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Abstract: The importance of heavy oil in the world oil market has increased over the past twenty
years as light oil reserves have declined steadily. The high viscosity of this kind of unconventional oil
results in high energy consumption for its transportation, which significantly increases production
costs. A cost-effective solution for the long-distance transport of viscous crudes could be water-
lubricated flow technology. A water ring separates the viscous oil-core from the pipe wall in such a
pipeline. The main challenge in using this kind of lubricated system is the need for a model that can
provide reliable predictions of friction losses. An artificial neural network (ANN) was used in this
study to model pressure losses based on 225 data sets from independent sources. The seven input
variables used in the current ANN model are pipe diameter, average velocity, oil density, oil viscosity,
water density, water viscosity, and water content. The ANN developed using the backpropagation
technique with seven processing neurons or nodes in the hidden layer demonstrated to be the optimal
architecture. A comparison of ANN with other artificial intelligence and parametric techniques
shows the promising precision of the current model. After the model was validated, a sensitivity
analysis determined the relative order of significance of the input parameters. Some of the input
parameters had linear effects, while other parameters had polynomial effects of varying degrees on
the friction losses.

Keywords: water-assisted flow; backpropagation neural network; pressure gradient; friction loss;
modeling; unconventional oil

1. Introduction
1.1. Background

Incompatible biphasic flow often occurs in the petrochemical and oil industries. When
two liquids with different densities touch one another in a horizontal tube, they incline to
be affected by gravitational force. The heaviest phase generally stays below and the lightest
phase flows as a separate layer over the top, creating a stratified flow regime. Controlled
process conditions can also yield a core annular flow (CAF) regime when the difference
in densities of the fluids is not very high. The heavier liquid (usually water) forms a thin
lubricating annulus that sheathes the viscous core so that the core cannot touch the pipe wall.
This is an alternative pipeline transportation technology that is beneficial for highly viscous
fluids like unconventional heavy oils and viscous petrochemicals. The lubricating water
can significantly reduce the requirement of pumping energy when compared to similar
requirements for pumping viscous fluid alone through the pipe. In fact, it is comparable to
the power consumption for pumping only water. A considerable amount of research has
been undertaken to find a reliable method for designing such multiphase pipe flows.
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In practice, sufficient knowledge of pressure gradients or frictional pressure losses in
pipes is needed to develop an energy-efficient transportation system (e.g., to determine the
optimal size of pipes and pumps that can control various flow conditions throughout the
lifetime in the field). Arney et al. [1] introduced a friction loss model for pumping heavy
oils in a lab-scale horizontal pipeline with the application of an idealized CAF technology.
Although this model could predict a large CAF dataset with acceptable precision, it failed to
do so for the self-lubricated flow (SLF) of bitumen froth (which represented a commercial-
scale application of this water-lubricated flow technology). Joseph et al. [2] investigated
the SLF phenomenon to develop their own empirical model based on data generated
from the lab- and pilot-scale experiments. A 35-km long SLF pipeline was designed,
commissioned, and operated based on this model in Athabasca by Syncrude Canada Ltd.
The SLF involved intermittent water lubrication with the oil-rich core frequently touching
the pipe wall. Meanwhile, for CAF, this kind of contact was negligible, and the lubrication
was continuous. Rodriguez et al. [3] applied CAF in a pilot-scale pipeline. Although
proper attention was paid to eliminating wall-fouling, it was a natural consequence of
water lubrication and could not be excluded from the large-scale water-lubricated pipeline
transportation of viscous oils. Based on the data produced from CAF experiments, both with
and without wall-fouling, a new semi-mechanistic two-parameter model was proposed to
assist with friction losses. The model was claimed to perform better than similar models.
However, it failed to provide satisfactory results for the water-assisted flow (WAF) of
unconventional heavy oils [4–6]. WAF refers to large-scale applications of CAF that involve
wall-fouling (Figure 1). It is a commercially applicable mode of the flow technology. One
of the most significant technical challenges facing the industrial application of WAF is
the necessity of a model that can reliably predict frictional pressure losses. Previously
proposed models for various modes of water lubrication are not necessarily applicable
to WAF pipelines. Applications of existing analytical models to different WAF datasets
produce unreliable results, with errors as high as 500% [5]. This is because most of these
models are empirical and were developed using system-specific data. An exception is the
phenomenological model proposed by McKibben et al. [7]. It is probably the best analytical
model for WAF systems. A concise description of the model is included in Section 3.1.

Figure 1. Schematic presentation of water-assisted flow regime [8].

1.2. Soft Computing Approaches

The flexible computing approaches are useful and powerful tools that play an es-
sential part in analyzing and solving problems in various fields related to engineering
and technology. These computational approaches demonstrate superior performance by
defining highly accurate hypothesis functions for approximate solutions when compared
to many published analytical and empirical models [9–11]. Although different computa-
tional models are applied abundantly in the field of multiphase pipeline flow, the literature
contains only a limited number of attempts to apply these soft techniques to model WAF
pressure losses.

Osman and Aggour [12] propose an artificial neural network (ANN) model to estimate
pressure gradients in horizontal and quasi-horizontal multiphase pipes. The model was
constructed and then tested on more than 450 field-derived test data samples. Its accuracy
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was then compared with the available correlations as well as mechanistic models to show
the superiority of the used ANN technique. Similarly, Adhikari and Jindal [13] also
developed an ANN to estimate the pressure gradient losses for the non-Newtonian fluid
food which was passing through a tube. The proposed model was able to predict the
measured values of pressure gradients with an absolute average error of less than 5.44%.
Ozbayoglu and Yuksel [14] used ANN instead of a traditional modeling approach to
investigate the flow types and also the frictional pressure losses of a mixture of two phases
(gas and liquid) flowing within a horizontal ring-shaped conduit. The outcome showed that
the ANN can predict flow patterns with errors of less than ±5% and friction losses with an
accuracy of ±30%. Salgado et al. [15] tried to estimate the volume fractions of triphasic flows
by applying ANN and the nuclear technique. From the three investigated flow regimes of
oil-water-gas (stratified, annular, and homogeneous), the ANN model could adequately
relate the measurements which simulate the MCNP-X aided code that uses volume fraction
for each of the components in the three-phase flow system. Nasseh et al. [16] also used
ANN in genetic algorithms to estimate the pressure gradients in multiple flows under a
Venturi scrubber based on a two-phase ring flow model. Successful implementations such
as those described above strongly indicate that ANN approaches can be extended to other
multiphase flow systems. Dubdub et al., (2020) [17] applied a feed-forward neural network
with a backpropagation technique to model water-lubricated flow of non-conventional
crude. Even though it was a pioneering study, the authors used more than 20 nodes. The
ANN model was complex and vulnerable to overfitting.

Another soft computing approach involves the use of support vector machines (SVMs).
This kind of model is commonly applied to problems related to prediction and classification.
The use of SVMs is prevalent in the medical sciences for the prediction of illnesses and
deficiencies [18]. SVMs can also categorize data into clusters or zones to identify problem
areas. This ability has led to their application for leakage detection and monitoring in
pipe networks [19]. Different SVMs have also been used in combination with ANNs in
previous studies to predict pipe pressure [20]. Recently, Rushd et al., (2021) [21] utilized
SVM along with other ML algorithms including ANN to model the pressure losses in
WAF pipelines. It was a scenario-based exploratory study. Although they found ANN
and SVM to perform better compared to other ML models, the nonlinear nature of the
dataset did not allow those artificial intelligence tools to be pertained with self-reliance.
They emphasized the requirement of further analysis. Following this, our current study
aimed to employ easier and simpler ANN and SVM models for cost-effective solutions in
long-distance transport of viscous crudes which will serve to enhance the water-lubricated
flow technology knowledge area.

To better control the ANN, a trial-and-error process was used to optimize the ANN’s
parameters, e.g., neuron numbers in the respective hidden layer, the rate of exercise, and
the pulse. ANN models are usually preferred because they are inherently more flexible
than traditional analytical models and have historical evidence to fit with experimental
measurements. Based on the success of using ANNs to solve many technical problems, we
attempted to apply these models for modeling pressure gradients in biphasic WAF pipelines.
This study aims to develop a model using soft calculations to accurately determine the
WAF pressure gradients in horizontal pipes under various flow conditions.

2. Dataset

The experimental dataset used in this study consists of 225 samples, which were
collected from Shi [22] and Rushd [8]. They used the data for two independent studies
on WAF. The experiments were conducted using horizontal flowloops located in SRC
and Cranfield University (CU), Cranfield, England. The measured parameters were flow
rate, fluid property, pipe diameter, water fraction, and pressure gradient. PVC and steel
pipes were used at CU and SRC, respectively. It should be noted that, even though PVC
and steel may produce significantly different hydrodynamic roughness, the material of
construction of a WAF pipeline is not likely to have an appreciable impact on the flow
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hydraulics. As mentioned earlier, the inner wall of such a pipeline is naturally coated or
fouled with viscous oil. The hydrodynamic roughness in a WAF pipeline is, thus, controlled
by the wall-coating layer of the oil, rather than the pipe’s material of construction, and the
equivalent sand-grain roughness produced by a layer of viscous oil is dependent on the
flow properties [2–8,22].

A total of 169 samples were used for model training/development, while the remain-
ing 56 samples were used for testing the model, resulting in a ratio of 3:1. The training
and testing samples were chosen randomly from the available data to avoid bias. Eight
parameters were either measured or estimated as part of the wet experiments. Among these
parameters, the pressure gradient was considered as the output parameter. Other variables,
such as pipe diameter, average velocity, respective fluid properties, and the fraction of the
water in the mixture, were used as the input parameters. Some of the basic descriptive
statistics related to the dataset and each experimental parameter are provided in Table 1.

Table 1. Experimental Parameters.

Parameter Value Short Notation

Number of samples 225 N.A.

Pipe diameter (m)

Average: 0.091
Min: 0.026
Max: 0.265

Standard deviation: 0.070

Dia

Average velocity (m/s)

Average: 0.952
Min: 0.107
Max: 2.000

Standard deviation: 0.591

Vel

Oil density (kg/m3)

Average: 921
Min: 871
Max: 987

Standard deviation: 38

ODen

Oil viscosity (Pa.s)

Average: 5.50
Min: 0.16

Max: 28.45
Standard deviation: 6.79

OVisc

Water density (kg/m3)

Average: 995
Min: 985
Max: 999

Standard deviation: 3.43

WDen

Water viscosity (Pa.s) × 10−3

Average: 0.829
Min: 0.496
Max: 1.138

Standard deviation: 0.184

WVisc

Water fraction

Average: 0.370
Min: 0.070
Max: 0.844

Standard deviation: 0.163

Frac

Pressure gradient (kPa/m) *

Average: 1.19
Min: 0.04
Max: 5.37

Standard deviation: 1.26

PressGrad

* Output parameter.

3. Modeling Methods

Three different types of modeling techniques were studied as part of the current
investigation: multivariate linear regression (MLR), SVM-based techniques, and ANN-
based techniques. Among these methods, MLR is a traditional parametric technique, while
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SVM and ANN techniques are non-parametric machine learning (ML) techniques. Besides,
the conventional model proposed by McKibben et al. [7], was also applied to the available
dataset to compare its accuracy with the models of the present study.

3.1. McKibben Model

It was the product of extensive research carried out by the Saskatchewan Research
Council (SRC) (Saskatoon, SK, Canada) on WAF. The experiments were conducted using
flowloops comprised of 25, 100, and 260 mm steel pipes. The thicknesses of the wall-fouling
layers were quantified using a double-pipe heat exchanger and a hot-film probe. The
ranges of oil viscosities and input water fractions were 0.62–91.6 Pa·s and 30–50%. It was
demonstrated that the model could consider the most significant factors, such as inertia,
gravity, water fraction, the additional shear caused by wall-fouling, and viscosity ratio. The
model’s inputs are pipe diameter, average velocity, densities, viscosities, and water fraction.
One of the key factors that was addressed by McKibben et al. [7] was the contribution of
the wall-fouling layer to the effective hydrodynamic roughness of the WAF regime. The
strong performance of the SRC model has been recognized by other investigators, such
as Shi et al. [4] and Rushd et al. [6]. Both of these independent groups of researchers
demonstrated the superiority of the McKibben model over other analytical models in
predicting the WAF pressure losses. Even though it is more accurate, its predictions still
involve up to ±100% error. Probably, the most significant limitation of the model is the
ambiguous and labor-intensive trial and error procedure used to optimize its performance.
It includes a multivariate power-law function for friction factor (f ) with five coefficients,
the values of which were established without any rigorous statistical analysis. The model is
concisely presented with Equation (1), while a detailed description of the model is available
in Shi [22].

∆P
L

(WAF) = f
ρwV2

2D
= 30

(
V√
gD

)−0.5(
0.079
Re0.25

w

)1.3( 16
Reo

)0.32

(Cw)
−1.2

(
ρwV2

D

)
(1)

where, f : equivalent friction factor; Re: Reynolds number; Rew: water equivalent Reynolds
number (Rew = DVρw

µw
); Reo: oil equivalent Reynolds number (Reo =

DVρo
µo

); ∆P/L: pressure

gradient (Pa/m); ρ: density (kg/m3); V: average velocity (m/s); D: pipe’s internal diameter
(m); g: gravitational force (m/s2); Cw: water fraction (-); µ: dynamic viscosity (Pa.s); w:
water; o: oil.

3.2. Multivariate Linear Regression

MLR is a curve-fitting approach that utilizes the criteria of minimizing the ordinary
least square errors. The basic form of the function to predict a variable ‘Y’ can be expressed
as in Equation (2).

Y = a + ∑ bixi (2)

where a is the intercept for the equation, b is the vector of regression coefficients, and x
is the vector of independent variables [23]. It is a statistical technique, hence, selection of
parameters in vector x depends upon their effect on the model. A t-statistic is used for this
selection process [23].

3.3. Support Vector Machine

SVM is a popular supervised machine learning method of AI, particularly in the field of
classification. However, it is also commonly used to predict real-values in regression prob-
lems [24]. This technique works on defining hyperplanes of maximum variation/margin
within the datasets using a kernel function, as shown in Figure 2. The basic equation for
an SVM is similar to that of any regression (as shown in Equation (2)), apart from the
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application of a kernel function in the regression model. Hence, the resulting model takes
the form of Equation (3).

Y = σ · f (x) + b (3)

where σ and b are the weight and constant of the model, and f (x) is the function used to
map the vector of input variables into a higher dimensional feature space. The weights and
constants of the model for each data point are calculated, and the points with statistically
significant coefficients are considered support vectors [25,26]. The distance from the nearest
hyperplane to the nearest expression vector is referred to as a “margin”. The success and
accuracy of SVM lie in maximizing the argin when selecting the hyperplane [27].

Figure 2. Hyperplanes for SVMs.

3.4. Artificial Neural Networks

ANNs have gained a lot of acceptance among researchers due to their generalization
capabilities, especially in prediction problems. They represent a network of multiple
processing units (referred to as neurons), which estimate weights and biases for each input
parameter to minimize the partial least square of error. For each neuron, the weights
and coefficients are calculated for the entire dataset without the restriction of statistical
significance [28]. The weights for neurons depend upon the equations which are chosen as
activation function for the neuron. These neurons serve as parallel processing units and
have the ability to capture unknown complex variations in the output variables. Due to this,
ANNs are used as unsupervised learning algorithms [29]. ANN models can be represented
as networks, as shown in Figure 3.

In the illustration above, Yi is the output for each processing neuron, and an ANN may
contain several neurons. The final output, ‘Y’, is the combination of outputs from all hidden
neurons. The numbers of hidden layers and neurons were not known beforehand. These
were determined by observing the accuracy of predictions for multiple combinations [30].

For the current study, seven neurons arranged in a single hidden layer were identified
to produce most optimum results. To achieve this result, number of neurons in the hidden
layers was changed from 1 to 10 and its effects on MSE for validation dataset were observed,
which is shown in Figure 4. Validation dataset comprises of randomly selected samples
from the available dataset which is used for determining the appropriateness of model
architecture. The model architecture is not selected on the basis of accuracy for training
dataset to ensure that the model can be robustly used for unknown values. It was observed
that MSE with seven neurons produced the optimum results. It should be noted that MSE
is used as the default for determining weights and biases for hidden neurons and this is
the reason it was used for determining optimum number of hidden neurons. This number
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depends upon the complexity and nature of modeling problem and the the trial-and-error
method, as described, is generally used to determine the appropriate number of hidden
neurons [31].

Figure 3. Structure of ANN Process.

Figure 4. Performance of ANN with different number of hidden neurons.

4. Results and Discussions
4.1. Comparative Model Outputs

As mentioned earlier, models using SVM, ANN, and MLR were tested in the current
study to predict pressure gradients (Tables 2–4). The parameters for these models were
fixed as per the judgement of the authors, except for weights and coefficients of SVM and
ANN and the hidden neurons for ANN. Weights and coefficients were calculated as part of
the learning process of the models. Hidden neurons for ANNs were determined on the
basis of trial and error by comparison accuracy attained with a different number of neurons.
Other parameters were fixed because of the fact that optimizing all parameters was not
practically feasible for a single study. For each model, the mean square error (MSE), Mean
Absolute Percent Error (MAPE) and coefficient of determination (R-square) between the
predicted and experimental values were calculated to assess the accuracy of the model.
MSE is an indicator of the magnitude of error, MAPE is a measure relative to the scale
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of model output, and CC denotes the ability of a model to capture the variation in the
trend of data. All parameters were calculated separately for training and test datasets to
evaluate the robustness of the model when used for a new dataset. The comparison of
these parameters is given in Table 5. Due to the volatile nature of MLR models, three-fold
cross-validation was applied and the results shown in Table 5 are the average of the three
trials with different datasets. Table 6 shows the results of each individual trial in terms of
MSE and T-square.

Table 2. SVM Model.

Parameter Value/Description

Kernel type Radial basis

Number of support vectors 83

σ 0.1

B 0.14

Table 3. ANN Model.

Parameter Value/Description

Type MLP

Number of processing neurons 7

Learning algorithm BP–CG

Processing layer activation function Hyperbolic

Output layer activation function Logistic

Table 4. MLR Model.

* Model Parameters Estimate p-Value

Intercept −97.03 0.01

Dia −32.06 0.00

Vel 0.77 0.00

Oden −0.01 0.00

OVisc 0.07 0.00

WDen 0.11 0.00

WVisc −1995.36 0.00
* See Table 1 for notations of parameters.

Weights for support vectors of SVM and neurons of ANN are provided in the Ap-
pendix A. Table A1 in Appendix A provides weights (constants) and coefficients for the
explanatory parameters in each support vector. Table A2 in Appendix A provides the
threshold (constant) and coefficients for explanatory variables in hidden neurons and the
same values for output neurons. It should be noted that the general functions for these
models are given in Equations (2) and (3), and Figure 3. These parameters were obtained
by developing the model using the training dataset while minimizing the error functions.
When the MLR model was applied to the current dataset, the fraction of water had a statisti-
cally insignificant coefficient hence it was not part of that model. The variables for the MLR
model were filtered based on the hypothesis that their coefficients would be statistically
different from ‘zero’ at a probability of 5% (margin of error). The model presented in
Equation (4) includes only the variables that have less than a 5% chance (p-value) of the
coefficient being close to ‘zero.’ According to this MLR model, oil velocity, oil viscosity,
and water density have negative effects on the pressure gradient, while other statistically
significant parameters have positive impacts.
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Table 5. Comparison of Accuracy Parameters.

Accuracy Parameter Model
Dataset

Training Test

MSE (kPa/m)

SVM 0.24 0.28

ANN 0.03 0.04

MLR 0.74 0.66

R-square

SVM 0.83 0.83

ANN 0.98 0.98

MLR 0.61 0.53

MAPE (%)

SVM 61 68

ANN 16 20

MLR 38 59

Table 6. Comparison of Accuracy Parameters for Cross-Validation of MLR.

Accuracy Parameter Model
Dataset

Training Test

MSE (kPa/m)

Trial 1 0.52 0.46

Trial 2 0.55 0.44

Trial 3 0.56 0.40

R-square

Trial 1 0.58 0.56

Trial 2 0.62 0.55

Trial 3 0.61 0.49

MAPE (%)

Trial 1 35 58

Trial 2 39 61

Trial 3 35 59

PressGrad = −97.03 − 32.06(Dia) +0.77(Vel) − 0.01(Oden) + 0.07(OVisc) + 0.11(Wden) − 1995.36(WVisc) (4)

The respective performances of the models developed in this study are presented in
Figures 5–7. The analytical model proposed by McKibben et al. [7] was also applied to the
dataset, and its accuracy measures are also included in the comparison.

Figure 5. Comparison of MSE.
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Figure 6. Comparison of R-square.

Figure 7. Comparison of MAPE.

The comparison of accuracy measures presented in Figures 6 and 7 demonstrates that
the ANN model performs much better than the other models, providing the least MSE
and MAPE, and highest CC. Also, all models have shown negligible differences between
training and test datasets in terms of MSE and CC values. However, the difference in
MAPE was very significant for SVM and MLR while it was very low for ANNs. This
could be an indication of the better robustness of ANN as compared to other models. In
comparison to the soft techniques investigated in the current study, the model used by
McKibben et al. Study [7] does not perform well, although it is most likely better than
other analytical models for the WAF of unconventional oils [4,6,22]. This observation was
confirmed for the training as well as the test datasets. The test dataset was not used for the
development of models in this study hence comparison of their accuracy is deemed fair
with the analytical model that was developed using a different dataset. This finding justifies
the need to employ AI-based models for designing WAF pipeline systems. The analytical
model seems to have inadequate generalization capability, although it was developed based
on an in-depth analysis of the physics. As a result, the application of an analytical model,
such as Equation (1) for designing a WAF system results in a high degree of uncertainty
that is unfavorable to both the economic and technical feasibility of an engineering project.
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4.2. Sensitivity Analysis

As ANNs were shown to be the most accurate model for predicting pressure gradients
in this study, they were used to conduct a sensitivity analysis so that each input variable’s
relationship with the output variable can be identified. Figures 8–13 represent changes
in the pressure gradient for changes in each variable as per the current ANN predictions.
This analysis was performed by applying the ANN model developed in this study with
varying values of one independent variable at a time, while others were kept constant at
their average values. For example, if velocity was observed to affect the pressure gradient,
then all other parameters were fixed at their average values (as shown in Table 1), while
velocity was changed within a predetermined range. This approach for sensitivity analysis
was employed in previous studies as well e.g., [17,32].

Figure 8. Effect of average velocity.

Figure 9. Effect of oil viscosity.
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Figure 10. Effect of water density.

Figure 11. Effect of oil density.

Figure 12. Effect of water viscosity.
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Figure 13. Effect of water fraction.

As shown in Figures 8–14, average velocity and oil viscosity have positive effects on
the pressure gradient. Specifically, increasing the magnitudes of these variables tends to
increase friction losses. The boosting effect of velocity is highly evident in fluid dynamics
studies. It should be mentioned that ∆P/L is proportional to V2 for a single-phase pipe flow.
The impact of oil viscosity is a WAF-specific phenomenon. Higher oil viscosity most likely
increases the degree of wall-fouling, thereby increasing ∆P/L [4,5,7].

Figure 14. Effect of pipe diameter.

Water density and oil density have opposite effects on pressure losses. Varying the
fluid density tends to affect the core eccentricity. Although the effect of eccentricity in WAF
is not a well-studied phenomenon [8], the current study sheds some light on the topic.
Water density seems to have a linear effect, whereas oil density has an inverse influence on
friction losses. Oil density increases the pressure gradient within the lower range, while
the gradient decreases as the density exceed 900 kg/m3. A more practical investigation is
required in this field.
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Water viscosity did not have a significant impact on pressure losses, as its magnitude
was essentially constant (~1 mPa.s). Similar to water viscosity, water fraction was found to
have a negligible effect on friction losses. A detailed analysis of the experimental measure-
ments also demonstrated comparable results [30]. Pipe diameter had an inverse influence
on the WAF pressure gradient, which was expected since there is a nearly proportional
correlation between ∆P/L and D−1 for the single-phase flow in a pipeline.

The outcome of this sensitivity analysis highlights another advantage of using ANN, as
the same model can capture varying degrees of relationships between variables. Traditional
parametric and analytical models lack this ability or require prior information about the
problem that needs to be customized in a specific way to fit the model. On the other hand,
the ANN model was developed in the present study without using any priory information.

5. Conclusions

The current study investigated the machine learning approach to model frictional
losses in a pipeline transmitting a mixture of water and heavy oil. Lab- and pilot-scale data
were analyzed with different machine learning algorithms and a MLR model. The results
of the analysis are summarized below.

Traditional parametric or analytical models—for example, the model developed by
McKibben et al.,—lack the ability of generalization, therefore producing inferior predictions
of actual measurements when compared to AI-based machine learning algorithms (e.g.,
MLR, SVM, and ANN).

Among the four modeling approaches examined in this research, ANN performed
the best. It produced the least MSE (~0) and the highest CC (~1), both for the training and
test datasets.

In addition to predicting frictional pressure losses, the ANN model could also analyze
the respective sensitivities of the input parameters to the output parameter. Oil density,
water viscosity, and pipe diameter were negatively related to the pressure gradient. Oil
density and water viscosity caused the friction loss to increase at the lower range, while
the gradient decreased as the parametric values crossed threshold limits. Oil viscosity
and water density had linear effects on the output variable, whereas other parameters
had polynomial effects. This kind of analysis is to play a significant role in operating
water-assisted pipelines.

The validated AI framework developed in this study is flexible and scalable. Efforts
are underway to apply it to other flow conditions.
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Appendix A

Table A1. SVM Full Model.

Weights 1 Dia Vel ODen OVisc WDen WVisc Frac

1 −10.00 0.32 0.74 0.20 0.07 0.88 0.65 0.12

2 −10.00 0.32 0.74 0.20 0.04 0.86 0.61 0.28

3 −10.00 0.32 0.74 0.20 0.04 0.82 0.55 0.45

4 −10.00 0.32 1.00 0.20 0.04 0.80 0.58 0.28

5 −10.00 0.32 1.00 0.20 0.04 0.84 0.52 0.45

6 −8.33 0.32 0.47 0.20 0.02 0.67 0.37 0.43

7 −10.00 0.32 0.74 0.20 0.04 0.64 0.35 0.43

8 10.00 0.32 1.00 0.20 0.04 0.62 0.33 0.01

9 −7.00 0.32 0.74 1.00 0.86 0.80 0.52 0.31

10 −1.97 0.32 0.21 1.00 1.00 0.88 0.65 0.48

11 −10.00 0.32 0.74 1.00 0.86 0.80 0.52 0.45

12 10.00 0.32 1.00 1.00 0.53 0.59 0.30 0.16

13 1.69 0.32 0.21 1.00 0.68 0.69 0.39 0.44

14 −2.00 0.32 0.74 0.78 0.07 0.82 0.55 0.25

15 −10.00 0.32 0.47 0.78 0.10 0.86 0.61 0.45

16 −10.00 0.32 0.74 0.78 0.09 0.78 0.50 0.47

17 −10.00 0.32 1.00 0.78 0.07 0.82 0.55 0.47

18 2.42 0.32 0.47 0.78 0.01 0.31 0.09 0.36

19 −10.00 0.00 0.05 0.33 0.20 1.00 1.00 0.41

20 −10.00 0.00 0.04 0.33 0.20 1.00 1.00 0.56

21 −10.00 0.00 0.10 0.33 0.20 1.00 1.00 0.73

22 −10.00 0.00 0.21 0.33 0.20 1.00 1.00 0.93

23 −10.00 0.00 0.32 0.33 0.20 1.00 1.00 1.00

24 −10.00 0.00 0.09 0.33 0.20 1.00 1.00 0.22

25 −10.00 0.00 0.12 0.33 0.20 1.00 1.00 0.40

26 −10.00 0.00 0.36 0.33 0.20 1.00 1.00 0.87

27 −10.00 0.00 0.48 0.33 0.20 1.00 1.00 0.94

28 10.00 0.00 0.22 0.33 0.20 1.00 1.00 0.22

29 −10.00 0.00 0.25 0.33 0.20 1.00 1.00 0.31

30 9.61 0.00 0.46 0.33 0.20 1.00 1.00 0.69

31 10.00 0.00 0.43 0.33 0.20 1.00 1.00 0.45

32 10.00 0.00 0.64 0.33 0.20 1.00 1.00 0.66

33 10.00 0.00 0.75 0.33 0.20 1.00 1.00 0.75

34 10.00 0.00 0.85 0.33 0.20 1.00 1.00 0.79

35 −10.00 0.00 0.08 0.29 0.12 0.93 0.75 0.16

36 −8.40 0.00 0.11 0.29 0.12 0.93 0.75 0.35

37 −10.00 0.00 0.16 0.29 0.12 0.93 0.75 0.54
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Table A1. Cont.

Weights 1 Dia Vel ODen OVisc WDen WVisc Frac

38 10.00 0.00 0.33 0.29 0.12 0.93 0.75 0.24

39 10.00 0.00 0.44 0.29 0.12 0.93 0.75 0.45

40 10.00 0.00 0.67 0.29 0.12 0.93 0.75 0.68

41 10.00 0.00 0.86 0.29 0.12 0.93 0.75 0.79

42 9.46 0.00 0.05 0.42 0.13 0.86 0.61 0.57

43 10.00 0.00 0.06 0.42 0.13 0.86 0.61 0.37

44 10.00 0.00 0.08 0.42 0.13 0.86 0.61 0.44

45 10.00 0.00 0.10 0.42 0.13 0.86 0.61 0.56

46 10.00 0.00 0.13 0.42 0.13 0.86 0.61 0.65

47 −10.00 0.00 0.07 0.42 0.13 0.86 0.61 0.16

48 −10.00 0.00 0.09 0.42 0.13 0.86 0.61 0.25

49 −10.00 0.00 0.10 0.42 0.13 0.86 0.61 0.33

50 0.70 0.00 0.36 0.42 0.13 0.86 0.61 0.88

51 10.00 0.00 0.27 0.42 0.13 0.86 0.61 0.02

52 10.00 0.00 0.28 0.42 0.13 0.86 0.61 0.06

53 10.00 0.00 0.30 0.42 0.13 0.86 0.61 0.10

54 10.00 0.00 0.33 0.42 0.13 0.86 0.61 0.17

55 10.00 0.00 0.35 0.42 0.13 0.86 0.61 0.25

56 10.00 0.00 0.41 0.42 0.13 0.86 0.61 0.35

57 10.00 0.00 0.46 0.42 0.13 0.86 0.61 0.44

58 10.00 0.00 0.52 0.42 0.13 0.86 0.61 0.52

59 10.00 0.00 0.62 0.42 0.13 0.86 0.61 0.62

60 3.04 0.00 0.05 0.55 0.48 1.00 1.00 0.85

61 7.24 0.00 0.08 0.55 0.48 1.00 1.00 0.68

62 10.00 0.00 0.16 0.55 0.48 1.00 1.00 0.86

63 4.35 0.00 0.10 0.55 0.48 1.00 1.00 0.58

64 10.00 0.00 0.18 0.55 0.48 1.00 1.00 0.80

65 −10.00 0.00 0.02 0.33 0.20 1.00 1.00 0.33

66 −1.70 0.11 0.47 1.00 0.60 0.64 0.35 0.27

67 10.00 0.11 0.47 1.00 0.71 0.72 0.42 0.00

68 10.00 0.11 0.47 1.00 0.42 0.51 0.24 0.00

69 10.00 0.11 0.47 1.00 0.28 0.39 0.17 0.00

70 −10.00 0.11 0.21 1.00 0.64 0.67 0.37 0.27

71 −10.00 0.11 0.21 1.00 0.60 0.64 0.35 0.22

72 −10.00 0.11 0.21 1.00 0.42 0.51 0.24 0.27

73 −10.00 0.11 0.21 1.00 0.17 0.30 0.12 0.00

74 −10.00 0.32 1.00 0.14 0.04 0.85 0.58 0.28

75 −1.88 0.32 0.74 0.06 0.01 0.43 0.19 0.31

76 −10.00 0.32 0.47 0.14 0.04 0.86 0.61 0.43

78 −10.00 0.32 1.00 0.14 0.04 0.86 0.61 0.43

79 10.00 1.00 0.21 0.14 0.04 0.85 0.58 0.26
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Table A1. Cont.

Weights 1 Dia Vel ODen OVisc WDen WVisc Frac

80 2.78 1.00 1.00 0.14 0.04 0.83 0.55 0.25

81 10.00 1.00 0.21 0.14 0.04 0.86 0.61 0.45

82 10.00 1.00 1.00 0.14 0.04 0.85 0.58 0.40

83 10.00 1.00 1.00 0.10 0.02 0.64 0.35 0.40

Table A2. ANN Weights.

Neuron 2.1 2.2 2.3 2.4 2.5 2.6 2.7 3.1

Thresh −0.83 0.17 0.75 0.23 −0.62 0.69 0.65 −0.44

1.1 −0.01 0.04 0.81 0.14 1.65 −2.05 −5.55

1.2 1.83 −0.86 −0.77 −0.34 0.77 −0.52 1.56

1.3 −0.97 0.31 −0.89 −0.27 3.01 −1.59 −0.38

1.4 0.34 1.22 −0.51 −0.31 2.03 0.27 0.40

1.5 0.17 0.81 0.31 0.73 −0.12 0.66 −0.14

1.6 −0.10 0.68 −0.83 0.44 −1.36 0.05 −0.10

1.7 −0.41 −0.41 −0.35 0.68 −0.60 1.59 −1.13

2.1 1.11

2.2 0.47

2.3 0.04

2.4 −0.33

2.5 2.39

2.6 1.81

2.7 3.88

Table A3. Data set.

Reference Nominal
Diameter (Inch) ρo/ρw (-) µo/µw (-) Reo (-) Rew (-) Cw (-) Pressure Gradient

Ratio (WAF/Heavy Oil)
Temperature

(◦C)

Shi [22] 1

0.911 4923 0.8 4407 0.39 1.2% 12

0.911 4923 0.8 4293 0.51 1.5% 12

0.911 4923 1.2 6622 0.63 1.2% 12

0.911 4923 2.2 11,623 0.79 1.1% 12

0.911 4923 3.0 16,098 0.84 1.1% 12

0.911 4923 1.2 6439 0.24 1.4% 12

0.911 4923 1.4 7627 0.38 1.3% 12

0.911 4923 1.6 8837 0.49 1.5% 12

0.911 4923 2.5 13,518 0.66 1.1% 12

0.911 4923 3.4 18,199 0.74 1.1% 12

0.911 4923 4.3 22,994 0.80 1.0% 12

0.911 4923 2.2 11,782 0.24 1.7% 12

0.911 4923 2.5 13,404 0.31 1.2% 12

0.911 4923 3.4 18,130 0.51 1.3% 12
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Table A3. Cont.

Reference Nominal
Diameter (Inch) ρo/ρw (-) µo/µw (-) Reo (-) Rew (-) Cw (-) Pressure Gradient

Ratio (WAF/Heavy Oil)
Temperature

(◦C)

Shi [22] 1

0.911 4923 4.1 22,332 0.60 1.3% 12

0.911 4923 4.9 26,693 0.67 1.1% 12

0.911 4923 3.0 16,258 0.26 1.2% 12

0.911 4923 3.9 21,167 0.42 1.3% 12

0.911 4923 5.6 30,210 0.58 1.2% 12

0.911 4923 6.5 34,959 0.65 1.2% 12

0.911 4923 7.3 39,252 0.68 1.2% 12

0.907 3376 1.9 7008 0.19 2.4% 21

0.907 3376 2.3 8415 0.34 2.8% 21

0.907 3376 2.9 10,910 0.49 2.5% 21

0.907 3376 4.4 16,299 0.66 1.9% 21

0.907 3376 5.3 19,590 0.25 2.3% 21

0.907 3376 6.7 25,085 0.42 2.1% 21

0.907 3376 9.7 36,261 0.60 1.9% 21

0.907 3376 12.3 45,870 0.68 2.0% 21

0.923 4270 1.1 5184 0.45 5.9% 25

0.923 4270 1.3 5854 0.51 5.6% 25

0.923 4270 1.6 7281 0.60 4.4% 25

0.923 4270 2.5 11,650 0.75 3.1% 25

0.923 4270 1.4 6582 0.35 4.8% 25

0.923 4270 1.6 7252 0.41 5.1% 25

0.923 4270 1.9 8680 0.50 4.7% 25

0.923 4270 2.2 10,107 0.58 3.7% 25

0.923 4270 2.8 13,048 0.67 3.0% 25

0.923 4270 1.5 7165 0.19 2.8% 25

0.923 4270 1.7 7922 0.26 2.5% 25

0.923 4270 1.9 8680 0.33 2.4% 25

0.923 4270 2.2 10,398 0.44 2.8% 25

0.923 4270 2.5 11,592 0.50 2.9% 25

0.923 4270 3.2 14,621 0.60 2.7% 25

0.923 4270 3.8 17,679 0.67 2.4% 25

0.923 4270 4.4 20,388 0.72 2.2% 25

0.923 4270 5.0 23,213 0.75 2.1% 25

0.923 4270 3.9 18,116 0.09 2.7% 25

0.923 4270 4.1 18,815 0.11 2.5% 25

0.923 4270 4.2 19,660 0.15 2.9% 25

0.923 4270 4.6 21,058 0.20 3.1% 25

0.923 4270 4.6 21,291 0.22 3.0% 25

0.923 4270 4.9 22,660 0.26 2.8% 25
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Table A3. Cont.

Reference Nominal
Diameter (Inch) ρo/ρw (-) µo/µw (-) Reo (-) Rew (-) Cw (-) Pressure Gradient

Ratio (WAF/Heavy Oil)
Temperature

(◦C)

Shi [22] 1

0.923 4270 5.5 25,456 0.34 2.6% 25

0.923 4270 6.1 28,427 0.41 2.2% 25

0.923 4270 6.8 31,660 0.47 2.0% 25

0.923 4270 8.0 37,223 0.55 1.9% 25

0.923 4270 8.7 40,106 0.58 1.8% 25

0.923 4270 9.3 43,135 0.61 1.7% 25

0.923 4270 9.9 45,786 0.63 1.7% 25

0.936 11,604 0.2 2443 0.46 3.1% 11

0.936 11,604 0.2 2672 0.50 3.0% 11

0.936 11,604 0.2 2946 0.54 2.7% 11

0.936 11,604 0.3 3722 0.64 2.6% 11

0.936 11,604 0.4 4750 0.73 2.3% 11

0.936 11,604 0.5 5937 0.77 1.9% 11

0.936 11,604 0.4 4704 0.50 1.9% 11

0.936 11,604 0.5 5777 0.59 1.8% 11

0.936 11,604 0.8 9316 0.74 1.4% 11

0.936 11,604 0.4 5480 0.42 1.5% 11

0.936 11,604 0.5 6553 0.52 1.6% 11

0.936 11,604 0.6 7901 0.60 1.5% 11

0.936 11,604 0.8 10,275 0.69 1.3% 11

0.911 4923 0.6 3334 0.32 2.8% 12

0.911 4923 0.7 3699 0.40 3.3% 12

0.911 4923 0.8 4407 0.42 3.0% 12

0.911 4923 0.9 4772 0.48 2.2% 12

Rushd [8] 2

0.992 25,600 2.7 69,072 0.09 0.9% 32

0.992 25,600 2.7 69,072 0.28 0.6% 32

0.993 23,097 3.2 73,315 0.28 0.6% 35

0.995 17,928 4.5 80,691 0.28 0.8% 40

0.992 25,600 2.7 69,072 0.07 1.1% 32

0.995 17,928 4.5 80691 0.07 1.4% 40

0.996 12,797 6.7 86,657 0.07 1.7% 44

0.993 23,998 1.5 35,969 0.28 0.1% 34

0.993 23,097 1.6 36,657 0.24 0.2% 35

0.993 23,998 3.0 71,938 0.24 0.8% 34

0.995 17,928 2.2 40,345 0.28 0.3% 40

0.997 11,381 3.9 44,110 0.17 0.6% 45

0.998 8358 5.4 45,605 0.07 0.9% 47

0.998 8358 8.2 68,408 0.28 1.5% 47
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Table A3. Cont.

Reference Nominal
Diameter (Inch) ρo/ρw (-) µo/µw (-) Reo (-) Rew (-) Cw (-) Pressure Gradient

Ratio (WAF/Heavy Oil)
Temperature

(◦C)

Rushd [8] 4

0.897 1910 26.0 55,274 0.19 6.0% 23

0.897 1697 28.5 53,999 0.28 8.2% 22

0.898 1461 35.6 57,860 0.41 10.3% 25

0.897 2130 47.7 113,123 0.19 7.7% 24

0.897 1910 51.9 110,548 0.28 7.3% 23

0.898 1431 74.3 118,342 0.40 10.7% 26

0.897 2130 71.5 169,684 0.16 6.9% 24

0.898 1461 106.7 173,579 0.29 9.6% 24

0.898 1399 116.5 181,464 0.42 10.8% 27

0.898 1431 148.5 236,542 0.29 9.8% 26

0.898 1364 162.9 247,404 0.42 10.1% 28

0.900 1149 53.8 68,611 0.13 31.0% 33

0.900 1043 61.6 71,395 0.30 31.1% 35

0.900 1149 53.8 68,611 0.41 23.3% 33

0.900 1043 123.3 142,790 0.14 20.0% 35

0.901 1001 131.0 145,602 0.29 15.6% 36

0.900 1097 114.8 140,005 0.40 13.7% 34

0.901 1766 111.4 218,403 0.09 17.0% 36

0.901 1721 116.5 222,641 0.29 9.3% 37

0.900 1808 106.7 214,185 0.40 8.4% 35

0.901 1766 148.5 291,203 0.08 18.1% 36

0.901 1766 148.5 291,203 0.30 8.3% 36

0.900 1808 142.2 285,580 0.41 8.0% 35

0.989 30,518 1.8 55,274 0.14 0.9% 23

Rushd [8] 4

0.990 29,749 3.9 115,719 0.15 1.3% 25

0.993 29,298 6.0 177,014 0.13 1.2% 26

0.993 28,802 8.3 241,345 0.08 1.2% 27

0.990 29,749 1.9 57,860 0.31 1.0% 25

0.990 29,298 4.0 118,342 0.31 0.9% 26

0.991 28,259 6.5 185,441 0.31 0.9% 28

0.991 27,671 9.0 252,613 0.26 0.9% 29

0.990 30,154 1.9 56,561 0.44 0.7% 24

0.990 28,802 4.2 120,976 0.43 0.7% 27

0.991 28,259 6.5 185,441 0.42 0.7% 28

0.991 27,671 9.0 252,613 0.41 0.8% 29

0.993 24,008 2.9 70002 0.08 1.6% 34

0.993 22,192 6.5 145,602 0.09 1.4% 36

0.994 20,171 11.2 226,940 0.17 1.2% 38

0.994 21,207 13.9 296,855 0.19 1.4% 37
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Table A3. Cont.

Reference Nominal
Diameter (Inch) ρo/ρw (-) µo/µw (-) Reo (-) Rew (-) Cw (-) Pressure Gradient

Ratio (WAF/Heavy Oil)
Temperature

(◦C)

Rushd [8] 4

0.993 24,008 2.9 70,002 0.14 1.2% 34

0.993 22,192 6.5 145,602 0.17 1.2% 36

0.994 21,207 10.4 222,641 0.28 0.9% 37

0.994 19,079 16.1 308,285 0.32 1.0% 39

0.992 24,839 2.7 68,611 0.41 0.8% 33

0.993 23,126 6.1 142,790 0.41 0.8% 35

0.993 22,192 9.8 218,403 0.42 0.8% 36

0.994 19,079 16.1 308,285 0.42 1.0% 39

0.964 3199 17.4 57,860 0.25 3.3% 25

0.964 3085 37.0 118,342 0.26 3.9% 26

0.964 2581 67.8 181,464 0.26 4.6% 27

0.965 3096 78.7 252,613 0.26 3.4% 29

0.964 3304 16.5 56,561 0.42 2.0% 24

0.964 3199 34.9 115,719 0.42 2.1% 25

0.965 3096 59.1 189,459 0.43 2.6% 27

0.964 2581 90.4 241,952 0.43 3.8% 29

0.966 2064 32.1 68,611 0.27 3.9% 33

0.966 1885 71.8 140,005 0.25 5.8% 34

0.967 1661 127.1 218,403 0.24 8.0% 36

0.966 2064 128.5 274,446 0.25 5.8% 33

0.966 2064 32.1 68,611 0.39 1.7% 33

Rushd [8] 4

0.966 1885 71.8 140,005 0.39 5.5% 34

0.967 1661 127.1 218,403 0.39 7.0% 36

0.966 2064 128.5 274,446 0.39 5.6% 33

0.972 969 92.1 91,827 0.20 6.2% 49

0.973 896 202.6 186,582 0.20 7.5% 50

0.973 896 303.9 279,873 0.20 10.9% 50

0.972 1038 338.0 360,966 0.20 12.5% 48

0.972 969 92.1 91,827 0.35 12.4% 49

0.971 969 184.3 183,841 0.35 6.2% 49

0.970 969 276.4 276,040 0.35 7.8% 49

0.972 1038 338.0 360,966 0.35 9.4% 48

0.891 1538 13.4 23,144 0.32 32.9% 25

0.891 1538 33.5 57,860 0.30 9.7% 25

0.891 1538 67.0 115,719 0.28 11.0% 25

0.890 1475 107.1 177,347 0.29 11.6% 26

0.890 1475 142.7 236,463 0.29 8.2% 26

0.887 884 29.2 29,120 0.31 42.8% 36

0.887 884 73.1 72801 0.30 34.3% 36
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Table A3. Cont.

Reference Nominal
Diameter (Inch) ρo/ρw (-) µo/µw (-) Reo (-) Rew (-) Cw (-) Pressure Gradient

Ratio (WAF/Heavy Oil)
Temperature

(◦C)

Rushd [8] 4

0.887 884 146.2 145,602 0.29 19.3% 36

0.887 884 219.3 218,403 0.28 19.6% 36

0.886 645 45.5 33133 0.33 46.0% 43

0.886 645 113.7 82,832 0.31 46.8% 43

0.886 645 227.4 165,664 0.31 26.8% 43

0.886 645 341.1 248,497 0.31 20.6% 43

0.886 645 454.8 331,329 0.31 22.2% 43

0.885 430 79.3 38,551 0.32 51.3% 52

0.884 349 255.9 101,015 0.29 87.2% 55

0.884 320 566.8 205,184 0.29 60.9% 56

0.885 430 594.6 289,133 0.29 31.3% 52

0.885 430 792.8 385,510 0.29 37.4% 52

0.890 1475 14.3 23,646 0.41 26.0% 26

0.891 1538 33.5 57,860 0.40 9.7% 25

0.891 1538 67.0 115,719 0.40 10.5% 25

0.891 1538 100.5 173,579 0.40 10.9% 25

0.891 1538 134.0 231,438 0.40 7.9% 25

0.887 884 29.2 29,120 0.41 29.4% 36

0.887 884 73.1 72,801 0.42 33.2% 36

0.887 884 146.2 145,602 0.41 18.7% 36

Rushd [8]

4

0.887 884 219.3 218,403 0.40 17.5% 36

0.887 884 292.4 291,203 0.40 18.2% 36

0.886 584 52.1 34,325 0.43 33.5% 45

0.886 584 130.2 85,812 0.42 46.0% 45

0.886 584 260.3 171,624 0.42 29.7% 45

0.886 615 364.1 252,872 0.42 21.4% 44

0.886 615 485.5 337,163 0.42 27.2% 44

0.885 404 85.7 39,123 0.44 39.6% 53

0.884 320 283.4 102,592 0.42 67.2% 56

0.884 320 566.8 205,184 0.41 48.3% 56

0.884 320 850.2 307,776 0.42 39.2% 56

0.884 349 1023.4 404,059 0.42 55.9% 55

10

0.890 1475 91.5 151,538 0.27 54.6% 26

0.890 1475 183.0 303,076 0.24 23.9% 26

0.890 1475 274.4 454,614 0.26 27.3% 26

0.890 1409 391.4 619,483 0.26 29.2% 27

0.888 917 177.0 182,804 0.27 79.7% 35

0.887 884 374.8 373,237 0.26 80.9% 36

0.887 884 562.2 559,855 0.28 44.6% 36

0.887 884 749.6 746,473 0.26 45.7% 36



Appl. Sci. 2022, 12, 4871 23 of 24

Table A3. Cont.

Reference Nominal
Diameter (Inch) ρo/ρw (-) µo/µw (-) Reo (-) Rew (-) Cw (-) Pressure Gradient

Ratio (WAF/Heavy Oil)
Temperature

(◦C)

Rushd [8] 10

0.886 584 333.6 219,971 0.32 75.6% 45

0.886 584 667.3 439,941 0.27 94.4% 45

0.886 584 1000.9 659,912 0.24 96.5% 45

0.886 584 1334.6 879,882 0.24 63.0% 45

0.891 1538 85.9 148,318 0.42 38.4% 25

0.891 1538 171.8 296,636 0.39 20.8% 25

0.891 1538 257.7 444,953 0.39 24.5% 25

0.890 1475 365.9 606,152 0.38 28.1% 26

0.888 977 163.0 179,371 0.40 55.0% 34

0.888 977 325.9 358,743 0.38 70.3% 34

0.888 977 488.9 538,114 0.39 38.7% 34

0.888 917 708.1 731,216 0.38 44.8% 35

0.886 645 291.5 212,333 0.43 54.9% 43

0.886 645 583.0 424,666 0.40 82.4% 43

0.886 645 874.4 636,998 0.37 91.6% 43

0.886 615 1244.5 864,286 0.36 64.6% 43
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