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Abstract: Geometry modeling methods can conserve the geometry characters of a system, which
helps the dynamic equations more concisely and is good for long simulations. Reduced attitude,
Lie group and Lie algebra are three different expressions of geometry. Models for the dynamics of a
planer pendulum and a 3D pendulum were built with these three geometry expressions. According
to the variation method, the dynamics models as ordinary differential equations were transformed
into nonlinear equations which are solved by Newton iteration. The simulation results show that Lie
group and Lie algebra calculations can conserve the geometric structure, but have different long-time
behavior. The complete Lie group expression has the best long simulation behavior and has the
lowest sensitivity to the time step in both planer and 3D pendulum simulations, because it saves the
complete geometry of the system in the dynamics model.

Keywords: geometry mechanical; dynamics; lie group; Lie algebra; Newton iteration

1. Introduction

Computational geometric mechanics can keep the geometric characteristics of a system
and have higher stability than traditional methods. In addition, the geometry-based model
are more concise than trigonometric functions, which has incomparable advantages for
spatial rigid–flexible coupling multi-body systems. Geometric methods are also used in the
fields of informatics and information geometry [1], which a provides unified mathematical
basis for the integration of mechanics and other disciplines. Therefore, the exploration of
geometric representations, numerical calculations and physical significance will promote
the engineering applications of geometric mechanics.

Geometric mechanics exploration has two directions: symplectic geometry and Lie
group methods. The symplectic geometry method is used to solve differential algebraic
equations of dynamic systems which combine dynamic analysis and differential equation
solving. The discrete Lie group variational integrator is another geometry method which
can conserve the energy, momentum and geometric structure. It is a recursive equation
which can be used in the optimal control of a space dynamics system. In recent years,
Shi et al. [2] studied the indirect symplectic method for solving optimal control problems of
differential algebraic equations, which improved calculation efficiency, and Peng et al. [3]
established the discrete Singer formula for optimal control of compressed bodies based on
the Lagrange–D’Alembert principle and discrete variational principle, which reduced the
number of drives required for optimal control. Peng, H.J. et al. [4] studied a symplectic
optimal control method for robot trajectory control and obtained a symplectic discrete
format for differential algebraic equations based on the discrete variational principle.
Hu et al. [5] studied the relationship between symmetry rupture and energy dissipation in
dynamics based on multi-symplectic theory. Hu et al. [6] explored structure conservation
based on local structure conservation of the multi-symplectic method and established
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a dynamic model of the flexible damping plate-spring mass system. These show the
symplectic geometry method has developed towards the direction of multi-symplectic
theory, mainly based on the conservation of local symplectic structure.

Differently from symplectic method, Lie group method seeks global conservation of
geometry structure of system. Recent research achievements of Lie group are as follows:
Leitz et al. [7] studied the polysymplectic Galerkin Lie group of geometrically accurate
beams. Tariverdi et al. [8] explored flexible continuous manipulator modeling using a
Lie group variational integrator. Sjoberg et al. [9] studied the dynamic model of a crane
system based on Lie group theory. Mueller et al. [10] studied the application of spinor
and Lie group theory in a recursive algorithm for a topologically tree-based multi-body
system. Zdravko et al. [11] studied the forward dynamics of fixed-wing aircraft on the Lie
group and realized the attitude non-singular reconstruction on SO(3). Zdravko et al. [12]
studied the momentum and energy conservation Lie group integral method for rigid body
rotational dynamics. Liu et al. [13] studied the finite-time optimal control of dynamic
systems on Lie groups. Lee et al. [14–16] studied a Lie group variational integrator for full
rigid body systems. Demoures et al. [17] studied a Lie group variational integrator for
geometrically accurate beam dynamics.

In recent years, the moving frame method has provided a new idea for solving dynam-
ics equations based on Lie group theory. The main results are: Zenkov et al. [18] studied
Hamel form and variational integrators on a sphere. Shi et al. [19] studied the Hamel form
under classical field theory and used the variational integrator in sledge model [20]. He also
studied the minimum time optimal control based on a Hamel product molecule [21] and the
Hamel form of infinite dimensional mechanical system [22]. Wang et al. [23] established the
Hamel field variational product molecule of geometrically accurate beams. Wang et al. [24]
carried out path planning for a manipulator based on a geometric mechanics method.

The above analysis shows that the discrete Lie group variational integrator and the
Hamel method both change an ordinary differential equation into nonlinear equations for
a numerical solution. Lie algebra works in the vector space which is mapped from a Lie
group. The three methods solve the dynamics equations from different perspectives. The
Hamel and Lie algebra methods reduce the equations’ complexity. Based on the above
explorations, some problems need to be analyzed. Firstly, the numerical simulations in the
above explorations were performed with their own modeling methods, so the relation of
different geometry expressions should be analyzed. Secondly, the extension of complexity
of different geometry models and their numerical solutions should be analyzed. Thirdly,
the numerical accuracy and stability of different geometry models need to be compared.
The above analysis can help the engineer chose the best method to solve their own problem.
Thus, in this paper, the geometric models for planar and 3D pendulums are established
from three perspectives as reduced attitude, Lie group and Lie algebra, respectively. Based
on the three models, the dynamics equations were transformed into nonlinear equations,
and the Jacobi matrices of different equations were obtained. The numerical solutions were
carried out by Newton iteration. Three methods were compared and analyzed based on
the numerical results. This study provides a basis for the study of geometric dynamics of
multi-body systems.

The structure of this research is as follows. In the Sections 2 and 3, the concepts of a
Lie group, Lie algebra and Newton iteration are introduced based on basic mathematical
expressions. In the Section 4, three kinds of geometric dynamics model of planer pendulum
are built. In the Section 5, four types of geometry dynamics model of 3D pendulums are
built. In the Section 6, the simulation results of different geometric dynamics models are
presented. The conclusions are summarized in the Section 7. The concrete derivation of
each model is presented step by step, which should help the readers to understand the
methods easily.
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2. Lie Group and Lie Algebra

The Lie group and Lie algebra are abstract mathematical concepts and difficult to
understand. Thus, in this section, the concepts are explained based on concrete examples.
Consider a rotation problem in plane. The coordinate transformation is expressed as in
Figure 1. Suppose the initial coordinate is xOy, after a counterclockwise rotation with θ.
The new coordinate is x′Oy′. The rotation matrix between them is as shown in Equation (1).

R =

[
cos θ − sin θ
sin θ cos θ

]
(1)
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The physical significance of the first and second column of R is the projection of Ox′ and
Oy′ on Ox and Oy respectively. R can be written as the exponential type, as in Equation (2).

R = eS(θ) (2)

In Equation (2), S(θ) =
[

0 −θ
θ 0

]
= θ

[
0 −1
1 0

]
.

The derivation of R is Equation (3).

.
R =

[
− sin θ − cos θ
cos θ − sin θ

]
.
θ = RS

( .
θ
)

(3)

The derivation of R can be written as Equation (4) according to Equation (2).

.
R = eS(θ)S

( .
θ
)

(4)

The results agree with the trigonometric functions type. Considering the system in
space, the attitude matrices corresponding to the rotation along x, y, and z axes are in
Equations (5)–(7), respectively.

Rx(θ3) =

 1 0 0
0 cos θ1 − sin θ1
0 sin θ1 cos θ1

 (5)

Ry(θ2) =

 cos θ2 0 sin θ2
0 1 0

− sin θ2 0 cos θ2

 (6)

Rz(θ1) =

 cos θ3 − sin θ3 0
sin θ3 cos θ3 0

0 0 1

 (7)

Derive Equations (5)–(7). The results are in Equation (8).

.
Rx = ωxRxS(e1);

.
Ry = ωyRyS(e2);

.
Rz = ωzRzS(e3) (8)
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In Equation (8), e1 = [1; 0; 0], e2 = [0; 1; 0], e3 = [0; 0; 1].

Se1 =

 0 0 0
0 0 −1
0 1 0

Se2 =

 0 0 1
0 0 0
−1 0 0

Se3 =

 0 −1 0
1 0 0
0 0 0


Equations (5)–(7) can also be written exponentially, as in Equation (9).

Rx = eθ1Se1 ; Ry = eθ2Se2 ; Rz = eθ3Se3 (9)

The derivation of Equation (9) is similar to Equation (4). R can be seen as the Lie group
expression of planer rotation through the concept of kinematics, and θ is the Lie algebra
which corresponds to the Lie group. If R represents the rotation in space, then the Lie
algebra which corresponds to Rx, Ry, Rz is θe1, θe2, θe3.

According to the above analysis, R is a function about θ, no matter the triangle function
or exponent type. The above theory can be used as the basis for modeling the dynamics of a
single body or a series of single bodies combined together which rotate in space. In practical
engineering, some rigid body has three degrees of rotational freedom, such as a ship, plane,
spacecraft or UAV. They have triangle function expression based on the classical multibody
theory. For example, with the Cardan expression, the rotation of a rigid body in space is as
the series of X–Y–Z, as in Figure 2, and the rotation matrix can be written as (10).

R = RxRyRz (10)

Figure 2. The Cardan rotation.

Differentiate R; then, substitute Equation (8) into Equation (10). The derivation of R
can be written as Equation (11).

.
R =

.
RxRyRz + Rx

.
RyRz + RxRy

.
Rz = ωxRxSxRyRz + ωyRxRySyRz + ωyRxRyRzSz (11)

Equation (11) can be rewritten as Equation (12) according to RTS(a)R = S
(
RTa

)
.

.
R = RxRyRz

(
RyRz

)TS
( .

θxe1

)
RyRz + RxRyRzRz

TS
( .

θye2

)
Rz + RxRyRzS

( .
θze3

)
= RS

(
RT

z RT
y

.
θxe1 + RT

z
.
θye2 +

.
θze3

) (12)

From the above equation, the rotation of a rigid body in space can be written as the
nonlinear combination of the rotations on different axes Cardan order. Using the physics
definition of R in plane, the physics definition of each row of R in space can be explained
as the projection of X′Y′Z′ on X, Y, Z. Using ω to represent the absolute angular velocity of
a rotation body in space, the differential of R can be written as in Equation (13).

.
R = RS(ω) (13)
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In Equation (13), ω =
[

ωx ωy ωz
]T . S(ω) is the skew matrix of ω, as in

Equation (14).

S(ω) =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

 (14)

According to Equations (12) and (13), the angular velocity can be written as the combi-
nation of the rotation matrix and angular velocities across each axis, as in Equation (15).

ω = RT
z RT

y
.
θxe1 + RT

z
.
θye2 +

.
θze3 (15)

The above derivations are the expressions of the rotation matrix and their differentials
of rigid body rotations in plane and in space. As part of dynamics solving, the above
equations usually need to transform to the triangle type, which may make the expressions
more complex due to the triangle transformation, especially for the rotation in space or
multibody systems.

‖R‖ = 1; RRT = I; RT = R−1 (16)

In order to avoid these problems, the overall natures of Lie group and Lie algebra
need to be analyzed. From the overall point of view, R satisfies the characteristics in
Equation (16), no matter the plane or space.

Expect the above characteristics, each row of R also satisfies similar characteristics, as
the moduli are one in each row.

‖R1‖ = ‖R2‖ = ‖R3‖ = 1 (17)

If each row of R is one element, Equation (13) can be divided into three parts, as in
Equation (18).

eT
3

.
R = eT

3 RS(ω); eT
2

.
R = eT

2 RS(ω); eT
1

.
R = eT

1 RS(ω) (18)

Suppose Γi = RTe3. Then, the derivation of Γ is

.
Γ1 = S(Γ1)ω;

.
Γ2 = S(Γ2)ω;

.
Γ3 = S(Γ3)ω (19)

For planer rotation, the solution of any part of Equation (19) can obtain the complete
rotation matrix according to inverse derivation. For rotation in space, Equation (19) needs
to be completely solved to obtain the rotation matrix. The above method avoids complex
triangle transformations. The exponential type of rotation matrix is

R = eS(η) (20)

η is the Lie algebra type. The exponential matrix can be obtained according to the
Rodriguez parameter or Cayley transformation, as in Equations (21) and (22), respectively.
The Cayley transformation avoids triangle expression completely.

R = I +
sin‖η‖
‖η‖ S(η) +

1− cos‖η‖
‖η‖2 S2(η) (21)

R =
I + S(η)
I− S(η)

=
1

1 + ηTη

((
1− ηTη

)
I + 2S(η) + 2ηηT

)
(22)

The discussion of the exchangeability of the rotation matrix is as follows. Supposing
that Ra = eθaS(ei), Rb = eθbS(ej), when i = j, Ra, Rb is called isomorphism, which means it has
the same structure. If and only if i = j, Ra, Rb satisfies the relation as in Equation (23), which
means that the rotation matrix has the same structure satisfying the exchange relation.

RaRb = RbRa = eθaS(ei)+θbS(ej) (23)
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Suppose that the rotation matrix in space is R = eS( f ). The definitions of Rx, Ry, Rz are
in Equation (9). According to Cardan relation, the exponential type of R is in Equation (24).

eS( f ) = eθ1Se1 eθ2Se2 eθ3Se3 (24)

It is necessary to declare f 6=
[

θ1 θ2 θ3
]T , which is important in the following

derivation.

3. Newton Iterative

Traditionally, the dynamics equation which is ODE type is solved by the Runge–Kutta
method. However, the error accumulation of this method may lead to the distortion of
long simulations. The Lie group method and the Hamel method can avoid this problem.
One reason is that modeling the dynamics of the geometry method can maintain the ge-
ometry characteristics of the system, and the other is that both of these methods solve the
nonlinear equation, which is the coal character of these two methods. The distinguish-
ing feature between the Lie group method and the Hamel method is that the Lie group
method transforms the structure preserving part to be a nonlinear equation, and the Hamel
method transforms the ODE to be a nonlinear equation directly. The nonlinear equation
is often solved by Newtonian iteration. Thus, the error of each step can be reduced to
be the lowest level and avoids error accumulation, which can guarantee the reliability of
long simulations.

Suppose that the nonlinear equation is as Equation (25).
f1
(

x1, x2, . . . , xn
)
= 0

f2
(

x1, x2, . . . , xn
)
= 0

. . . . . . . . . . . .
fn
(

x1, x2, . . . , xn
)
= 0

(25)

Using x = (x1, x2, . . . , xn), F(x) = ( f1(x), f2(x), . . . , fn(x))
T , Equation (25) can be

written as a vector as in Equation (26).

F(x) = 0 (26)

Suppose that ∆x = x− x(k). x(k) is the initial number of iterations. Substitute it into
Equation (26). Then the linear equation system is Equation (28).

F
(

x(k)
)
+ F′

(
x(k)
)

∆x(k) = 0 (27)

Expanding Equation (28), we get the expression of x.

x = x(k) −
[
F′
(

x(k)
)]−1

F
(

x(k)
)

(28)

In Equation (29), F′
(

x(k)
)

is the Jacobi matrix of F
(

x(k)
)

, which is written as
Equation (30).

F′
(

x(k)
)
=


∂ f1
∂x1

∂ f1
∂x2

. . . ∂ f1
∂xn

...
...

...
∂ fn
∂x1

∂ fn
∂x2

. . . ∂ fn
∂xn


x=x(k)

(29)

According to continuous iteration under the given initial value, the exact solution of
the system can be obtained which can satisfy the limiting condition. Then, the stop criterion
of iteration is ∥∥∥x(k+1) − x(k)

∥∥∥ < ε (30)
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For example, Equation (18) can be discrete with Lie group or Lie algebra. Using the
discrete model of a discrete Lie group variational integrator, the discrete rotation matrix
can be written as Equation (32).

Rk+ 1
2
=

Rk+1 + Rk
2

(31)

According to Γi = RTei, the discrete pattern on vector domain is shown in
Equation (33).

Γik+ 1
2
=

Γik+1 + Γik
2

(32)

Γik+1 can be obtained by the given Γik. The calculation can also use the difference as
the unknown quantity, and the discrete schemes can be written as

Γik+ 1
2
= Γik +

∆Γik
2

(33)

Based on the given values of Γik and ∆Γik, the accuracy value of ∆Γik can be obtained
according to the iterations, along with the accuracy value of Γik+1.

Suppose that there is a transfer matrix between Rk+1 and Rk. The discrete value of the
rotation matrix is

Rk+1 = RkFk (34)

Substitute Equation (35) into Equation (32) and get the expression of Equation (36).

Rk+ 1
2
=

Rk+1 + Rk
2

=
1
2

Rk(Fk + I) (35)

The above expression can also transform to be exponential in type:

eS(ηk+1) = eS(ηk)eS(∆ηk) = eS(ηk+∆ηk) (36)

Equation (35) is the discrete form of a Lie group, so map the discrete relation to Lie
algebra space. The discrete transformation can directly make Lie algebra space as it is in
Equation (38). Thus, the goal of an iterative solution is ∆ηk or ηk+1 based on the known ηk.

Rk+ 1
2
= eS(

ηk+ηk+1
2 ) = eS(ηk+

∆ηk
2 ) (37)

4. The Solution of the Dynamics of a Planer Pendulum

In this chapter, a planner pendulum is used to explain the above theory. The planer
pendulum is shown in Figure 3, which considers its geometry. The mass and the rotational
inertia of the pendulum are m and J, respectively. The length between the center of mass
and pivot is l. The dynamics model of the pendulum is written as Equation (39) with
rotation matrix R and angular velocity ω.{

J
.

ω + mgleT
2 Re1 = 0

.
R = RS(ω)

(38)



Appl. Sci. 2022, 12, 4910 8 of 24

Figure 3. Planar pendulum.

Equation (39) can also be written as triangle type:{
J

.
ω + mgl sin θ = 0

.
θ = ω

(39)

Let ∏ = Jω. Then, Equation (39) can change to be of Hamilton type, as in
Equation (41). { .

∏ + mgleT
2 Re1 = 0

.
R = RS

(
∏
J

) (40)

In general, Equation (41) can be solved by the Runge–Kutta method. Here, the
difference method is used to solve it. The parameters are discrete:

ωk+ 1
2
=

ωk+1 + ωk
2

,
.

ωk+ 1
2
=

ωk+1 −ωk
h

,
.
θk+ 1

2
=

θk+1 − θk
h

, θk+ 1
2
=

θk+1 + θk
2

(41)

Substitute Equation (42) into Equation (40). Then, the dynamics equation is{
J(ωk+1 −ωk) + hmgl sin

(
θk+1+θk

2

)
= 0

2(θk+1 − θk)− h(ωk+1 + ωk) = 0
(42)

The Jacobi matrix of Equation (43) is[
J 1

2 hmgl cos
(

θk+1+θk
2

)
−h 2

]
(43)

Discretize ω, θ as Equation (45) to use ∆ωk and ∆θk as parameters of a difference
operation.

.
ωk+ 1

2
=

∆ωk
h

, ωk+ 1
2
= ωk +

∆ωk
2

,
.
θk+ 1

2
=

∆θk
h

, θk+ 1
2
= θk +

∆θk
2

(44)

Substitute it into Equation (40) to obtain the dynamics equation as Equation (46),
which uses ∆ωk, ∆θk as parameters.

J∆ωk + hmgl sin
(

θk +
∆θk

2

)
= 0

2∆θk − 2hωk − h∆ωk = 0
(45)

The Jacobi matrix of Equation (46) is[
J 1

2 hmgl cos
(

θk +
∆θk

2

)
−h 2

]
(46)
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Let Γ = RTe2. Then, the Lie group expresses the dynamics equation as Equation (48).{
J

.
ω + mgleT

1 Γ = 0
.
Γ = −S(ω)Γ

(47)

ω is discrete in a similar regular form as in Equation (42). The discrete regular of Γ is

.
Γk+ 1

2
=

Γk+1 − Γk
h

, Γk+ 1
2
=

Γk+1 + Γk
2

(48)

Substitute Equation (49) into Equation (48). The dynamics equation is{
2J(ωk+1 −ωk) + hmgleT

1 (Γk+1 + Γk) = 0
4(Γk+1 − Γk) + hS(ωk+1 + ωk)(Γk+1 + Γk) = 0

(49)

Then, the Jacobi matrix is Equation (51), achieved by deriving ωk+1, Γk+1.[
2J hmgleT

1
hS1(Γk+1 + Γk) 4I + hS(ωk+1 + ωk)

]
(50)

Using ωk, Γk and ∆ωk, ∆Γk as parameters, the discretion of ω is Equation (44), and the
discretion of Γ is Equation (52).

.
Γk+ 1

2
=

∆Γk
h

, Γk+ 1
2
= Γk +

∆Γk
2

(51)

Substitute Equation (52) into Equation (48). The dynamics equation of system is
Equation (53). {

2J∆ωk + hmgleT
1 (2Γk + ∆Γk) = 0

4∆Γk + h(2ωk + ∆ωk)S1(2Γk + ∆Γk) = 0
(52)

The Jacobi matrix of Equation (53) is a 3 × 3 matrix:[
2J hmgleT

1
hS1(2Γk + ∆Γk) 4I + h(2ωk + ∆ωk)S1

]
(53)

If R is discrete by Equations (35) and (36), and ω is discrete as in Equation (45), then
substitute them into Equation (39) to get the dynamics equation of Equation (55).

2J∆ωk + hmgleT
2 RkFke1 + hmgleT

2 Rke1 = 0
2Fke1 − hFkS

(
ωk +

∆ωk
2

)
e1 − 2e1 − hS

(
ωk +

∆ωk
2

)
e1 = 0

2Fke2 − hFkS
(

ωk +
∆ωk

2

)
e2 − 2e2 − hS

(
ωk +

∆ωk
2

)
e2 = 0

(54)

The latter two equations can change into the vector equation via multiplying them by
e1 and e2. Let Fke1 = Γa, Fke2 = Γb. Equation (55) changes to be Equation (56).

2J∆ωk + hmgleT
2 RkΓa + hmgleT

2 Rke1 = 0
4Γa − h(2ωk + ∆ωk)Γb − 4e1 − h(2ωk + ∆ωk)e2 = 0
4Γb + h(2ωk + ∆ωk)Γa − 4e2 + h(2ωk + ∆ωk)e1 = 0

(55)

∆ωk, Γa, Γb are the variables of Equation (56). The Jacobi matrix is a 5 × 5 matrix, as
shown in Equation (57). 2J hmgleT

2 Rk 0T

h(Γb − e2) 4eT
12 −h(2ωk + ∆ωk)eT

12
h(Γa + e1) h(2ωk + ∆ωk)eT

12 4eT
12

 (56)
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In Equation (57), e12 = [1; 1]. The above method changes R into vector Γ. Although
the numerical result is correct, the complete character of R is broken, which may lead to
constraint loss of the system. In order to reflect the complete structure of R, let RTe1 =
Γa, RTe2 = Γb; then, Equation (39) can be written as Equation (58).

J
.

ω + mgleT
1 Γb = 0

.
Γa = −S(ω)Γa.
Γb = −S(ω)Γb

(57)

The discrete regulars of Γ and ω are Equation (49) and Equation (42), respectively.
With these regulars, the discrete dynamics equation is Equation (59).

2J(ωk+1 −ωk) + hmgleT
1 (Γb,k+1 + Γb,k) = 0

4(Γa,k+1 − Γa,k) + h(ωk+1 + ωk)S1(Γa,k+1 + Γa,k) = 0
4(Γb,k+1 − Γb,k) + h(ωk+1 + ωk)S1(Γb,k+1 + Γb,k) = 0

(58)

It is necessary to notice that the significance of parameters in Equation (59) is different
from those in Equation (56). If the equation is discrete with ∆ωk, ∆Γa,k, ∆Γb,k, the result is
Equation (60). 

2J∆ωk + 2hmgleT
1 Γb,k + hmgleT

1 ∆Γb,k = 0
4∆Γa,k + h(2ωk + ∆ωk)S1(2Γa,k + ∆Γa,k) = 0
4∆Γb,k + h(2ωk + ∆ωk)S1(2Γb,k + ∆Γb,k) = 0

(59)

If the parameters are ωk+ 1
2
Γa,k+ 1

2
Γb,k+ 1

2
, Equations (59) and (60) have the same Jacobi

matrix as Equation (61). 2J 01×2 hmgleT
1

2hS1Γa,k+ 1
2

4I + 2hωk+ 1
2
S1 02×2

2hS1Γb,k+ 1
2

02×2 4I + 2hωk+ 1
2
S1

 (60)

The above dynamics equations have Lie group expression. Next, the dynamics equa-
tion with Lie algebra is discussed. Firstly, the dynamics equation is changed to be the
exponential type: {

J
.

ω + mgleT
2 eS(θ)e1 = 0

.
θ = ω

(61)

The discrete dynamics equation is shown in Equations (63) and (64). The discrete
regulars are shown in Equations (42) and (45), respectively.{

J(ωk+1 −ωk) + hmgleT
2 eS(

θk+1
2 )eS(

θk
2 )e1 = 0

2(θk+1 − θk)− h(ωk+1 + ωk) = 0
(62)

{
J∆ωk + hmgleT

2 RkeS(
∆θk

2 )e1 = 0
2∆θk = 2hωk + h∆ωk

(63)

The Jacobi matrixes corresponding to Equations (63) and (64) are in Equations (65) and (66).[
J hmgl

2 eT
2 eS(

θk+1
2 )eS(

θk
2 )e1

−h 2

]
(64)

[
J hmgl

2 eT
2 RkeS(

∆θk
2 )e1

−h 2

]
(65)
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The exponential part of Equations (63) and (64) can be factorized by the Cayley
transformation as Equation (67).

R =
1

1 + θ2

((
1− θ2

)
I + 2S(θ) + 2θ2e1eT

1

)
(66)

In the above analysis, the dynamics equations of a planer pendulum were built on
different points. The dynamics equation with Lie algebra expression is more concise, and
from the dimension point of view, the calculation based on Lie group theory needs more
dimensions than is common. Although the dynamics equation has higher dimensionality,
it can avoid the complex triangle transformation.

5. Dynamics Modeling of a 3D Pendulum

Based on the dynamics analysis of a planer pendulum, the dynamics modeling for
a 3D pendulum was derived with Lie group and Lie algebra theory. The model of a 3D
pendulum is shown in Figure 4. The 3D pendulum means that the pendulum has three
degrees of freedom which can rotate along the pivot O in space, and C is the center of mass.
ρC is the position vector of the center of mass. The dynamics equation of 3D pendulum is
Equation (68).

JC
.

ωC + S(ωC) · JCωC −mCgS(ρC)RT
Ce3 = 03×1.

RC −RCS(ωC) = 03×3
(67)

Figure 4. 3D rigid pendulum.

JC is the rotational inertia, ωC is angular velocity along the inertia’s principle axis
and RC is the attitude matrix. Using ∆ωC,k, FC,k as variables, the discrete regular is as
Equation (69), which is similar to Equations (35) and (36).

ωC,k+ 1
2
= ωC,k +

∆ωC,k
2 , RC,k+1 = RC,kFC,k,

.
ωC,k+ 1

2
=

∆ωC,k
h ,

RC,k+ 1
2
= 1

2 RC,k(FC,k + I),
.

RC,k+ 1
2
= 1

h RC,k(FC,k − I)
(68)

Let
.

R
T
Ce3 = −S(ωC)RT

Ce3. Substitute Equation (69) into Equation (68), and the dynam-
ics equation of central difference type is Equation (70).

K1∆ωC,k + hS(∆ωC,k)JC∆ωC,k −K4FT
C,kK3 + K2 = 0(

K6FT
C,k + hS(∆ωC,k)

(
FT

C,k + I
))

K3 + K5 = 0
(69)

K1 = 4JC − 2hS(JCωC,k) + 2hS(ωC,k)JC, K2 = 4hS(ωC,k)JCωC,k − 2hmCgS(ρC)K3,
K3 = RC,k

Te3, K4 = 2hmCgS(ρC), K5 = 2hS(ωC,k)K3 − 4K3, K6 = 4I + 2hS(ωC,k)

Let FT
C,kK3 = X. Substitute it into Equation (70) to obtain the simplifier

dynamics equation.

K1∆ωC,k + hS(∆ωC,k)JC∆ωC,k −K4X + K2 = 0
K6X + hS(∆ωC,k)X + hS(∆ωC,k)K3 + K5 = 0

(70)
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Then, the dynamics equation changes to be a nonlinear equation with variables
of ∆ωC,k and X. In order to obtain the Jacobi matrix, the variation of Equation (71) is
Equation (72).{

K1δ∆ωC,k + hS(δ∆ωC,k)JC∆ωC,k + hS(∆ωC,k)JCδ∆ωC,k −K4δX = 0
K6δX + hS(δ∆ωC,k)X + hS(∆ωC,k)δX + hS(δ∆ωC,k)K3 + K5 = 0

(71)

Next, we change Equation (72) to matrix type:

H
[

δ∆ωC,k
δX

]
= 06×1 (72)

H is a Jacobi matrix of Equation (71), which is a 6 × 6 matrix.

H =

[
K1 + hS(∆ωC,k)JC − hS(JC∆ωC,k) −K4

−hS(X + K3) K6 + hS(∆ωC,k)

]
(73)

The reduced dynamics equation is Equation (75).

JC
.

ωC + S(ωC) · JCωC −mCgS(ρC)ΓC = 0
.
ΓC = −S(ωC)ΓC

(74)

Define the discrete regular as Equation (76).

ΓC,k+ 1
2
= 1

2 (ΓC,k+1 + ΓC,k),
.
ΓC,k+ 1

2
= 1

h (ΓC,k+1 − ΓC,k),

ωC,k+ 1
2
= 1

2 (ωC,k+1 + ωC,k),
.

ωC,k+ 1
2
= 1

h (ωC,k+1 −ωC,k)
(75)

Then, the dynamics equation with ωC,k+1 and ΓC,k+1 as variables is Equation (77).

4JCωC,k+1 + hS(ωC,k+1)JCωC,k+1 + hS(ωC,k)JCωC,k+1 + hS(ωC,k+1)JCωC,k
−2hmCgS(ρC)ΓC,k+1 + QA = 0
4ΓC,k+1 + hS(ωC,k+1)ΓC,k+1 + hS(ωC,k+1)ΓC,k + hS(ωC,k)ΓC,k+1 + QB = 0

(76)

By combining the same item together, the nonlinear equation changes to
Equation (78).

QCωC,k+1 −QDΓC,k+1 + hS(ωC,k+1)JCωC,k+1 + QA = 0
QEΓC,k+1 + hS(ωC,k+1)(ΓC,k+1 + ΓC,k) + QB = 0

(77)

The expression levels of parameters QA, QB, QC, QD, QE in Equation (78) are as follows.

QA = hS(ωC,k)JCωC,k − 4JCωC,k − 2hmCgS(ρC)ΓC,k, QB = hS(ωC,k)ΓC,k − 4ΓC,k,
QC = 4JC + hS(ωC,k)JC − hS(JCωC,k), QD = 2hmCgS(ρC), QE = 4I + hS(ωC,k)

Equation (79) is the variant of Equation (78) of matrix type.

T
[

δωC,k+1
δΓC,k+1

]
= 0 (78)

T is the Jacobi matrix in Equation (80).

T =

[
QC − hS(JCωC,k+1) + hS(ωC,k+1)JC −QD

−hS(ΓC,k+1 + ΓC,k) QE + hS(ωC,k+1)

]
(79)
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Similarly, if using ∆ΓC,k∆ωC,k as parameters to discretize, the dynamics equation and
Jacobi matrix are Equations (81) and (82), respectively.

W1∆ωC,k + hS(∆ωC,k)JC∆ωC,k −W5∆ΓC,k + W2 = 0
−W6∆ωC,k + W3∆ΓC,k + hS(∆ωC,k)∆ΓC,k + W4 = 0

(80)

[
W1 − hS(JC∆ωC,k) + hS(∆ωC,k)JC −W5

−W6 − hS(∆ΓC,k) hS(∆ωC,k) + W3

]
(81)

The parameters are as follows.

W1 = 4JC − 2hS(JCωC,k) + 2hS(ωC,k)JC, W2 = 4hS(ωC,k)JCωC,k − 4hmCgS(ρC)ΓC,k,
W3 = 2hS(ωC,k) + 4I, W4 = 4hS(ωC,k)ΓC,k, W5 = 2hmCgS(ρC), W6 = 2hS(ΓC,k),

The reduced dynamics only consider part of the Lie group, which cannot represent the
whole structure. Next, the calculation with a complete Lie group is derived. According to
Equation (20), the dynamics equation with a complete Lie group is obtained. The discrete
equation using ∆ωC,k∆Γ3,k∆Γ2,k∆Γ1,k as parameters is Equation (83).

T1∆ωC,k + hS(∆ωC,k)JC∆ωC,k − T3∆Γ3,k + T2 = 0
(T4 + hS(∆ωC,k))∆Γ3,k − T8∆ωC,k + T5 = 0
(T4 + hS(∆ωC,k))∆Γ2,k − T9∆ωC,k + T6 = 0
(T4 + hS(∆ωC,k))∆Γ1,k − T10∆ωC,k + T7 = 0

(82)

The parameters are as follows.

4JC + 2hS(ωC,k)JC − 2hS(JCωC,k) = T1, 4hS(ωC,k)JCωC,k − 4hmCgS(ρC)Γ3,k = T2
2hmCgS(ρC) = T3, 4 + 2hS(ωC,k) = T4; 4hS(ωC,k)Γ3,k = T5, 4hS(ωC,k)Γ2,k = T6;
4hS(ωC,k)Γ1,k = T7, 2hS(Γ3,k) = T8; 2hS(Γ2,k) = T9, 2hS(Γ1,k) = T10

The Jacobi matrix is in Equation (84).
T1 + hS(∆ωC,k)JC − hS(JC∆ωC,k) 03×3 03×3 −T3

−hS(∆Γ3,k)− T8 03×3 03×3 Z
−hS(∆Γ2,k)− T9 03×3 Z 03×3
−hS(∆Γ1,k)− T10 Z 03×3 03×3

 (83)

In Equation (84), Z = T4 + hS(∆ωC,k). The dynamics analysis of Lie algebra is derived
as follows. For the Lie group which corresponds to the 3D pendulum is not exchangeable,
discretizing the Lie group directly is not available. Here, the Cardan transformation is used
as the basis for the discrete use of Lie algebra. Combined with Equation (12), the dynamics
equation is Equation (85).

JC
.

ωC + S(ωC) · JCωC −mCgS(ρC)
(
RxRyRz

)Te3 = 0
ωC −

.
θz
(
RyRx

)Te3 −
.
θyRx

Te2 −
.
θxe1 = 0

ωC −
.
θze3 −

.
θyRz

Te2 −
.
θx
(
RyRz

)Te1 = 0

(84)

The discrete regular is defined in Equation (86).

ωC,k+ 1
2
= ωC,k +

∆ωC,k
2 ,

.
ωC,k+ 1

2
=

∆ωC,k
h ;

.
θ

z,k+ 1
2

=
∆θz,k

h ,
.
θ

y,k+ 1
2

=
∆θy,k

h ,
.
θ x,k+ 1

2
=

∆θx,k
h

Rz,k+ 1
2
= e(θz,k+

∆θz,k
2 )S(e3) = Rz,ke

∆θz,k
2 S(e3); Ry,k+ 1

2
= e(θy,k+

∆θy,k
2 )S(e3) = Ry,ke

∆θy,k
2 S(e2);

Rx,k+ 1
2
= e(θx,k+

∆θx,k
2 )S(e1) = Rx,ke

∆θx,k
2 S(e1)

(85)
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Substitute the former into Equation (86). The discrete dynamics equation of the system
is then Equation (87).

K∆ωC,k + hS(∆ωC,k)JC∆ωC,k + 4hS(ωC,k)JCωC,k

−4hmCgS(ρC)

(
e−

∆θx,k
2 S(e1)RT

x,ke−
∆θy,k

2 S(e2)RT
y,ke−

∆θz,k
2 S(e3)RT

z,k

)
e3 = 0

2hωC,k + h∆ωC,k − 2∆θx,ke1 − 2∆θy,ke−
∆θx,k

2 S(e1)RT
x,ke2 − 2∆θz,ke−

∆θx,k
2 S(e1)RT

x,ke−
∆θy,k

2 S(e2)RT
y,ke3 = 0

(86)

In Equation (87), K = 4JC + 2hS(ωC,k)JC − 2hS(JCωC,k). The dimensions of
Equation (87) number 6, and ∆ωC,k∆θx,k∆θy,k∆θz,k are their variables. The Jacobi matrix is
Equation (87). [

U11 U12 U13 U14
hI U22 U23 U24

]
(87)

U11 = K + hS(∆ωC,k)JC − hS(JC∆ωC,k)

U12 = 2hmCgS(ρC)e−
∆θx,k

2 S(e1)S(e1)RT
x,ke−

∆θy,k
2 S(e2)RT

y,ke−
∆θ2k

2 S(e3)RT
z,ke3

U13 = 2hmCgS(ρC)e−
∆θx,k

2 S(e1)RT
x,ke−

∆θyk
2 S(e2)S(e2)RT

y,ke−
∆θ2,kk(e3)

2 RT
z,ke3

U14 = 2hmCgS(ρC)e−
∆θx,k

2 S(e1)RT
x,ke−

∆θjyk
2 S(e2)RT

y,ke−
∆θ2,k

2 S(e3)S(e3)RT
z,ke3

U22 = e−
∆θx,k

2 S(e1)S(e1)RT
x,k

(
∆θy,ke2 + ∆θz,ke−

∆θy,k
2 S(e2)RT

y,ke3

)
− 2e1

U23 = e−
∆θx,k

2 S(e1)RT
x,k

(
∆θz,ke−

∆θy,k
2 S(e2)S(e2)RT

y,ke3 − 2e2

)
U24 = −2e−

∆θx,k
2 S(e1)RT

x,ke−
∆θy,k

2 S(e2)RT
y,ke3

6. Simulation

Suppose that the mass of the pendulum is 2 kg, the rotational inertia is 0.48 kg·m2,
the length of the planer pendulum is 0.6 m, the initial angle is 0 rad, the initial angular
velocity is 1 rad/s and the simulation time is 50 s. According to Equations (43) and (46), the
simulation results are in Figures 5–8.

Figure 5. Comparison of 4th order Runge–Kutta and difference methods.
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Figure 6. The comparison of the first 5 s.

Figure 7. The comparison of the last 5 s.

Figure 8. Comparison of two difference calculations.

According to Figure 5, the dynamics parameters of the planer pendulum are damped
as the simulation time increases under the Runge–Kutta method. The simulation results
under the difference method conserve the long-term stability of the attitude and angular
velocity. The comparisons between the first and last 5 s for these two methods are shown in
Figures 6 and 7, respectively. At the beginning of the calculation, the two results coincide,
but in the last 5 s as in Figure 7, the differences between these two methods are obvious—not
only the amplitude, but also the time period. Figure 8 shows a comparison of simulations
under two difference methods, Equations (43) and (46), for the last 5 s. The simulation
results highly coincide.

Figure 9 shows the simulation results of two difference calculation under reduced
attitude. The simulation results also highly coincide. Figures 10 and 11 are the comparison
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results of the difference calculations with reduced attitude or triangle expression with
standard results, respectively. According to Figure 10, the three results highly coincide in
the first 5 s, but the results appear obviously distinguishable from the standard values.

Figure 9. The difference calculation results under reduced attitude.

Figure 10. The results under reduced attitude and triangle function (1).

Figure 11. The results under reduced attitude and triangle function (2).

Figure 12 is a comparison of simulation results with different time steps and reduced
attitude expression. When the time step is 0.05 s, the results are obviously distinguishable,
but the results coincide when the time step is 0.01 s. This figure indicates that a long time
step will lead to time hysteresis in the simulation.
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Figure 12. Simulation results with different time steps.

Figure 13 is a comparison between the simulation results according to Equation (56)
and the standard results. The figure indicates that the results of the recursive method and
the standard results highly coincide with a time step of 0.01 s.

Figure 13. A comparison of the recursive method with the standard method.

Figures 14 and 15 are the simulation results which consider the complete Lie group
structure. According to Figure 14, the two difference simulation results approximately
coincide when the same big time step is used, 0.05 s, but the simulation results show some
differentiation in the last 5 s. According to Figure 15, the simulation results which consider
the complete Lie group structure highly coincide with the standard results when the time
step is 0.01 s. Figures 16 and 17 are the comparisons of difference calculation results using
Lie algebra. These two figures indicate that the two difference calculation results coincide
when using same time step and also coincide with the standard value using the time step
of 0.01 s.

Figure 14. A comparison of two difference methods under the Lie group model with the time step
of 0.05 s.
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Figure 15. A comparison of two difference methods under the Lie group model with the time step of
0.01 s.

Figure 16. Two difference results of Lie algebra.

Figure 17. A comparison of the results using Lie algebra and standard results.

The dynamics calculations of a 3D pendulum are analyzed as follows. Supposing that
the mass is 10 kg, the rotation inertias of the principle axes are Jx = 1 kg·m2; Jy = 1 kg·m2,
Jz = 1 kg·m2. The position vector of the center of mass is [0;0;0.7] m, and the initial value of
rotation matrix is R0, which can derived by the Cardan method.

Supposing Cardan angles which correspond to attitude are θx = π
3 , θy = π

4 , θz = π
9 :

the correspond rotation matrixes are Rx, Ry, Rz, respectively. Thus, the rotation matrix can
be derived by R0 = RxRyRz. The initial angular velocity is ω = [0; 0; 0]rad/s.

The dynamics calculation results based on Equation (70) are shown in
Figures 18 and 19. The simulation time was 100 s. The time step was h = 0.05s. The
simulation results of angular velocity and attitudes from 95to 100 s show good long-
term stability under a large time step. Figures 20 and 21 are the simulation results of
Equation (78), which is expressed by the reduced attitudes. The simulation time step was
0.1 s, and the simulation time was 100 s. According to the simulation results, the dynamics
equation which is expressed by reduced attitudes has good long-term stability under New-
ton iteration with the time step of 0.1 s. This means that the reduced attitude expression
has low sensitivity to the time step in the dynamics calculation. Figures 22–25 are the
simulation results based on equation (83), which is expressed by the complete Lie group
method. The simulation results indicate that the results of complete the Lie group method
also have good long simulation stability under the time step of 0.1 s. Compared with
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the reduced attitude expression, the complete Lie group method can obtain the results of
all attitudes.

Figure 18. The simulation results of angular velocity.

Figure 19. The simulation results of attitudes.

Figure 20. The angular velocity results under reduced attitude.
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Figure 21. The attitude results under reduced attitude expression.

Figure 22. The angular velocity results under the complete Lie group model.

Figure 23. The results of the attitude of the x axis under the complete Lie group model.
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Figure 24. The results of the attitude of the y axis under the complete Lie group model.

Figure 25. The results of the attitude of z axis under the complete Lie group model.

Figures 26 and 27 are simulation results of using Equation (87), which has the Lie
algebra type expression. The simulation results were obtained with the time steps of 0.01
and 0.005 s. According to the simulation results, the dynamics results were lost under the
Lie algebra, which is determined by Cardan rotation. It is very sensitivity to the time step.
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Figure 26. The angular velocity results under Lie algebra expression.

Figure 27. The attitude results under Lie algebra expression.

7. Conclusions

From the simulation results of a planer pendulum and a 3D pendulum, the conclusions
can be summarized as follows.

(1) In the long simulation, the influence of error accumulation on the dynamics was not
only reflected in the amplitude, but also in the periodic law of the system.

(2) The reduced attitude model of planer pendulum can conserve the long simulation
characteristic with a special time step. If the time step is not suitable, the error
accumulation may lead to the hysteresis of simulation. Thus, the error accumulation
speed is obviously influenced by the time step.

(3) The complete Lie group dynamics model has similar simulation characteristics with
different time steps, which means that the error accumulation is not sensitive to the
time step. The simulation results using Lie algebra do not have this advantage.

(4) In the simulation of a 3D pendulum, the reduced attitudes and complete Lie group
also had low sensitivity to the time step in the dynamics calculations. The simulation
results for the time steps of 0.1 and 0.01 s are not obviously distinguishable.

(5) The dynamics results for the 3D pendulum lost their conservation under the Lie algebra
model, which is determined by Cardan rotation, which means that the custom expression
of rotation in space does not have the desired long simulation characteristics.

According to the above conclusions, the long simulation characteristic is influenced
by the expression of the model and the time step simultaneously. The complete Lie group
expression has the best long simulation characteristics and has the least sensitivity to the
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time step for both planer and 3D pendulum simulations, because it conserves the complete
geometry characteristics of the system.
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