power consumption of the system reached a minimum
of 1.11 J, so we obtained the optimal angle combination of α, β, γ, and θ to be 45◦, 45◦, 15◦

and 25◦.
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5. Conclusions

In this paper, to address the problem of pressure-holding controllers based on the
deep in situ pressure-holding coring tool relying on gravity and an elastic force to close in
a way that is not tight, and the initial sealing pressure being small, a trigger mechanism
of the spring-driven pressure-holding controller was designed within a small space. The
closing characteristics of the pressure-holding controller at different azimuth angles were
calculated, and the boundary conditions that trigger the calculation and simulation of the
dynamic parameters of the mechanism were obtained. Through the dynamic simulation
and optimization of the trigger mechanism, the optimized trigger mechanism could be
applied to coring in various directions. Specific conclusions are as follows:

(1) The pressure-holding controller mechanism driven by the elastic force had different
closing times at different angles in space, and the closing rules of the valve cover at
different azimuth angles were obtained. The two extreme positions with the longest
and shortest closing times of the valve cover occurred when the coring device per-
formed horizontal coring, the closing time was the shortest when the pressure-holding
controller hinge was at the top, and the closing time was the longest when the pressure-
holding controller hinge was at the bottom.

(2) According to the simulation experiments of the spring sleeve springback at several
different angles, the selection range of the spring stiffness was determined. In the case
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of applying fixed initial pressure to the valve cover of the pressure-holding controller,
a spring with a small stiffness value should be used. According to the simulation test
results, the optimal solution of 0.08 N/mm was obtained.

(3) The surface contact mechanics of the trigger mechanism was modeled, the dynamic
contact force and dynamic friction force between components under different angle
schemes were calculated through numerical simulation, and the energy efficiency of
the mechanical system was compared in the three schemes from the perspective of
energy input and consumption. scheme 2 was more suitable, and the kinetics was
verified and optimized. On this basis, by comparing different combinations of α and β

angles, the best set of angle values for γ and θ was optimized, and the key parameters
of the contact pin were determined.
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