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Abstract: The issue of choosing the method for optimal surgical treatment of a broken fibula has
been debatable for many years. At the same time, concomitant repair of tibiofibular syndesmosis
injuries does not have a unified approach. It has been determined that osteosynthesis of broken shin
bones with syndesmosis injury should combine stable fixation of the broken bone and should not
limit the elastic properties of the syndesmosis. In case of a broken fibula, it is recommended to use
a stable extracortical fixator and an elastic connection of the syndesmosis injury using a tightrope.
An analytical model of the broken fibula, which is blocked with an extracortical fixator metal plate
and elastically fixed with a tightrope, has been developed. The research object is the stress–strain
state of the “broken fibula–extracortical titanium plate” composition under the action of tightrope
tightening fixation. The main research result is an analytical dependence, which makes it possible to
determine the permissible value of the tightrope tightening force for elastic fixation of the tibiofibular
syndesmosis. The research results have been tested numerically, and the influence of the parameters
of plate, bone and damage localization on the permissible value of the tightrope tightening force has
been analyzed. By using the rational tightrope tightening force with stable–elastic fixation of the
broken shin, it is possible to reduce the time before the start of loading on the injured extremity and
accelerate the functional recovery of the patient.

Keywords: fibula; syndesmosis; metal plate; functional coating; polymer tightrope; fixation; osteomeatal
synthesis; biomechanics; bone and joint diseases

1. Introduction

Today, medicine is increasingly using engineering solutions to improve and accel-
erate the treatment process and is successfully applying a multidisciplinary approach to
problematic tasks [1–4]. The consolidation periods of broken shin bones remain long and
significantly depend on the choice of correct tactics and method of treatment [5–7]. The
choice of the optimal surgical treatment method for a broken fibula has been debatable
for decades [8–10]. At the same time, concomitant repair of unstable syndesmosis injuries
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does not have a unified approach. Here, the most common divergence of views on sur-
gical treatment is associated with the use of two conceptually different methods—screw
fixation of the syndesmosis and elastic (dynamic) fixation [11]. Injuries of the tibiofibular
syndesmosis are among the most difficult in surgical treatment. This is primarily due to
the complexity of the joint-forming structures that accompany not only injured bones, but
also the interosseous membrane, ligaments, and the tibiofibular syndesmosis itself. The
problem of complications and the frequency of unsatisfactory results in surgical treatment
of the broken bone with tibiofibular syndesmosis rupture remains relevant [12].

At present, tibiofibular syndesmosis fixation with a position screw has become widespread.
However, the use of this method can lead to a narrowing of the tibiofibular fork, limited
mobility in the tibiofibular syndesmosis, the development of incongruence of the articular
surfaces in the supracalcaneal–shin joint, which in turn can cause the development of
arthrosis [13]. In addition, premature or accidental axial loading on the injured extremity
can lead to rigid structure destruction. The use of a position screw also requires a stepwise
surgical interference to remove it [14]. In the case of broken fibula fixation using an
extracortical plate to insert a position screw, it is necessary to provide surgical access to
the entire length of the extracortical fixator, which is difficult and sometimes impossible to
perform during post-traumatic ischemic personifestations, often accompanied by rupture of
the distal third of the shin. At the same time, delayed surgical interference does not solve the
problem, since it increases the risk of complications and worsens the repositioning conditions.

Therefore, osteomeatal synthesis of the broken shin bones with tibiofibular syndesmo-
sis injury should combine stable fixation of the broken bone and not limit the elastic
properties of the syndesmosis [15]. In particular, in the case of a broken fibula, it is pro-
posed to use a stable extracortical fixator (extracortical fixator metal plate) and an elastic
connection of the syndesmosis injury with a tightrope, which is attached using Endobutton
fixation devices (Figure 1).
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Figure 1. Scheme for stable–elastic fixation of the fibula injury: 1, broken bone; 2, metal plate,
3, elastic tightrope.

This approach optimizes the fusion process of the fibula bone and contributes to
anatomically correct positioning and adequate elastic restoration of the syndesmosis in-
tegrity. In our study, we decided to focus on aspects related to the biomechanics of the
injured syndesmosis elastic fixation.

To explain exactly how mechanical factors affect the stabilization of various types
of ruptures, the classical theory of mechanical stresses and strains, Perren’s strain theory,
contact interaction mechanics, etc., are used [16–19].

The success of the bone plate insertion is assessed depending on its long-term stabil-
ity, which, in particular, is determined by the biomechanical properties of the bone–plate
boundary line. The surfaces of materials are often subjected to various modifications,
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which improve their physical and biochemical properties and make it possible to obtain
the optimal topology of the contact surface [20–22]. In this direction, the technologies for
forming on the contact surfaces of structural elements of functional [23–25], functional
gradient [26,27], and bioactive coatings are of interest [28,29]. Such coatings can improve
the mechanical and tribological properties of surfaces, as well as create effective composi-
tions by combining different characteristics, such as strength, corrosion resistance, wear
resistance, required friction coefficient, bioinertness (or therapeutic bioactivity), etc. [30].
The authors also pay great attention to attempts to optimize the coating structure [31,32],
to study the behavior and strengthening effect of coatings and covers near the crack-like
defects in plates [33–36] and shells [37–40], and to study the crack growth peculiarities in
coatings [41,42] and the possibility of effective healing of injuries by injecting the compli-
ant [43–45] and non-contrast [46,47] material. In the mechanics of a deformable solid body,
the problems of the contact interaction of bodies with the surrounding medium [48–51],
as well as the contact between bodies with significantly different physical–mechanical
properties, are known and are widely used [52–56]. In this direction, some authors propose
special approaches to contact problems in the case when one of the materials has features
of a biological structure (i.e., has the ability to grow, recover, remodel), and the other is an
artificial material with stable physical–mechanical properties [57–60].

In addition, implants manufactured using modern additive technologies are being
developed and introduced into medical practice [61,62].

Stability is defined as the degree of displacement of rupture surfaces depending on
the loading. Excessive stress, possibly due to an unstable rupture configuration, leads
to the differentiation of mesenchymal stem cells into fibroblasts and cartilages, thereby
inhibiting bone healing. In addition, high values of deformations that exceed the per-
missible deformation for bone tissues subsequently lead to the formation of defective
calluses [63–65].

With regard to the surgical treatment of the broken fibula bones with concomitant
damage to the tibiofibular syndesmosis by using combined stable–elastic fixation, some
technological nuances remain completely inexplicable. When performing elastic fixation,
the question arises: what force must be applied to fix the tightrope? The force of tightening
the fixing tightrope today is a non-protocol parameter that the orthopedic surgeon is forced
to choose each time, at his own discretion, using his own surgical experience. If the selected
force of the tightrope tightening is insufficient, then it can poorly perform its function of
the syndesmosis injury elastic fixation. If the force of the tightrope tightening is too high,
then there is a risk of excessive deformations and displacements of the fibula fragments,
stabilized by the extracortical plate. All this can lead to the opening of a crack at the site of
the broken fibula bone, a concentration of stresses arising in the bone tissues due to the
contact of the rupture edges, displacement of bone fragments, etc.

The research purpose is to determine the maximum permissible value of the tightrope
tightening force for elastic fixation of a tibiofibular syndesmosis injury during osteosynthe-
sis of a broken fibula using an extracortical fixator metal plate.

2. Materials and Methods
2.1. General Scheme of Research

The biomechanical peculiarities are studied regarding the method for a broken fibula
osteomeatal synthesis, which combines stable bone fixation and does not limit the elastic
properties of the tibiofibular syndesmosis.

Figure 2a shows a scheme for the combination of extracortical metal osteosynthesis
and elastic fixation of the broken fibula. It is necessary to develop a rod model of the studied
system. The main ideas of modeling are as follows. The fibula stiffness is significantly less
than the shin bone stiffness. The main contribution to the compliance of the system when
tightening the tightrope will make a change in the fibula shape due to bending deformation.
The prismatic tubular rod in Figure 2b is put in correspondence with the fibula. In this case,
the tibia is considered absolutely rigid. The elasticity modulus, permissible stresses and
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axial inertia moments of the model prismatic rod are chosen such that they, on average,
identify the properties of a real fibula bone and its rod model. The lower joint (foot area) of
the fibula bone with the shin bone is modeled by a movable hinged support. The upper joint
(knee area) is modeled by a fixed hinged support. The tightrope tightening is schematized
by the concentrated force P. 

2 

 

  
Figure 2. General scheme for combined stable–elastic fibula fixation (a), intact fibula model (b), and
model of the broken fibula, which is blocked with an extracortical plate and elastically fixed using an
elastic tightrope (c).

It is necessary to analytically assess the relationship between the force of the tightrope
tightening and displacements of the broken fibula using an extracortical fixation plate
(Figure 2c).

At the first stage of the research, an analytical model of an intact fibula bone was
developed, which was loaded with a tightrope in the transverse direction. In the next
paragraph, the presence of the broken bone and the presence of an extracortical osteomeatal
synthesis are considered. Therefore, based on the conducted research, an engineering
method was developed for determining the permissible force of the tightrope tightening.

2.2. Analytical Model of a Fibula Bone Influenced by Localized Transverse Loading

The Cartesian coordinate system xow (Figure 2b) is introduced. The internal forces
arising in the sections of the bone when tightening the tightrope are expressed as follows:

- expression for transverse forces:

Q(x) = −P
l

b− P · H(x− a), (1)

- expression for bending moments:

M(x) =
P
l

bx− P(x− a) · H(x− a), (2)

where H(x)—Heaviside function.
Now, the displacements of the model rod cross-sections from the action of the tightrope

tightening can be determined. Considering the ratio of sizes (length—transverse dimension)
of real shin bones, the effects of shear deformation are neglected. Then, the differential
equation for the fibula bone deflections can have the form:

d2
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Having studied Equation (5) for an extremum, we obtain an estimate of the maxi-
mum intact fibula deflection from the action of the tightrope tightening force: 

( )
3

2 2 2max
1

9 3b
bE J w P l b
l

= − , (7)

Therefore, the obtained Equations (4) and (5), taking into account (6), make it possi-
ble to estimate the deflections and angular displacements of any fibula cross-section 
when it is exposed to a fixing tightrope. The obtained expression for the calculation of 
maxw  makes it possible to control the observance of the condition of transverse bone 

stiffness or to determine the permissible force of the fixing tightrope tightening according 
to the found maximum deflection. 

2.3. Assessment of Transverse Stiffness of the Broken Fibula, Fixed with an Extracortical Plate 
Now, an analytical study is made to assess the broken fibula stiffness. A transverse 

isolated rapture under syndesmosis occurring near the lower edge of the bone (at a dis-
tance l–s from the lower edge) is considered. The broken bone site is blocked with an ex-
tracortical fixator metal plate. In addition, the fibula bone is fixed by the elastic tightrope 
tightening (Figure 2a). 

dx2 =
1

Eb J

[
P
l

bx− P(x− a) · H(x− a)
]

, (3)
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where
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Having studied Equation (5) for an extremum, we obtain an estimate of the maximum
intact fibula deflection from the action of the tightrope tightening force:
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Therefore, the obtained Equations (4) and (5), taking into account (6), make it possible
to estimate the deflections and angular displacements of any fibula cross-section when
it is exposed to a fixing tightrope. The obtained expression for the calculation of
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A part of the rod with t length has a tubular cross-section, and its bending stiffness C
is determined by the formula:

C =
π

64
D4
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[
d
D

]4
)
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where Eb—elasticity modulus of bone tissue; D, d—characteristic transverse bone dimensions.
When loading, perfect contact is maintained between the bone and the metal plate

without slipping. The rod parts t ≤ x ≤ l, which are covered with a metal plate, are
considered absolutely rigid relative to the transverse bending.

It can be assumed that at the site of bone injury x = s (the area is highlighted in
Figure 2c), the bone has completely lost its load-bearing capacity relative to bending, and
only the metal plate resists the transverse loading. The area selected near the broken bone
is represented in the form of two rigid blocks, which are interconnected by an elastic cover.
The bending stiffness factor of such an elastic cover can be determined by the formula:

Cp =
δ

16
D3

(
2α + sin 2α− 4 sin2 α

α

)
Ep, (9)

where Ep—elasticity modulus of the plate material; δ—plate thickness; 2α—the central
angle resting on the arcuate plate cross-section (Figure 3c).

Based on the described assumptions, a boundary value problem for piecewise
-homogeneous rod deformation can be formulated.

The differential equation of displacements is presented in the following form:

d2
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dx2 =
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Ci

[
P
l

bx− P(x− a) · H(x− a)
]

, i = 1, . . . 4, x ∈ (0, l) (10)

Here,
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—damaged bone deflection; Ci—bending stiffness factor of the i-th bone
section; i—section number (i = 1 at 0 ≤ x ≤ t, i = 2 at t ≤ x ≤ a, i = 3 at a ≤ x ≤ s, i = 4 at
s ≤ x ≤ l). Direct double integration of Equation (10) in four different sections leads to the
appearance of eight integration constants. Their determining is quite a cumbersome task.
Therefore, to find solutions to Equation (10), the method of initial parameters is used. To
do this, a piecewise-homogeneous rod is represented by an imaginary equivalent beam of
stable cross-section with a bending stiffness factor Ceg = C. In order for such an imaginary
equivalent beam to behave similar to a real object, the following steps are performed. If
we multiply the numerator and denominator of the right-hand side of the differential
Equation (10) for an arbitrary section Ceg, then we obtain:
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dx2 =
1

Ceq
M(x)βi, (11)

where βi = Ceq/Ci—convergence ratio.
The bending moment M(x) is a linear function of the external loading. Therefore,

instead of multiplying the function M(x) by βi, we multiply by the convergence ratio all
external loads, as well as internal forces at the place of coupling inhomogeneous sections of
the beam. Having performed the described actions, the solutions to Equation (10) can be
written in the following form:

- expression for rotation angles of cross-sections:

ϑ(x) = ϑ0 + [ϑ]H(x− s) +
1
C

P
b
l

(
x2

2
− x2 − t2

2
H(x− t)

)
, (12)

- expression for deflections:
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x3

6
− x3 − 3xt2 + 2t3

6
H(x− t)

)
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Here, ϑ0—geometrical initial parameter equal to the rotation angle of the uppermost
cross-section of the bone, which is determined by the formula

ϑ0 = −1
l

(
[ϑ](l − s) +

1
C

P
b
l

3lt2 − 2t3

6

)
, (14)

[ϑ0]—the difference between the rotation angles of the bone cross-sections located on
both sides of the bone injury site (see Figure 2c). The expression for calculation [ϑ] is found
from the solution of an auxiliary problem.

It is necessary to monitor the behavior of the broken bone fixed with an extracortical
plate under transverse loading. To do this, we study a model of the broken fibula (Figure 4). 

4 

 

Figure 4. A model of the broken fibula fixed with an extracortical plate (a) and the calculation scheme (b).

Two rigid blocks interconnected by an elastic cover are considered. Physical–geometrical
characteristics of the cover (elasticity modulus and axial inertia moment) correspond to the
properties of the fixing extracortical plate. We load the blocks with a moment M, which is
numerically equal to the bending moment that occurs at the broken bone site. Substituting
x = s into Equation (2), we obtain:

M = M(s) =
Pb
l

s− P(s− a), (15)

For convenience, we assume that one of the blocks is stationary (Figure 4b). The
dependence between the applied moment M and the block rotation angle [ϑ] is studied.
Given the system equilibrium, the moment M can be represented as the integral equivalent
of normal stresses σx distributed over the cross-sectional area F of the elastic cover:

w

F

σxydF = M. (16)

Given the model kinematics, the relationship between the axial displacement in the
elastic layer ux and the rotation angle [ϑ] of the rigid block can be written as follows:

ux = [ϑ]y. (17)

The elastic layer material behavior is described by Hooke’s law:

σx = Et
dux

dx
. (18)

Having integrated (18) and taking into account (17), (16) and (9), we finally obtain:

[ϑ] =
16
δ

M(s)∆

D3
(

2α + sin 2α− 4 sin2 α
α

)
Ep

. (19)
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Now, using expressions (8), (13), (14) and (19), we can assess the transverse stiffness of
the broken bone, which is fixed with an extracortical plate.

From Equation (13), it is possible to explicitly obtain a formula for determining the
permissible value force of the tightrope tightening P = [P] from the condition that the
maximum deflection
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tightening (Figure 2a). 
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3. Results and Discussion

The following physical–mechanical and geometric characteristics of the research ob-
jects are used for numerical testing of the research results. For bone tissue: elasticity
modulus—Eb = 17.9 GPa strength limit—σst = 125 MPa [68]. For fixing of the titanium plate:
elasticity modulus—Ep = 112 GPa; yield point—σy = 250 MPa; plate thickness—δ = 2.1 mm
for a tall person (plate thickness of 1.9 mm for a small person); the angular measure of the
plate cross-section arc—2α = 60◦; plate length lp = 110 mm for a tall person (plate length of
80 mm for a small person).

Globally, two cases of loading the fibula bone by tightening the fixing tightrope are
studied: the fibula for a tall person; fibula for a small person. In both cases, variants of the
broken and intact fibula are studied. Initially, the following geometrical parameters are used:

- for a tall person: l = 0.37 m; t = 0.26 m; a = 0.31 m; b = 0.06 m; D = 0.011 m; d = 0.004 m;
s = 0.32 m;

- for a small person: l = 0.26 m; t = 0.14 m; a = 0.21 m; b = 0.05 m; D = 0.008 m; d = 0.0035
m; s = 0.22 m;

3.1. Numerical Assessment of Intact Fibula Displacements Influenced by Localized Transverse Loading

Before the procedure for assessing the displacements of an intact fibula bone influenced
by a localized transverse loading, the compliance with the condition of bone tissue strength
should be checked. This condition is that the maximum stresses σ(x) that occur in the bone
tissue in response to the tightrope tightening do not exceed the permissible stresses [σ] in
any of the sections:

σ(x) =
P
l bx− P(x− a) · H(x− a)

0.1 D3
(

1− [d/D]4
) ≤ [σ]. (20)

where [σ] = 0.5 σst. The analysis of Equation (20) makes it possible to assess the safe
range of changes in the transverse loading P in terms of ensuring the bone strength.
Figure 5 shows the distribution of maximum stresses along the bone length (the solid line
represents the result for a tall person, and the dotted line for a small person). The maximum
permissible stresses 62.5 MPa are achieved at a load of P = 75 N for a tall person and at a
load of P = 160 N for a small person. Changing the tightrope location place will affect the
permissible tightening force value. The closer the tightrope insertion site to the bone edge,
the greater the tightening force the bone can withstand. The analysis of Equations (4)–(6) is
graphically represented in Figure 6.

Figure 6b shows the distribution of fibula bone deflections. The minus sign preceding
the deflection numerical values indicates that deflections occur in the direction opposite to
the positive direction of the axis w (see Figure 2b). Deflections along the bone change non-
monotonically, and there are extremes that correspond to zero values of the rotation angles
of the cross-sections. The maximum bone deflection values are: for a tall person—6.4 mm;
for a small person—4.5 mm.

3.2. Numerical Assessment of Broken Fibula Deflections, Which Is Fixed with an Extracortical Plate

The object of numerical analysis is the deformed state of the “fibula–extracortical
titanium plate” composition under the action of the fixing tightrope tightening force
(Figure 2c), taking into account the damage to the fibula tissues (rupture).
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Figure 6. Distribution of displacements along an intact fibula: (a) rotation angles of cross-sections;
(b) bone deflections; 1—the tightrope tightening force for a tall person is P = 160 N; 2—the tightrope
tightening force for a small person is P = 75 N.

Having analyzed Equations (13)–(15) and (19), we determined a graphical dependence
of the damaged bone deflections on the value of the fixing tightrope tightening force
(Figure 7). By gradually increasing the value of the tightrope tightening force, we control
that the maximum bone deflection does not exceed the permissible value [
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Figure 7. Deflections of the broken fibula, fixed with an extracortical plate: (a) the permissible value
of tightrope tightening force for a tall person is [P] = 66 N; (b) the permissible value of tightrope
tightening force for a small person is [P] = 28 N.

The influence of the fixing plate geometrical parameters on the permissible value of
the tightrope tightening force is of great interest (Figure 8).
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It can be seen that an increase in the length, thickness, and angular measure of the
plate cross-section arc leads to an increase in [P]. Analysis of the graphical dependences
presented in Figure 8 makes it possible to observe the change in the gradient of such growth.
Analytical assessments of the influence of the plate physical–geometrical parameters on the
permissible value of the tightrope tightening force can be performed using Equation (21).

The vast majority of innovations proposed for implementation in the field of trauma-
tology and orthopedics are successfully realized into practice due to a multidisciplinary
approach to solving problems.
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In the papers [69–72], the fixation of a broken shin bone using an extracortical plates
of various configurations has been studied, and the distribution of mechanical stresses in
the bone and plate has been determined. In work [73], the fatigue strength of steel and
titanium extracortical plates for a fibula was found. However, these studies do not take
into account the elastic fixation of the tibiofibular syndesmosis with a tightrope.

The problem set in this research is studied in terms of practical orthopedics, technology
development, biomechanics and mechanics of deformable solids.

One of the frequent complications of broken shin bones is damage to the tibiofibu-
lar syndesmosis. In such injuries, the restoration of the distal tibiofibular joint should
be carried out taking into account the need to maintain a sufficient range of motion to
prevent disturbances in the biomechanics of the supracalcaneal–shin joint. At present, it
is considered necessary to perform tibiofibular syndesmosis fixation even if it is partially
damaged. The device for restoring the tibiofibular syndesmosis should optimally combine
fixation stability while maintaining mobility in the considered site of joining.

In previous studies, the authors of this paper proposed a method for broken shin metal
osteosynthesis with rupture of the tibiofibular syndesmosis, which combines the stability of
fibula fixation and does not limit the elastic properties of the tibiofibular syndesmosis [74].
In this study, this method has further been developed. In general, it includes stable fixation
of the fibula with an extracortical fixator metal plate and elastic fixation of the syndesmosis
with a tightrope on the fixation devices of the Endobutton class.

The choice of the tightrope tightening force value for the effective fixation of tibiofibu-
lar syndesmosis during extracortical osteomeatal synthesis of the broken fibula has been
substantiated. Efficient fixation means the following:

- the tightening force is sufficient for reliable fixation of the distal fibula syndesmosis;
- the tightening force is such that the tightrope material works within the limits of

elasticity and the fixation is actually elastic;
- the fibula displacements, caused by the tightrope tightening force, do not exceed the

permissible values.

The permissible displacement value has been chosen from the conditions for main-
taining the geometrically correct shape of the bone after rupture healing. In the case of
exceeding the permissible displacement values, excessive opening of the rupture edges,
displacement of bone fragments, etc., may occur.

At the first stage of research, the behavior of an intact fibula bone under the action of
a local transverse loading has been assessed. The value of stresses that occur in the bone
tissue in response to the tightrope tightening has been determined. The angular and linear
displacements of the bone that occur under the action of the ultimate loading, which are
safe in terms of fulfilling the bone strength condition, have been calculated.

At the second stage of research, an analytical model of the broken fibula, which is
blocked with an extracortical fixator metal plate and is elastically fixed with a tightrope,
has been developed. At this stage, the research object is the stress–strain state of the
“broken fibula–extracortical titanium plate” composition under the action of tightening the
fixing elastic tightrope. The main research result is an analytical dependence that makes it
possible to determine the permissible tightrope tightening force for elastic fixation of the
tibiofibular syndesmosis. Having used the obtained expression, Equation (21), and taking
into account (8) and (9), a program with a simple user interface for entering input data can
be developed for practical application. When entering data, the user only needs to enter the
article number of the plate selected for extracortical osteosynthesis. Then, using the results
of X-ray examination in standard projections (or the results of computed tomography or
MRI), it is possible to select from a drop-down list the geometrical parameters for a fibula,
as well as the coordinates of the rupture site and the coordinates of the tightrope insertion.
At the output, the user can obtain a permissible tightrope tightening force.

By using the rational tightrope tightening force with stable–elastic fixation of the
broken shin, it is possible to reduce the time before the start of loading on the injured
extremity and to accelerate the functional static and dynamic recovery of the patient.
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4. Conclusions

In this paper, a mechanical and mathematical model of the broken fibula, which is
blocked with an extracortical fixator metal plate and is elastically fixed with a tightrope, has
been developed. This model makes it possible to analytically assess the strength and stiffness
of a broken fibula bone with a fixing orthopedic device under the action of localized loading.

For the first time, an analytical dependence (21) has been obtained that makes it
possible to determine the permissible tightrope tightening force [P] for elastic fixation of the
tibiofibular syndesmosis. The influence of the extracortical plate geometrical parameters
on the permissible value of the tightrope tightening force has been analyzed. It has been
determined that an increase in the length, thickness and angular measure of the plate
cross-section arc leads to an increase in [P].

Thus, based on the conducted research, an engineering method has been obtained
for determining the permissible value of the polymer tightrope tightening force for effec-
tive fixation of the tibiofibular syndesmosis. Numerical testing of the results on specific
examples demonstrates the possibilities of using the proposed method.
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