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Abstract: The description of a new method of winter grafting of sweet cherry varieties “Revna” is
given. The novelty of the method lies in the use of a portable device for generating cold plasma,
as well as a plasma-treated solution, developed by the team of authors. It has been established that
exposure to cold plasma affects the growth length of “Revna” cherries by 17–28%, while an increase
in the diameter of the root collar by 20–23% was observed. The electrical resistivity in the grafting
zone after exposure to plasma or plasma-activated water decreased by an average of 14% compared
to the control, which indicated a better fusion of the transport fibers of the rootstocks and scions.

Keywords: plasma-treated solution; cold atmospheric plasma; winter graft

1. Introduction

One of the most important requirements for obtaining high-quality planting material
is the creation of conditions for the speedy healing of the site of rootstock and scion grafting.
Violations in the fusion of the grafting components can cause improper development of
seedlings and subsequent culling. As a rule, they are caused by non-compliance with
technology use recommendations and methods of inoculation, as well as damage to the
tissues of the inoculation components by phytopathogens. About 15–20% of all grafted
plants do not take root due to impaired fusion at the grafting site; therefore, the search
for and application of various methods to improve the quality and speed of grafting
components is a popular and urgent task.

It is worth noting that various physical methods are now widely used in the treatment
of agricultural crops. Such methods include magnetic field treatment and exposure to
microwave radiation and others that affect the physiological and biochemical processes in
seeds and plants and thereby contribute to greater vegetative growth and increased yield
and crop quality [1,2].

One of the potential ways to improve the intergrowth of rootstocks and scions may be
treatment with low-temperature plasma or plasma-activated water. It is known that low-
temperature plasma and plasma-activated water are actively used to deactivate bacteria.
Recently, a large number of studies have appeared on the practical application of low-
temperature plasma and plasma-activated water in various fields of science—medicine, vet-
erinary medicine and agronomy [3–10]. When working with living objects, low-temperature
plasma is mainly used in which the rotational temperature of the ions affecting living ob-
jects does not exceed 40 ◦C [11]. Such a plasma is called cold atmospheric plasma (CAP).
CAP is essentially an ionized gas with a low temperature of neutral particles and ions but a
high temperature of electrons [12].

The effect of cold plasma on living objects is mainly mediated by reactive oxygen
species (ROS) and reactive nitrogen species (RNS) [13]. Under the influence of CAP, a large
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number of different chemical reactions occur. The main reagents are hydrogen peroxide,
superoxide radicals, hydroxyl radicals, hydroperoxyl radicals, singlet oxygen, nitric oxide,
peroxynitrite, among many others [14]. The lifetime of these compounds is often very short;
for example, the lifetime of the hydroxyl radical is about 1 ns, and that of the superoxide
radical is about 1 µs [15]. Long-lived compounds include hydrogen peroxide, ozone,
and a number of RNS [16]. Obviously, most of the reactive oxygen species act on living
objects only at the time of operation of the plasma generator. The plasma-treated solutions
(PTSs) contain long-lived active forms and products of their interaction with each other
and with other compounds contained in water [17,18]. There are various ways to obtain
CAP and PTS: based on a dielectric barrier discharge, glow or corona discharge, using
various types of gases or operating in atmospheric air [19]. There is no information in the
literature about the use of CAP in the grafting of plants. In this paper, for the first time, we
study the effects of CAP during the winter grafting operation on cherry cultures created
by a dielectric barrier discharge (DBD) and PTS created using glow discharge plasma.
The optimal characteristics of the impact were determined: the duration of CAP and the
concentration of PTS.

2. Materials and Methods
2.1. CAP Generation Method

The source of cold plasma developed by the scientific team was used to process
rootstock and scion sections. The principle of operation and characteristics are described
in detail in [20]; an illustration of the device used is shown in Figure 1. The generator
was set to the CAP creation mode. The output device of the generator (Figure 1) was a
dielectric tube (4) fixed in a rigid case (5), forming an ionization chamber (3), inside which
a piezotransformer (PT) (1) was installed so as not to interfere with mechanical vibrations
that occurred during the operation of the PT. A low-voltage alternating voltage of resonant
frequency was supplied to the input part of the FET from a generator (6): 60 V, 21.5 kHz.
A high voltage of ~6 kV was generated at the discharge electrode (2), which was used to
create plasma. This design of the CAP generator contains a silicone tip (9), 1 mm thick
(10), which tightly fits the output end of the FET, which makes it possible to operate in the
dielectric barrier discharge mode at a distance of ~1 mm from the cap surface.
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Figure 1. Scheme of the CAP generator output device: 1—piezo transformer; 2—discharge electrode;
3—ionization chamber; 4—dielectric tube; 5—hard case; 6—voltage generator; 7—output end of the
dielectric tube; 8—device for changing the shape of the output end of the tube; 9—dielectric cap;
10—dielectric layer.
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2.2. PTS Generation Method

PTS was obtained using a special device that generates cold glow discharge plasma [21].
The components of the device are shown in Figure 2. It consists of a high-frequency current
generator and an electric arc plasma-chemical reactor with a rotor. The process of obtaining
PTS is as follows: the container (1) is filled with an aqueous solution (13) of sodium chloride
NaCl (0.1 M), then electrodes (7) and (4) are immersed in it, to which through brushes
((2) and (8)), located on the rotor axis (3), supply a sinusoidal current of high frequency
(110 kHz). Then, the motor (10) is turned on and the electrodes are rotated by means of the
rotor (9). A cold glow discharge plasma is formed, which is treated with a saline solution
for 40 min. The physicochemical characteristics of the obtained activated liquid are shown
in Table 1.
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Figure 2. Photograph (a) and diagram of the structure of the PTS generator (b): 1—tank with activated
solution; 2—neutral electrode (NE) brush; 3—rotor axis; 4—replaceable parts of the neutral electrode;
5—reactor lid; 6—dielectric loading; 7—replaceable active electrodes; 8—active electrode (AE) brush;
9—kinematic axis; 10—electric motor; 11—controlled power source; 12—platform; 13—aqueous
solution; a—neutral output of the HF generator; b—active output of the HF generator.

Table 1. Physical and chemical characteristics of the plasma-treated solution (PTS) after processing
within 40 min.

Parameters

Specific
Conductivity,mS/cm [O2], µM pH Redox, mV NO3−, mM H2O2, mM

25.1 ± 1.2 259 ± 8 8.1 ± 0.2 599 ± 26 21.97 ± 0.98 6.95 ± 0.68

2.3. Physicochemical Properties of Aqueous Solutions

The content of nitrite and nitrate anions in the samples was determined using the
Griess reagent, according to a method described previously [20], using a Multiscan FC
96-well plate reader (Thermo Fisher Scientific, Vaanta, Finland). The optical density of the
medium was measured at a wavelength of 546 nm. Solutions of known concentrations
of sodium nitrite and sodium nitrate (Sigma-Aldrich, St. Louis, MO, USA) were used for
calibration.

Redox, pH and electrical conductivity were measured at the S470 SevenExcellence
Precision Measurement Station (Mettler Toledo, Columbus, OH, USA). InLab Expert Pro-
ISM and InLab731-ISM (Mettler Toledo) sensor electrodes were used. During measure-
ments, aqueous solutions were mixed in a laminar mode using a magnetic stirrer (rotation
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frequency no more than 3 Hz) [21]. All measurements were carried out at a solution
temperature of 20 ± 1 ◦C. The details of the experimental measurements were described
previously [22].

The concentration of molecular oxygen dissolved in aqueous solutions was measured
using an AKPM-1-02 polarograph (Bioanalytical Systems and Sensors, Moscow, Russia) [23].
The measurements took into account the atmospheric pressure and the temperature of the
samples. All measurements were carried out at a solution temperature of 20 ± 1 ◦C. The
details of the experimental measurements were described previously [24].

For the quantitative determination of hydrogen peroxide in aqueous solutions, a
highly sensitive method of enhanced chemiluminescence in the luminol-p-iodophenol-
horseradish peroxidase system was used [25]. The luminescence intensity was determined
using a Biotox-7A chemiluminometer (ANO ICE, Moscow, Russia). The initial concentration
of hydrogen peroxide used for calibration was determined spectrophotometrically at a
wavelength of 240 nm with a molar absorption coefficient of 43.6 (M−1 × cm−1). The
counting solution contained: 1 mL Tris-HCl buffer pH 8.5, 50 µm p-iodophenol, 50 µm
luminol, 10 nm horseradish peroxidase [26].

2.4. Plant Samples and Field Experiment

The experiment was carried out at the experimental station in the IAEP nursery, a
branch of the Institute for Engineering and Environmental Problems in Agricultural Pro-
duction (branch of the “Federal Scientific Agroengineering Center VIM” (Russia, Saint
Petersburg)), in the period 15–18 March 2021. The selection of material for grafting was car-
ried out in accordance with the requirements for the quality of fruit crops, the state standard
of the Russian Federation R 53135-2008. Winter grafting with cold plasma treatment (CAP)
and PTS was carried out on cuttings of scions of the cherry variety “Revna”, which were
grafted by the method of improved copulation on cherry clone rootstocks VSL-2. Oblique
cuts of the scions and rootstocks were immediately processed by the working surface of
the CAP replaceable module for 15, 30 and 45 s (Figure 2). The PTS solution was prepared
by diluting distilled water and plasma-treated saline with various concentrations of PTS
dilution (5%, 10%, 20%), The graft components were dipped into the resulting PTS solution
for 1–2 s. Next, grafting was carried out; the scion and stock were connected to each other,
and the junction was wrapped with a special polyethylene tape. The root system of the
rootstock was shortened to a length of 16–17 cm. As a control, grafted cuttings without
treatment were selected. After that, the upper parts of the scion cuttings were lowered for
1 s into paraffin heated to 65 ◦C, then the grafted cuttings were sprinkled with raw saw-
dust, pre-treated with steam and potassium permanganate. Then, the plants were placed
in special dark stores for 2 months. The temperature in storage was maintained within
1–2 ◦C, with a relative humidity of 80–85%. After that, the grafted cherry rootstocks were
transplanted into a frame greenhouse, where the period of their development began. The
air temperature was maintained in the range of 30–35 ◦C, and the degree of development
of seedlings was assessed by growth, development of the deciduous part, diameter of the
root collar and compared with the control; the observations were carried out monthly for
4 months (Figure 3). In each group, 30 cuttings were grafted.
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Figure 3. Processed and grafted cuttings of the sweet cherry variety “Revna”: (a) before being placed
in storage for 2 months with an air temperature of 1–2 ◦C; (b) planted in a greenhouse at 30–35 ◦C
after being removed from storage, as of 06/08/21.

2.5. Graft Conductivity Measurements

To assess the process of the degree of fusion of the graft components, the electrical
resistance (impedance) of the cambial layer in the graft zone was measured. Before the
measurement process, the root system of seedlings was pre-washed in running water
and placed in a special solution containing: KNO3 (5 mM), Ca(NO3)2·4H2O (2.5 mM),
MgSO4·7H2O (2 mM), NH4NO3 (1 mM). Then, using an E6-13A teraohmmeter, the resis-
tance was measured in five areas from the grafting zone through each centimeter section
of the rootstock zone and also through each centimeter section of the scion zone—a total
of 5 measurements. Resistance measurement range: 10–106 Ohm; limits of permissible
basic measurement error on a linear scale: no more than ±2.5% of the final value of the set
subrange (linear scale). We used special needle-type electrodes with a diameter of 0.7 mm,
made of silver. One electrode was used as a reference electrode, and the second was intro-
duced into the cambial layer of the seedling bark. An AKIP-4122/1 digital oscilloscope was
connected to the teraohmmeter through the analog recorder output, which was connected
to a personal computer with the PicoDiagnostics program. With the help of this program,
the resistance values in the seedling plots were recorded and displayed digitally (Figure 4).

2.6. Statistics

Data were presented as means ± SEM. The normality of distributions was established
by the Kolmogorov–Smirnov criterion. When the distribution was normal, the Student’s
t-test was used to compare independent groups. When the distribution differed from
normal, the Mann–Whitney U-test was used to compare two independent groups. When
required, the homogeneity of variance in the samples was checked with Levene’s test.
Fitting and regression analysis was carried out using Excel software (Microsoft Corporation,
Albuquerque, NM, USA).
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Figure 4. The process of measuring the electrical resistivity of the grafting zone in a sweet cherry
seedling 6 months after treatment: (a) photograph; (b) scheme. The seedling is immersed in the
solution and the measuring electrodes are made of silver. 1—electrode immersed in the solution; 2—
electrode inserted into the cambial layer of the bark of the seedling; 3—teraohmmeter; 4—oscilloscope
for recording teraohmmeter readings; 5—PC connected to the oscilloscope. The electrodes are inserted
alternately below the grafting area and above. According to the difference in resistance, the resistance
of the grafting zone is determined.

3. Results and Discussion
3.1. Physicochemical Properties of CAP

In the experiment, a mobile small-sized plasma generator developed at the GPI RAS
was used as a source of cold plasma to influence fresh sections of plant shoots. The
device is capable of generating various types of low-temperature direct discharge plasma
or dielectric barrier discharge plasma using replaceable modules (Figure 5). The winter
grafting technology used a module for generating cold plasma generated by a DBD. This
module is most convenient for inoculation “in the field”, since gases are not used to obtain
plasma (you do not need to carry a cylinder of gas with you). The device works with both
a network of 220 V and a frequency of 50 Hz and with a battery of 12 V, direct current. The
power consumption of the device is not more than 40 watts. The dielectric of the working
module is a silicone tip.

As is known, when the gas phase of CAP interacts with the intercellular fluid in living
plant cells, reactive oxygen and nitrogen species are formed. Ozone (O3) and nitrogen
oxides (NOx) and hydrogen peroxide (H2O2) are stable products. It is possible to control
the degree of formation of these compounds by changing the electrical potential at the
output device, as well as by changing the time of cold plasma exposure to the cut site. Fresh
cuts of the scions and rootstocks were immediately processed by the working surface of
the replaceable module (DBD CAP) by performing sliding circular movements over the
entire cut surface for the selected time intervals of 15, 30 or 45 s (Figure 6).

To prevent possible excessive heating and overdrying of the cut surface, the module
tip was moved in a circular motion and moved in a spiral from the edges of the cut to
the middle, preventing heating of the working surface. The maximum temperature after
treatment did not exceed 15◦C. To obtain initial data on the amount and intensity of
formation of H2O2 and NO2

− ions on the surface of cuts of plant shoots during exposure to
cold plasma, we used liquid media as a model object: water purified by the Evoqua Ultra
Clear unit and an aqueous solution of glucose 1%.
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Figure 6. Processing (DBD CAP) a cut of a sweet cherry rootstock. The dielectric working surface of
the replaceable module interacts with the cut surface and performs a sliding circular motion.

The hydrogen index (pH) during the treatment with Evoqua Ultra Clear water, de-
pending on the treatment time, changes from 6.4 to 4.6 units, and when exposed to a glucose
solution, it changes from 5.8 to 4.2 (Figure 7). Figure 7b,c show that the amounts of H2O2
and NO2

− differ significantly when using pure water and glucose solution. Interestingly, no
linear increase in the concentration of hydrogen peroxide was observed during treatment,
both in water and in aqueous glucose solution. Hydrogen peroxide, as a stable molecule,
is often the terminal stage of ROS conversion, which means that a radical chain reaction
“break” is observed in solutions. Nitrite anions, on the contrary, are produced in water
from the time of exposure to plasma, linearly. When glucose is added, the nitrate anions
are generated much more slowly. Probably, in this case, the products of the precursors of
the nitrite anions interact with glucose molecules.
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Figure 7. Change in pH of solutions (a); generation of H2O2 (b); and NO2
− (c) when exposed to CAP

using Evoqua Ultra Clear water and 1% sucrose aqueous solution for 15, 30 and 45 s. * Indicates a
significant difference at 5% level in comparison with the Evoqua Ultra Clear group with 1% sucrose
solution group at same treatment time (p < 0.05, Mann–Whitney U test). ** Indicates a significant
difference at 5% level in comparison with the control (treatment time: 0 s).

3.2. Physicochemical Properties of PTS

To detect changes in the development of seedlings, a special PTS was used. This
solution was obtained by passing discharges of a high-frequency glow discharge through
water vapor. The reactor was charged with a 10% sodium chloride water solution, which
was subjected to a glow discharge for 40 min.

When processing sections of scions and rootstocks with PTS, it is necessary to choose
the right concentration in order to obtain a positive effect. In our case, after making the
cuttings, they were immediately dipped for 1–2 s in solution of various concentrations
(20%, 10%, 5%), in the obtained activated liquid and the distilled water, after which the
grafting components were connected to each other.
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3.3. Study of the Effectiveness of the Action of CAP and PTS on the Grafts

CAP and PTS treatment of slant sections of plant shoots was carried out in March.
When using a device for obtaining cold plasma, the duration of exposure to oblique sections
of the cuttings was 15, 30 and 45 s, and when treated with a solution obtained by mixing
PTS and distilled water (DW), with various concentrations of PTS (5%, 10%, 20%), the
impact did not exceed 2 s. The air temperature in the greenhouse was maintained in
the range of 30–35 ◦C. The degree of development of seedlings was assessed by growth
(increase in length), the development of the deciduous part and the diameter of the root
neck (Figures 8 and 9).
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As a result of monitoring the development of cherry seedlings of the “Revna” variety,
we observed changes in the diameters of the root necks and the growth of the shoots
within 4 months after vaccination and the effects of CAP and PTS on sections immediately
before vaccination (Figures 10 and 11). The average diameter of the root collar during the
processing of the scion cut with CAP for 15 s was higher than that of the control samples
by almost 10%. With an exposure time of 30 s, the average diameter of the root necks was
on average almost 20% larger. With an exposure time of 45 s, the average diameter of the
root necks exceeded those of the control cuttings by an average of almost 25%.
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Figure 11. The results of measuring the diameters of the root necks of cherry seedlings of the “Revna”
variety within 4 months after planting in the greenhouse with indirect processing using PTS diluted
in DW in three proportions (1:5 (20%), 1:10 (10%) and 1:20 (5%)).

The most significant value for the growth of fresh shoots was obtained with the
exposure of the inoculated components to CAP for 15 s, with the growth rate of the control
samples exceeded by 17%; when exposed for 30 s, the growth of shoots was slightly lower
than the control (−6.5%); however, when monitoring the development of seedlings in the
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fourth month of observation, the growth of the shoots relative to the control was about 9%;
when exposed to 45 s, the increase was greater by 7% in comparison with the control.

When wetting sections of grafts with PTS, similar results were obtained. When exposed
to sections with a solution of 1:20 (5%), the average diameter of the root necks exceeded
those of the control by almost 10%, and the growth rate of the shoots was 5% higher. When
using a solution of 1:10 (10%), the average root collar diameter was increased by almost 5%,
and the average growth rate was 10% higher than in the control group. When exposed to
a solution with the highest concentration of activated liquid (1:5 (20%)), the difference in
the average diameter of the root collars compared to the control was 20%, and the average
increase was almost 30% more.

Measurement of the electrical conductivity of the graft was used as a nondestructive
method for assessing the qualitative intergrowth of graft components [27]. The measure-
ment results are shown in Figure 12. The obtained results were compared with the control
values. The lowest sensitivity value was found when exposed to CAP for 15 s; it was 23%
lower than for the control. When exposed for 30 s, the result was 8.7% lower than the con-
trol, and when exposed for 45 s, the result was similar to that for the control. For samples
exposed to PTS solutions with a concentration of 1:5 (20%), the decrease in resistivity was
20%; when using a solution of 1:10 (10%), the decrease was 15% (Figure 12).
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The use of these types of impact on fresh cuts of scion and rootstock cuttings during
winter grafting by the method of improved copulation shows that the survival rate of the
obtained scion–stock combinations of the “Revna” sweet cherry variety turned out to be
11% higher than that of the control, which may indicate the effectiveness of these types of
treatments during winter vaccinations. The most effective CAP mode was the 15 s exposure
mode. The slightly worse results with longer exposures of 30 and 45 s were perhaps due to
the processes of oxidation of molecules and cells located on the sections. When dipping
the rootstocks and grafts into the PTS solution, the highest concentration of 1:5 (20%) of
the activated liquid showed good results. The deciduous part on the treated seedlings was
well developed and corresponded to the indicators of the highest category seedlings.

For high-quality accretion of the graft components and the formation of a complete
nutrient transfer system, it is necessary to ensure the correct and accurate connection of
the graft components to each other, as well as the purity and speed of their connection.
The use of cold plasma in the technology of winter grafting of stone fruit crops has a
positive effect on the quality and speed of grafting and contributes to a better union of
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scion and rootstock tissues. With exposure to CAP on the cut surfaces of cuttings of plants,
it is possible to achieve a positive effect with smoothing of the surface and reducing the
degree of surface roughness and to some extent affect a reduction in the number and
volume of the air gap between the rootstock and scion. The treatment also promotes
the resorption of the insulating layer, which inhibits the process of accretion, because it
consists of dead cells and their decomposition products [28]. On the cut surface and at
a depth of up to 300 µm inside the cut, under the influence of CAP and PTS, various
processes of multistage biotransformation reactions of xenobiotics occur, accompanied
by the development of aberrant post-translational transformations of proteins [29]. In
particular, metastable nitrogen species are formed in the CAP, which may contribute to
the lignification of the contact zone [30], this being necessary for the formation of a new
vascular system [31]. On the cut surface, the ratio of O/C and polar oxygen-containing
functional groups increases: CO, OC=O, −OH, etc. [32], which contributes to a significant
increase in surface wettability. These effects significantly improve the adhesive properties
of scion and rootstock sections, act as an important factor in the grafting stratification and
contribute to leveling the influence of stresses from external environmental factors on the
grafted plant. Processing with PTS from the entire set of acting factors is limited by the
action of long-lived ROS and RNS. However, as shown in the course of the experiment, by
selecting the optimal concentration of PTS, it is possible to achieve a similar efficiency as
when processing with CAP.

4. Conclusions

Methods have been proposed and described that can be used to supplement the
methodology for conducting winter grafting of horticultural crops (using the example of
the cherry culture of the pomological variety “Revna”) using CAP and PTS and which
can improve survival and increase the commercial quality of planting material. Modes of
exposure to CAP, exposure times and PTS concentrations have been described which allow
the acceleration of the regenerative processes at the grafting sites in order to improve the
quality of the obtained annual seedlings. Exposure of fresh sections of scions and rootstocks
before grafting with a cold plasma (CAP) source for 15–45 s increases the length of growth
by almost 10–20% and the diameter of the root collar by almost 10–25%. In this case, the
electrical resistance of the grafting area, which characterizes the quality of the fusion of
the graft components, decreases by 10–25%. When sections were wetted with a PTS with
the highest concentration of 1:5 (20%), the difference in the average diameter of the root
collar compared to the control was 20%, and the average increase was almost 30% more.
Electrical resistance in the grafting zone decreased by more than 20%. The use of CAP in
agriculture certainly has great prospects since this method of increasing plant productivity
has a number of advantages over similar physical methods, being safe for plants, easy to
scale and easy to use.
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