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Abstract: The majority of modern object detectors rely on a set of pre-defined anchor boxes, which
enhances detection performance dramatically. Nevertheless, the pre-defined anchor strategy suffers
some drawbacks, especially the complex hyper-parameters of anchors, seriously affecting detection
performance. In this paper, we propose a feature-guided anchor generation method named dynamic
anchor. Dynamic anchor mainly includes two structures: the anchor generator and the feature
enhancement module. The anchor generator leverages semantic features to predict optimized anchor
shapes at the locations where the objects are likely to exist in the feature maps; by converting the
predicted shape maps into location offsets, the feature enhancement module uses the high-quality
anchors to improve detection performance. Compared with the hand-designed anchor scheme,
dynamic anchor discards all pre-defined boxes and avoids complex hyper-parameters. In addition,
only one anchor box is predicted for each location, which dramatically reduces calculation. With
ResNet-50 and ResNet-101 as the backbone of the one-stage detector RetinaNet, dynamic anchor
achieved 2.1 AP and 1.0 AP gains, respectively. The proposed dynamic anchor strategy can be easily
integrated into the anchor-based detectors to replace the traditional pre-defined anchor scheme.

Keywords: object detector; anchor generation strategy; feature enhancement; RetinaNet

1. Introduction

As a fundamental and challenging branch of computer vision, object detection aims to
predict a set of boxes with categories for all instance in an image [1–3]. The pre-existing
domain-specific image object detectors can be divided into two categories: one is anchor-
based detectors, such as Faster R-CNN [4], YOLOv2 [5], YOLOv3 [6], SSD [7], RetinaNet [8],
etc.; and the other is anchor-free detectors, including YOLOv1 [9], DenseBox [10], Unit-
box [11], CornerNet [12], FSAF [13], CenterNet [14], FoveaBox [15], etc.

Anchor-based detectors usually tile a set of pre-defined anchors on the image, set
as reference boxes for all objects. The scales and aspect ratios of anchors are obtained by
clustering or manual design for a specific dataset. The detectors first assign anchors to
different ground-truth bounding boxes based on the traditional intersection-over-union
(IoU) sample selection strategy in training, followed by predicting the category and refining
the coordinates of these anchors one or several times. The detectors decode regression
offsets with corresponding anchors during testing and produce refined anchors as detection
results. The anchor-based detectors still achieve state-of-the-art detection performance at
this time.

As mentioned in previous works [16–18], the pre-defined anchor strategy has some
flaws: (1) the anchor boxes involve a considerable number of calculations, such as cal-
culating IoU scores with ground-truth boxes; (2) hyper-parameters, including the scales,
aspect ratios and number of anchors, are related to the dataset. Hyper-parameters also
need to be redesigned for different tasks, which limits the generalization ability of the
algorithm. Meanwhile, these hyper-parameters severely affect the detector’s performance;
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(3) as anchors’ scales and aspect ratios are fixed, detectors encounter difficulties when
detecting objects with significant shape variations.

To mitigate the above problems of the pre-defined anchor scheme, we propose a more
straightforward and more effective method to generate anchor boxes. Our approach is
inspired by the fact that anchor-based detectors usually use an IoU threshold to select the
positive anchors. As shown in Figure 1, we show a group of anchor boxes. For each point
on the feature map, the pre-defined anchor strategy sets three sizes of anchor boxes, and the
aspect ratios of anchors are also set to three types, including 1:1, 1:2, and 2:1. Therefore, nine
anchor boxes are placed on each feature point. For an image with a size of 608 × 608, the
number of pre-defined anchors has reached an amazing 69K. In the training, by setting the
threshold (usually 0.4 and 0.5) and calculating the intersection-over-union scores between
anchor boxes and ground-truth boxes, we assign anchors to each ground-truth box. Most of
the anchors will not match the ground-truth box, as their IoU scores are lower than 0.4, as
shown in Figure 1c. Then, a large number of negative anchors participate in classification
loss calculation, which will cause a serious imbalance between the positive and negative
samples. In the heads of detectors, the model will regress the offsets of the matched anchor
box and the ground-truth box, and anchors with higher scores are easier to regress and
obtain more accurate predictions. Therefore, improving the IoU scores of the anchor boxes
can obtain more positive candidate boxes and lead to more accessible box regression. At
the same time, reducing the number of anchor boxes is conducive to improving reasoning
speed and reducing the requirements of computing resources.
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Figure 1. This is the schematic diagram of a set of pre-defined anchor boxes. There are nine anchors
with different scales and aspect ratios. The red box represents the anchors and the blue box represents
the ground-truth box.

As the optimal anchor box of an object is related to its features, the detectors attempt
to predict the shapes of anchor boxes with feature maps. According to the above analysis,
our method prepares anchor boxes in two steps: assigning the ground-truth boxes to
different feature levels and selecting positive locations in the feature maps for anchor
shape predictions; and determining the shape targets of the anchor boxes at different
positions, with the anchor boxes achieving the maximum IoU scores with the ground-
truth boxes. After obtaining a set of high-quality predicted anchor boxes, we propose the
feature enhancement module to enhance the semantic features of the objects and develop
detection performance.

We implement the dynamic anchor on RetinaNet (DA-RetinaNet) with the anchor
generator and the feature enhancement module. The anchor generator uses the feature
maps from the feature pyramid (FPN [19]) to predict the optimal anchor shapes without
any pre-defined boxes. Therefore, DA-RetinaNet avoids all hyper-parameters of the anchor
boxes. In addition, as the scales and aspect ratios of the anchor boxes are learnable rather
than fixed, the detector makes it easier to handle tall or wide objects. In the experiments,
the predicted anchors as the detection results achieved 26.5% Average Precision (AP) on
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COCO2017 minival, proving the effectiveness of our scheme. The proposed dynamic
anchor can lead to significant improvements on the anchor-based detectors. On COCO test-
dev [20], DA-RetinaNet improved AP by 2.1% while using ResNet-50 [21] as the backbone,
and DA-RetinaNet achieved 40% AP with ResNet-101, outperforming the baseline and
guided anchoring [22]. The main contributions of this paper can be summarized as follow:

• We propose an alternative anchor strategy (dynamic anchor) to automatically generate
anchor boxes without any hyper-parameters. Compared with the pre-defined anchor
scheme, dynamic anchor would generate anchor boxes that are specific to the objects
and avoid careful parameter tuning;

• We propose a feature enhancement module, which takes advantage of the high IoU
scores of the predicted anchors. The module enables the network to focus on the
region of anchors and extract more precise semantic features;

• We propose a quality branch, which is used to predict the quality scores of the predicted
anchors. By investigating the influence of the anchor boxes with different quality,
the scores are used to repress the low-quality anchors. The code will be available at
https://github.com/LX-SZY/Dynamic-Anchor (accessed on 3 March 2022).

2. Related Work

Anchor-based detectors: Faster R-CNN [4] first demonstrated the method of em-
ploying anchor boxes to detect objects, inspired by the traditional sliding-window and
proposal-based detectors. After that, the anchor boxes with fixed scales and aspect ratios
were widely used in modern object detectors. The anchor boxes are regarded as refer-
ence boxes or proposal boxes in single-stage detectors [5,6,8,23–25]. SSD [7] utilizes the
feature maps from multi-layers to detect objects with different scales. YOLOv2 [5] ap-
plies the anchors for classification and box regression to achieve better performance than
YOLOv1 [9]. RetinaNet [8] proposes focal loss to mitigate the classification imbalance
problem. Compared with single-stage detectors, two-stage or multi-stage detectors [4,26]
usually implement the Region Proposal Network (RPN) to generate regions of interests
(RoIs). Then, RoI Pooling and RoI Align layers are used to extract aligned features of
the RoI. In addition, several detectors [24,27,28] adopt a cascade layer to refine detection
bounding boxes step by step.

Refined anchor-based detectors: In recent years, a large number of works have aimed
to improve the pre-defined anchor strategy. For the anchor assignment strategy, ATSS [17]
acquires the IoU scores of the anchor boxes near the ground-truth box and calculates
the mean and variance to determine the IoU threshold of each bounding box adaptively.
PAA [29] separates the anchors into positive and negative samples for the ground-truth
boxes according to the learning status of the model. For the anchor generation strategy,
MetaAnchor [30] proposes an anchor function to generate anchor boxes from the arbitrary
customized prior boxes dynamically. Guided Anchor [22] refines basic boxes with the
shape prediction branch Based on the pre-defined anchor boxes.

3. Dynamic Anchor

As shown in Figure 2, this section first establishes an optimization equation and
proposes an anchor generator for predicting the optimal anchor shape for each location.
Next, we show the feature enhancement module, which utilizes the predicted anchors
to improve detection performance. Finally, we present the quality branch, which helps
suppress the low-quality anchor boxes.

https://github.com/LX-SZY/Dynamic-Anchor
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Figure 2. Illustration of our framework. In dynamic anchor, we employ the anchor generator, a fully
convolutional branch to predict the best anchor shape for each location in the feature maps. Then the
feature enhancement module is used to enhance feature expression. Finally, we propose the quality
branch to suppress low-quality anchors.

3.1. Anchor Generator
3.1.1. Anchor Shape Targets

As shown in Figure 3a, the pre-defined anchor box B = (x, y, w, h) is assigned as a posi-
tive sample for the ground-truth box GT =

(
xgt, ygt, wgt, hgt

)
The distances from the central

location (x, y) to the four sides of GT are l, t, r, and b, respectively. As the width and height of
B are empiric values, we believe that there is an anchor box B∗ = (x, y, w∗, h∗) with the same
center (x, y) in theory, and the box B∗ satisfies the condition: IoU(B∗, GT) > IoU(B, GT).
IoU means calculating the intersection over the union of two rectangle boxes, as:

IoU(box1, box2) =
box1∩ box2
box1∪ box2

(1)
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Figure 3. (a) The red box and the black box represent the ground-truth box
(

xgt, ygt, wgt, hgt
)

and the
corresponding pre-defined anchor (x, y, w, h), respectively. (xgt, ygt) is the coordinate of the center
point of the ground-truth box. wgt and hgt represent the width and height of the of the ground-truth
box, respectively. l, t, r and b are the distances from the location (x, y) to the four sides of ground-truth
box. The width wgt and height hgt are calculated by wgt = l + r and hgt = t + b; (b) The yellow box
(x, y, 2r, 2b) represents the best anchor box of box

(
xgt, ygt, wgt, hgt

)
.
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Therefore, the critical issue is to determine the values of w∗ and h∗, which can lead
to the highest IoU score with the ground-truth box GT. The optimization equation is
established as follows:

max : IoU
[
(x, y, w∗, h∗),

(
xgt, ygt, wgt, hgt

)]
s.t.wgt ≤ w∗ ≤ 2r (2)

hgt ≤ h∗ ≤ 2b

where w∗ and h∗ are variables to be optimized. To maintain the consistency of the shape
targets, the restriction conditions are set to wgt ≤ w∗ and hgt ≤ h∗. In fact, if we set 0 ≤ w∗

and 0 ≤ h∗, we will obtain two types of anchor box solutions. One is smaller than the
ground-truth box, and the other is larger than the ground-truth box. Since the small anchor
box is not conducive to subsequent feature enhancement, the limiting condition is set to
wgt ≤ w∗ and hgt ≤ h∗. By transforming Equation (2) into the form of an optimization
equation, we obtain Equation (3):

min f (w∗, h∗)
= [w∗·h∗ + wgt·hgt − (w∗/2 + l)·(h∗/2 + t)]/[(w∗/2 + l)·(h∗/2 + t)]

s.t.wgt − w∗ ≤ 0

w∗ − 2r ≤ 0 (3)

hgt − h∗ ≤ 0
h∗ − 2b ≤ 0

Assuming that there are optimal solutions to Equation (3), and there are parameters
defined as, λ1, λ2, λ3, λ4, satisfying the following KKT conditions:

[
h∗·(w∗/2 + l)− 1

2
(
w∗·h∗ + wgt·hgt

)]
/
[
(w∗/2 + l)2·(h∗/2 + t)

]
+ λ2 − λ1 = 0[

w∗·(h∗/2 + t)− 1
2
(
w∗·h∗ + wgt·hgt

)]
/
[
(w∗/2 + l)·(h∗/2 + t)2

]
+ λ4 − λ3 = 0

λ1·
(
wgt − w

)
= 0

λ2·(w− 2r) = 0
λ3·
(
hgt − h

)
= 0

λ4·(h− 2b) = 0
λi ≥ 0 i = 1, 2, 3, 4

(4)

By solving Equation (4), we obtain five sets of solutions, both feasible and infeasible.
The solutions are as follows:

Feasible solutions:

Solution 1 :


w∗ = wgt·hgt/2t
h∗ = wgt·hgt/2l

λ1 = λ2 = λ3 = λ4 = 0
(5)

Solution 2 :


w∗ = 2r
h∗ = 2b

λ1 = λ3 = 0
λ2 = (wgt·hgt − 4b·l)/

(
2·wgt

2·hgt
)

λ4 = (wgt·hgt − 4r·t)/
(
2·wgt·hgt

2)
(6)

Solution 3 :



w∗ = wgt
h∗ = hgt

λ2 = λ4 = 0
λ1 = hgt·

(
2l − wgt

)
/(
(
hgt + 2t

)
·
(
wgt/2 + l

)2
)

λ2 = wgt·
(
2t− hgt

)
/(
(
wgt + 2l

)
·
(
hgt/2 + t

)2
)

(7)
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Infeasible Solutions:

Solution 4 :


w∗ = 2r
h∗ = hgt

λ1 = λ4 = 0
λ2 = hgt·

(
2r− wgt

)
/(
(
hgt + 2t

)
·wgt

2)

λ3 =
(
2rt− wgt·hgt/2

)
/(wgt·

(
hgt/2 + t

)2
)

(8)

Solution 5 :


w∗ = wgt
h∗ = 2b

λ2 = λ3 = 0
λ1 =

(
2bl − wgt·hgt/2

)
/(hgt·

(
wgt/2 + l

)2
)

λ4 = wgt·
(
2b− hgt

)
/(
(
wgt + 2l

)
·hgt

2)

(9)

We remove the solutions that do not satisfy the non-negativity condition and finally
obtain three local optimal solutions:

(w∗, h∗) ∈
{(

wgt·hgt/2t, wgt·hgt/2l
)
, (2r, 2b),

(
wgt, hgt

)}
(10)

Solution 1 firstly involves the ground-truth box
(
wgt, hgt

)
and another two parameters

(t, l), which increases the difficulty of network prediction. In addition, the division opera-
tion will lose accuracy, so we do not adopt solution 1 as the optimal anchor box solution. For
solution 3, for all feature points falling in the ground-truth box, their corresponding optimal
prediction anchor frame are the same, which is obviously unreasonable. Besides, Guided
Anchor uses

(
wgt, hgt

)
as the prediction target of the anchor box, and in the subsequent

performance comparison, dynamic anchor with (2r, 2b) as the prediction target is superior
to Guided Anchor. Finally, we chose solution 2 (2r, 2b) as the anchor shape target. The
general solution is w∗ = 2×max(t, b) and h∗ = 2×max(l, r). As shown in Figure 3b, the
best anchor box (x, y, 2r, 2b) completely surrounds the ground-truth box

(
xgt, ygt, wgt, hgt

)
.

Under the condition that the predicted anchors are accurate, it can be considered that the
objects mainly exist in the region of the anchor boxes. Later, we use the predicted anchors
for feature enhancement to improve the feature extraction ability of the network.

3.1.2. Anchor Shape Prediction

As shown in Figure 2, the anchor generator is composed of a full convolutional
network. Given the feature map Pi from the FPN, the generator will predict the optimal
shape (w, h) for each location, which is calculated by Equation (2). Similar to the pre-defined
anchor strategy, the generator does not predict the center coordinates of the anchors, but
takes the location coordinates on the feature maps as the center so as to keep the alignment
between the anchor boxes and the anchor features.

In training, the longest side of the input image is up to 1333; since the anchor box
is smaller than the image size, the numerical range of the shape targets is approximately
(0, 1333), which will lead to unstable prediction results and loss explosion. Therefore, we
adopt the following normalization transformation:

dw =
w

rangei
, dh =

h
rangei

(11)

where rangei is the Maximum regression distance in Pi and was set to {64, 128, 256, 512, 1024}
in our experiments. With normalization, the output range becomes (0, 1.3), which makes
the predictions more stable. In training and testing, the generator will output a two-channel
map that includes the value of w′ and h′, and then (w′, h′) will be mapped to (w, h) by
Equation (11).

Significantly, the previous methods [22,30] always prepare anchors based on initial
boxes. Our design does not depend on any pre-defined boxes and avoids hyper-parameters
related to the anchors. In addition, the anchor generator predicts only one anchor for each
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location, but the pre-defined anchor strategy will place multiple anchors. For example, the
RetinaNet tiles nine anchor boxes at each location. Our approach will reduce the number
of anchors by 89%, which alleviates the classification imbalance.

3.2. Feature Enhancement Module

With the generator, we obtained a set of learnable anchor boxes. These anchors not
only have the largest IoU score, but also completely surround the ground-truth boxes in
the image. We took the anchor shapes as priori information to guide and extract the object
features within the scope of the anchors. DCN [31] uses a parallel convolution network to
learn the offsets, which makes the rectangular convolution kernel offset at the sampling
points of the input feature map, so as to extract the features of the region of interest. As
shown in Figure 4, we apply DCN to the feature enhancement module, as:

o f f set_mapi = conv(anchor_shapei) (12)

P′i = DCN(o f f set_mapi, Pi) (13)

where anchor_shapei is the output of the anchor generator, Pi is a feature map from the FPN.
We first adopt a 1 × 1 standard convolution to convert the anchor shape of each location
into an offset, and obtain an offset map o f f set_mapi. Then, the original feature map Pi and
the offset map o f f set_mapi are fed into the deformable convolution DCN to extract the
features at the offsets and, finally, the enhanced feature map P′i is obtained.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 18 
 

where 𝑟𝑎𝑛𝑔𝑒  is the Maximum regression distance in 𝑃  and was set to 64,128,256,512,1024  in our experiments. With normalization, the output range be-
comes (0,1.3), which makes the predictions more stable. In training and testing, the gen-
erator will output a two-channel map that includes the value of 𝑤  and ℎ , and then (𝑤 , ℎ ) will be mapped to (𝑤, ℎ) by Equation (11). 

Significantly, the previous methods [22,30] always prepare anchors based on initial 
boxes. Our design does not depend on any pre-defined boxes and avoids hyper-parame-
ters related to the anchors. In addition, the anchor generator predicts only one anchor for 
each location, but the pre-defined anchor strategy will place multiple anchors. For exam-
ple, the RetinaNet tiles nine anchor boxes at each location. Our approach will reduce the 
number of anchors by 89%, which alleviates the classification imbalance. 

3.2. Feature Enhancement Module 
With the generator, we obtained a set of learnable anchor boxes. These anchors not 

only have the largest IoU score, but also completely surround the ground-truth boxes in 
the image. We took the anchor shapes as priori information to guide and extract the object 
features within the scope of the anchors. DCN [31] uses a parallel convolution network to 
learn the offsets, which makes the rectangular convolution kernel offset at the sampling 
points of the input feature map, so as to extract the features of the region of interest. As 
shown in Figure 4, we apply DCN to the feature enhancement module, as: 𝑜𝑓𝑓𝑠𝑒𝑡_𝑚𝑎𝑝 = conv(𝑎𝑛𝑐ℎ𝑜𝑟_𝑠ℎ𝑎𝑝𝑒 ) (12)𝑃 = 𝐷𝐶𝑁(𝑜𝑓𝑓𝑠𝑒𝑡_𝑚𝑎𝑝 , 𝑃 ) (13)

where 𝑎𝑛𝑐ℎ𝑜𝑟_𝑠ℎ𝑎𝑝𝑒  is the output of the anchor generator, 𝑃  is a feature map from the 
FPN. We first adopt a 1 × 1 standard convolution to convert the anchor shape of each 
location into an offset, and obtain an offset map 𝑜𝑓𝑓𝑠𝑒𝑡_𝑚𝑎𝑝 . Then, the original feature 
map Pi and the offset map 𝑜𝑓𝑓𝑠𝑒𝑡_𝑚𝑎𝑝  are fed into the deformable convolution DCN to 
extract the features at the offsets and, finally, the enhanced feature map 𝑃  is obtained. 

 
Figure 4. Illustration of the feature enhancement module. Figure 4. Illustration of the feature enhancement module.

3.3. Quality Branch

The detectors usually assign anchors to the ground-truth boxes based on the maximum
IoU criterion, which means that an anchor with a higher IoU score is more important. The
locations near the bounding box center will produce high-quality anchors in the feature
maps, while those away from the center will produce low-quality anchors. However, the
loss weights of all predicted anchors are equal when calculating the anchor regression loss,
which is unreasonable. To suppress the low-quality anchors, we issued an effective strategy.
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Specifically, we added a branch to predict the quality of the predicted anchors in parallel
with the regression branch.

As shown in Figure 5, the prediction head of the network is composed of three con-
volution branches to complete the prediction tasks of category, coordinate, and quality,
respectively. The decoupling prediction structure greatly reduces the difficulty of classifi-
cation and regression, and is conducive to parameter optimization. At the same time, in
order to improve the reasoning speed, each branch contains only one convolution opera-
tion, which significantly reduces the amount of operation. For the input feature map, the
prediction head will output three prediction matrices, including Class, Object, and Quality.
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Given a ground-truth box gti =
(
xgt, ygt, wgt, hgt

)
and its corresponding anchor box

anchori = (x, y, w, h), the quality target is defined as:

quality(gti, anchori) =
|gti ∩ anchori|
|gti ∪ anchori|

(14)

At the training stage, the quality is trained with the binary cross entropy (BCE) loss,
and the quality target is used as the weight of anchor loss. The final confidence score is
computed by multiplying the classification score with the corresponding predicted quality
in testing. Therefore, the quality can reduce the scores of the low-quality anchors. By
the non-maximum suppression (NMS) [32] process, the most low-quality predicted boxes
might be filtered out, improving performance.

3.4. Model Train
3.4.1. Anchor with FPN

To detect objects on multi-level feature maps, we need to predict different sizes of
anchors on different levels of feature maps. We use five levels of feature maps defined
as P1, P2, P3, P4, and P5, and strides of 8, 16, 32, 64, and 128, respectively. The anchor-
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based detectors usually design the sizes of anchors according to the level of the feature
map. Similarly, we directly limit the anchor shape regression range for each level. More
specifically, we set a set of parameters R0, R1, R2, R3, R4 and R5, whose values are 0, 64,
128, 256, 512, and ∞, respectively. Ri represents the maximum regression distance of map
Pi. We first calculate shape regression targets w∗ and h∗ for each location on all feature
maps. Then, if a location satisfies 2Ri−1 ≤ max(w∗, h∗) ≤ 2Ri, it is considered as a positive
sample and the targets w∗ and h∗ will be regress on Pi. Otherwise the location is ignored.

X = x× si +
si
2

, Y = y× si +
si
2

(15)

For each location (x, y) on the feature map Pi, we use Equation (8) to map it back to the
input image, and the mapped location (X, Y) is close enough to the center of the receptive
field of the location (x, y). The location (x, y) is set as a positive sample if it falls into any
ground-truth box and the shape target is obtained by Equation (2). Otherwise the position
(x, y) is a negative sample. When location (x, y) falls into more than one ground-truth
boxes, we choose the box with smaller area.

3.4.2. Loss Function

The proposed Dynamic Anchor is easy to optimize in an end-to-end way, and multi-
task loss is used for joint optimization during training. Besides classification loss and
regression loss, we also introduce anchor loss and quality loss. The classification loss and
regression loss are similar to RetinaNet—we use focal loss and L1 loss, respectively—and
both are normalized by the objects inside the batch. We define the training loss function
as follows:

L
(
cx,y, bx,y, qx,y, ax,y

)
= λ1Lcls + λ2Lreg

+ λ3
Nloc

∑
x,y

I
(

l∗x,y

)
Lqly

(
qx,y, q∗x,y

)
+ λ4

Nloc
∑
x,y

I
(

l∗x,y

)
Lan

(
ax,y, a∗x,y

) (16)

Lcls =
1
N ∑−αt(1− pt)

γlog(pt) (17)

Lreg =
1
N ∑

x,y
‖bx,y − b∗x,y‖1 (18)

Lqly = −
[
q∗x,ylog

(
qx,y
)
+
(

1− q∗x,y

)
log
(
1− qx,y

)]
(19)

Lan

(
ax,y, a∗x,y

)
= 1−

∣∣∣ax,y ∩ a∗x,y

∣∣∣∣∣∣ax,y ∪ a∗x,y

∣∣∣ (20)

where λ1, λ2, λ3, λ4 ∈(0, 1) are hyper-parameters and used as loss weights. cx,y, bx,y, qx,y
and ax,y are the predicted category, regression box, quality, and optimal anchor at (x, y) in
the feature map, respectively. “*” represents the label corresponding to the output. Nloc
represents the total number of locations in the feature maps used to predict the optimal
anchor box. Lqly and Lan are quality loss and anchor loss. In the experiments, we use
BCE Loss and IoU Loss [11] as quality loss and anchor loss, and both are averaged by the
number of the positive locations. I

(
l∗x,y

)
represents an indicator function. If the predicted

anchor located in (x, y) is a positive sample and assigned to a ground-truth box, I
(

l∗x,y

)
takes 1. Otherwise, the indicator takes 0. |.|means “area”, and the union and intersection
of the box coordinates are used as shorthand for the boxes themselves. The areas of unions
or intersections are computed by min/max of the linear functions of ax,y and a∗x,y, which
makes the loss sufficiently well-behaved for stochastic gradients.
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4. Experiments
4.1. Implementation Details

Dataset: We conducted experiments on the large-scale detection benchmark
COCO2017 [20], which contains more than 200,000 images and 80 object categories, in-
cluding person, bicycle, car, motorbike, airplane, bus, train, truck, boat, traffic light, fire
hydrant, bench, and so on. Some of the images are shown in Figure 6. Our models were
trained on trainval35k (115k images) split and evaluated on minival split (5k images).
Finally, we reported the COCO AP on test-dev split (20k images) by uploading detection
results to the evaluation server. The dataset had the characteristics of rich categories, large
number, diverse scenes, and large scale range, which made high detection performance
very challenging.
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Evaluation Metrics: Following the evaluation protocol in MS COCO [8], we used
the mean average precision(mAP); average precision of small, medium, and large objects
(APS, APM, APL); and average recall of small, medium, and large objects (ARS, ARM, ARL)
metrics to evaluate the results. Specifically, mAP was computed by averaging over all
10 intersection-over-union (IoU) thresholds (i.e., in the range (0.50: 0.95) with the uniform
step size 0.05) of all classes. In MS COCO, the small, medium, and large objects refer
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to these area < 322, 322 < area < 962 and area > 962, respectively. Giga Floating-point
Operations Per Second(GFLOPs) was used to measure the calculating consumption.

Training Details: We used MMDetection [33], a deep learning object detection toolbox,
to implement Dynamic Anchor. We used Resnet-50 [21] as the backbone network for all
experiments, if not otherwise specified. Our network was trained with stochastic gradient
descent (SGD) over 2 RXT 3090 GPUs with a total of 8 images per mini-batch for 12 epochs.
Weight decay and momentum were set as 0.0001 and 0.9. The initial learning rate was
0.005 and reduced by a factor of 10 at epoch 9 and 11. We resized the input images so that the
shorter side was 800 and the longer side less or equal to 1333. We used horizontal flipping
as the only data augmentation method, and the weight pre-trained on ImageNet [34] was
used to initialize the backbone.

4.2. Ablation Study on COCO

Feature Enhancement with DCN: To verify the effectiveness of DCN [31] in the feature
enhancement module, we designed several comparative experiments. We replaced the
DCN with a spatial attention module (SAM) [35]. The SAM converts the shape map into
a single-channel spatial attention map. The spatial attention map is multiplied by the
corresponding feature map from FPN to obtain the output of the feature enhancement
module. To be fair, we also did not use DCN nor direct output the original feature map.
As shown in Table 1, the DCN does help the improvement in detection performance.
Compared with *., DCN increases the APL and ARL by 1.6% and 0.7%, respectively, and
achieves 37.0% AP. Generally, large-scale objects contain richer semantic features. With
DCN, the detector can predict more accurately and improve the performance of large-scale
objects. However, for the small-scale and the medium-scale objects, the shape predictions
may not be accurate. Enhancing feature expression with the anchor shapes will damage
performance slightly. The work [35] utilizes the SAM in the backbone to pay attention to
the regions of the objects, while in the ablation experiment, the application of the SAM in
the head impairs performance.

Table 1. The effects of different modules in our Feature Enhancement. *., SAM, and DCN denote
without operator, spatial attention mechanism, or deformable convolution, respectively. Bold font
indicates the best results.

*. SAM DCN AP AP50 AP75 APS APM APL ARS ARM ARL
√

36.7 53.9 39.8 19.9 42.1 48.6 32.2 59.5 70.6√
36.4 53.4 39.2 19.4 41.8 47.8 32.0 58.9 69.6√
37.0 53.9 40.2 19.1 41.6 50.2 31.9 59.0 71.3

With or Without Quality: As mentioned above, quality was proposed to suppress low-
quality anchor boxes produced by locations far from the center of an object. As shown in
Table 2, the quality branch can boost AR from 52.9% to 54.7% and AP from 36.7% to 37.2%,
improving the detection performance under all metrics. It can be noted that the methods of
suppressing low-quality anchors or predictions are applied in many detectors. For example,
FCOS proposes “center-ness” to suppress low-quality bounding boxes. Compared with
the “center-ness”, quality does not achieve a significant improvement in AP. Reviewing the
decoding of bounding boxes in the DA-RetinaNet, we can conclude that predicted anchors
and regression boxes determine the predictions of the bounding boxes. In training, the
anchor and the box were jointly optimized and dynamically adjusted. The two-time tuning
in the shape prediction stage and the regression stage may make it a good prediction for a
low-quality anchor. In other words, our method is robust to the different qualities of the
predicted anchors.
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Table 2. Ablation study for quality branch on the MS COCO minival set. “None” denote that no
“quality” is used. “Quality” is that using quality predicted from the quality branch. Bold font
indicates the best results.

AP AP50 AP75 AR100 AR300 AR1000

None 36.7 54.3 39.8 52.9 52.9 52.9
Quality 37.2 54.6 40.2 54.7 54.7 54.7

Center Sampling of the Region: In dynamic anchor, a location is considered a positive
sample if it falls into any ground-truth box and its anchor shape target meets the regression
range criterion. We obtain considerable positive samples based on the strategy above,
making prediction difficult. To reduce the number of the positive samples, we used only
the central portion of the ground-truth box as positive samples with the price of one extra
hyper-parameter (sampling ratio). As shown in Table 3, with sampling ratio = 2, center
sampling improves AP from 37.2% to 37.5%. Meanwhile, center sampling reduces the
number of positive anchor boxes, which seriously affects the recall rate of the small-scale
objects, decreasing by 1%.

Table 3. The results of different center sampling ratio on the MS COCO minival set. Bold font
indicates the best results.

Sampling Ratio AP AP50 AP75 APS APM APL ARS ARM ARL

None 37.2 54.4 40.2 20.2 41.6 50.4 33.5 59.0 70.6
1 37.2 54.6 40.2 20.5 42.3 49.5 32.6 59.9 71.4

1.5 37.3 54.8 40.2 20.1 42.1 49.6 33.2 59.6 70.6
2 37.5 54.9 40.5 20.1 42.4 50.7 32.5 59.3 70.8

4.3. Visualizing Dynamic Anchor

We visualized the predicted anchors and the ground-truth boxes on the input images.
As shown in Figure 7, our method successfully produces multiple anchor boxes for objects,
and the predicted anchors have the highest coverages with the corresponding ground-truth
boxes. As shown in Figure 7a, for an image containing dense objects, the pre-defined anchor
strategy generally improves the recall rate by setting anchor boxes intensively to prevent
missing targets. The method proposed in this paper introduces the a priori information
of object shape, constructs the corresponding anchor box according to the features of the
object, and obtains a large number of candidate boxes with high IoU scores. It can not
only maintain a high recall rate, but also reduce the number of anchors on a large scale; In
particular, because the size and shape of the pre-defined anchors are fixed, it is unable to
handle the objects with too small a size or extreme aspect ratio well, and hyper-parameters
needed to be adjusted in the experiment. Our method predicts the appropriate anchors
based on the semantic characteristics of each object, which perfectly avoids the above
problems and has stronger applicability. As shown in Figure 7b, dynamic anchor generates
a large number of anchor boxes for small-scale targets, and the offset distances between
these anchor boxes and the ground-truth boxes are very small. These anchor boxes are
very suitable for regression. As shown in Figure 7c, the predicted anchor boxes have
shapes similar to the ground-truth boxes, and the aspect ratio is very large. To evaluate the
quality of all predicted anchors, we treated the predicted anchors as the prediction results.
The detection performance reached a considerable 26.5 AP, proving the effectiveness of
dynamic anchor.
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4.4. Comparison

In this subsection, we show the main results of dynamic anchor. We equipped the
previous state-of-art detector RetinaNet with dynamic anchor and used ResNet-50 and
ResNet-101 as the backbones. To verify the efficiency of our method, we also compared
dynamic anchor with guided anchoring. As presented in Table 4, dynamic anchor with
ResNet-50 and Res-Net101 as the backbone networks achieved an AP of 38.0% and 40.0%
on COCO test-dev 2017, respectively, which outperformed RetinaNet and GA-RetinaNet.
Compared to the baseline and the counterpart, our model achieved 2.4% and 1.2% AP
improvement, and the AP metric of DA-RetinaNet outperformed the other detectors on
all size of objects. DA-RetinaNet also achieved a stable improvement for detection with
Res-Net101, while the APS metric was slightly lower than RetinaNet (21.5% vs. 21.8%). The
improvement of our model comes from medium and large object detection, which is the
strength of dynamic anchor, as dynamic anchor can generate anchors with the theoretical
maximum IoU scores.

Table 4. The compared results on MS COCO 2017 test-dev. We used AP, AP50, AP75, APS, APM,
APL to evaluate the performance of the three models and counted the floating-point computation
(GFLOPs) of all models.

Method Backbone AP AP50 AP75 APS APM APL GFLOPs

RetinaNet ResNet-50 35.9 55.4 38.8 19.4 38.9 46.5 201.53
GA-RetinaNet ResNet-50 37.1 56.9 40.0 20.1 40.1 48.0 197.43

DA-RetinaNet(ours) ResNet-50 38.0 55.5 41.2 20.1 41.8 48.5 141.79
RetinaNet ResNet-101 39.1 59.1 42.3 21.8 42.7 50.2 277.6

GA-RetinaNet ResNet-101 38.4 58.5 41.3 21.0 41.1 49.7 273.5
DA-RetinaNet(ours) ResNet-101 40.0 57.9 43.5 21.5 44.1 51.2 217.86

Based on semantic features, Guided Anchor predicts the locations where the center
of objects of interest are likely to exist, as well as the scales and aspect ratios at different
locations. In training, Guided Anchor uses IoU scores of the pre-defined anchors and the
ground-truth boxes to determine the positive sample points in the feature maps, and also
sets an initial reference box for each position to regress the anchor of the object. Guided
Anchor employs the pre-defined anchors and the initial reference boxes to predict anchors;
its performance is severely affected by these boxes, which does not avoid the defect of the
pre-defined anchor. Guided Anchor does not break away from the frame of the manual
anchor in the anchor-based detectors. However, our dynamic anchor does not introduce
any pre-defined boxes, and instead achieves better detection performance.

Moreover, compared with RetinaNet and GA-RetinaNet, the DA-RetinaNet shares
the heads between different feature levels and predicts only one anchor box at each point
on the feature map, making the detector more parameter-efficient. In the GFLOPs metric,
our method with ResNet-50 only reached 141.79, which is 29.6% and 28.1% lower than
RetinaNet and GA-RetinaNet, respectively. Similar results were obtained on ResNet-101. To
sum up, sufficient experiments have proved that our method is not only superior to other
methods in detection performance, but also has significant advantages in reasoning speed.

4.5. Visualization Results

The first and fourth row in Figure 8 show a common difficulty in the COCO dataset.
There are overlaps between a large number of objects, which are difficult to distinguish,
such as pedestrians with backpacks and parallel zebras. It can be seen that RetinaNet and
GA-RetinaNet produce numerous redundant and overlapping detection boxes, and these
boxes originate from a large quantity of pre-defined anchor boxes with poor quality, which
are difficult to remove with post-processing. However, our method produces concise and
accurate detection boxes by virtue of an efficient anchor prediction mechanism, avoiding
invalid results.
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In the second row in Figure 8, the person is seriously blocked by the bench, which
requires the model to establish a long-distance information dependence between the head
and feet. Both RetinaNet and GA-RetinaNet recognize the head and foot as two objects. In
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the feature enhancement module, our model extracts the features of anchor regions and
integrates the semantic information of the head and feet to obtain a complete detection
box. The other rows are similar and our algorithm always outperforms other methods in
detecting overlapping targets.

5. Conclusions

In this work, we analyzed the shortcomings of the pre-defined anchor strategy in the
field of object detection and proposed the dynamic anchor to generate anchor boxes by
semantic features. The dynamic anchor does not rely on any pre-defined boxes, avoiding
hyper-parameters related to anchor boxes entirely. To obtain high-quality anchors, we con-
structed the optimization constraint equation and solved it to obtain the optimal solution.
The proposed anchor generator was used to predict the optimal anchor on the feature map.
To suppress the low-quality anchor, the quality branch was designed to predict the IoU
scores of the anchor box, and the scores served as the corresponding loss weight, which
improved the performance significantly.

We implemented dynamic anchor with RetinaNet. With ResNet-50 and ResNet-101 as
a backbone, dynamic anchor made considerable performance improvements on RetinaNet.
Our method is also superior to the peer method, Guided Anchor. Dynamic anchor can be
used to replace the manual anchor strategy for anchor-based detectors.
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