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Abstract: As of 2022, most automatic deburring trajectories are still generated using offline program-
ming methods. The trajectories generated using these methods are often suboptimal, which limits
the precision of the robotic arms used to perform automatic deburring and, in turn, results in work-
piece dimensional errors. Therefore, despite advances in automated deburring trajectory generation,
deburring is still mostly performed manually. However, manual deburring is a time-consuming,
labor-intensive, and expensive process that results in small profit margins for organizational equip-
ment manufacturers (OEMs). To address these problems and the obstacles to the implementation
of automated deburring in the robotics industry, the present study developed an online automated
deburring trajectory generation method that uses 2D contouring information obtained from linear
contour scanning sensors, a CAD model, and curve fitting to detect burrs and generate appropriate
trajectories. The method overcomes many of the limitations of common deburring methods, espe-
cially by enabling real-time trajectory tracking. When the method was tested using bicycle forks,
work that originally took three to four people 8–12-h to complete was completed by one person in
30 min, and the production cost was reduced by 70%.

Keywords: automatic deburring; online trajectory recognition; random sample consensus

1. Introduction

According to an International Federation of Robotics (IFR) survey report, the demand
for automated robotic arms is increasing at a compound annual growth rate of 19% and
generating an annual output value of US$16.5 billion. The Industry, Science, and Technology
International Strategy Center of Taiwan’s Industrial Technology Research Institute analyzed
reports released by the International Federation of Robotics (IFR) [1] and International
Monetary Fund (IMF) [2] and determined that a country’s industrial robot density indirectly
affects its GDP per capita and manufacturing capacity. For example, on average, the
doubling of industrial robot density in Germany and Japan would increase their respective
GDPs per capita by 50%. By contrast, the doubling of industrial robot density in Taiwan
would only increase its GDP per capita by 19%. This is because Taiwan primarily uses
industrial robots for loading and unloading materials, and the effects of increases in robot
density on GDP per capita are less profound. The main reason why only a small percentage
of Taiwanese enterprises use robotic arms in high-end applications is that most enterprises
in Taiwan’s robotics industry are small and medium-sized enterprises that cannot afford to
incorporate high-end robotic arm applications or train technical personnel. To automate
deburring, a series of robotic arm calibrations and compensations must be performed,
and force control devices and offline programming software must be used to generate
trajectories. These endeavors equate to software and hardware costs that total millions of
dollars (NT$), and the resulting efficiencies also fail to meet industry demand. Therefore,
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deburring is mostly performed manually. Nevertheless, deburring has a high output value.
For example, Taiwan’s metal factories manufacture approximately four million bicycle
forks per year. Deburring after die casting is mainly performed manually, and bicycle forks
produced after casting are subcontracted to and deburred by four organizational equipment
manufacturers (OEMs), who are paid tens of millions of dollars (NT$). However, despite
this high revenue, the profit margins enjoyed by these OEMs are small (of all the costs
involved, labor accounts for approximately 80%). This, coupled with the fact that young
people and foreign workers have been reluctant to venture into the manufacturing industry
in recent years, has resulted in the OEMs encountering a labor shortage and evaluating the
benefits of automatic deburring.

In metal and plastic molding and cutting operations, deburring is the least automated
procedure and thus has the highest labor costs. Before deburring operations can be per-
formed with current automatic deburring systems, the main body of the automated carrier,
the tool center point, the tool axes, and the relationship between the carrier and the object
to be processed must be calibrated. In addition, a series of offline programming software
settings must be entered to generate projection trajectories. During processing, a control
device is used to compensate for the dynamic errors in robotic arm movement (the robotic
arm is in an open kinematic chain, and the end precision is thus easily affected during
manufacturing and assembly; furthermore, the accuracy of joint torches and trajectories
considerably affects the processing quality [3–6]) and deviations in workpiece dimensions.

As the manufacturing industry shifts from mass production with an economies-of-
scale model to a customized business-to-consumer (B2C) model (i.e., producing small
quantities of goods for large numbers of clients), how businesses can quickly generate
processing trajectories for new products remains a question that must be answered before
smart deburring can be realized. The main problems with implementing automated
deburring in the context of the customized B2C model are as follows:

1. Planning the trajectories of various workpieces offline is a costly, time-consuming,
and labor-intensive process that cannot meet the manufacturing industry’s demand
for rapid production of customized goods.

2. Molding processes (such as plastic injection molding and metal casting molding) are
affected by their environments. If large dimensional deviations occur during pro-
cessing, workpieces may fail to maintain their fixed dimensions, and predetermined
processing trajectories will not be applicable to all workpieces.

For highly customized manufacturing models, using offline programming to generate
processing trajectories for a small number of workpieces and manually adjusting trajectories
(which requires 3–8-h per workpiece) is a time-consuming process. The trajectories are also
difficult to implement. Therefore, this study proposed an automatic deburring trajectory
generation technique to achieve automatic adjustments and reduce operation time. During
burr detection, curve fitting is performed using a computer-aided design (CAD) model of
the target workpiece, and the curve information is obtained using linear contour scanning
sensors, from which boundary contour curve equations are derived. The equations are used
to detect burr distribution and generate processing point information, rapidly correcting
processing trajectories to adapt to workpiece dimensional deviations and compensate for
dynamic trajectory errors, thereby substantially enhancing the manufacturing flexibility of
automatic deburring systems.

Many studies related to burr detection and online trajectory generation methods
have been conducted. Most of these studies have applied pattern matching [7–12], force-
sensing [13,14], stripe detection [15,16], edge recognition [17,18], and other [19–21] methods.
When pattern matching is performed, the workpiece must be completely scanned to
generate the processing trajectory because trajectory tracking for dynamic absolute error
correction cannot be achieved during processing. In a force-sensing operation, force
correction based on the processing situation can be conducted only after the processing
trajectory is generated; therefore, the processing operation cannot be performed accurately
when the workpiece size deviation is large (e.g., in the case of castings). Although the
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processing trajectory can be generated during processing in stripe detection and edge
recognition, these methods can be used for burr detection only on edges and not curved
surface areas (e.g., parting lines, gates, and risers) or irregular and discontinuous areas.
Accordingly, existing trajectory generation methods cannot be effectively applied for burr
removal after various processing procedures are performed. To address the aforementioned
problems, an automated method was developed in this study for burr detection and
deburring trajectory generation. This method enables online burr detection and deburring
trajectory point extraction; that is, the dynamic accuracy of robotic arms and the workpiece
size deviation can be compensated through burr tracking. Thus, the developed method
solves the drawbacks of (and requires less processing time than do) current burr detection
and online trajectory generation methods.

Although many burr detection and online trajectory generation method–related stud-
ies have been conducted, most have used methods involving pattern matching [3–8],
force-sensing [9,10], stripe detection [11,12], edge recognition [13,14], and closed-loop com-
pensation (with 3D measurement equipment) [15]. These methods generally can be applied
only to detect burrs on edges and cannot be used to detect burrs on curved surface areas
such as parting lines, gates, and risers or burrs that are irregular and discontinuous. To
address this shortcoming, this study introduced a burr detection and automatic deburring
trajectory generation method that enables burr trajectory tracking to solve the problems of
low robotic arm dynamic accuracy and workpiece dimensional deviations.

This paper is organized as follows. Section 1 introduces the motivation and contri-
bution of this study and the shortcomings of existing methods. Section 2 describes the
proposed process for online 3D trajectory generation in deburring processing. This process
involves extracting workpiece section contours and obtaining boundary equations by using
laser contour scanning sensors to generate the deburring trajectory. Section 3 presents the
results obtained in this study. Finally, Section 4 provides the conclusions of this study.

2. Online 3D Trajectory Generation for Deburring Processing

During metal processing, procedures such as casting, cutting, and forging create burrs
on the surfaces of workpieces, which necessitates subsequent deburring. Because deburring
performed by robotic arms is influenced by numerous variables (e.g., cast workpiece di-
mensional deviations, irregular burr distributions, and low robotic arm dynamic accuracy),
deburring is still mainly performed manually. Although solutions to the aforementioned
problems have been developed, automated deburring is expensive and time-consuming
and requires a sufficient number of trained technicians to perform various preoperational
processes, making large-scale use of automated deburring difficult. To address this prob-
lem, the method proposed herein uses automated carriers, deburring cutters, and linear
contour scanning sensors to detect burrs and generate automatic deburring trajectories. In
executing the method, a CAD model is used to analyze the cross-sectional contours of the
workpiece and obtain the mathematical models for the contour curves. Subsequently, curve
fitting is performed using linear scan information to obtain the boundary equations for
detecting burrs online and generating deburring trajectories. The use of the burr trajectory
tracking method can improve robotic arm dynamic accuracy and minimize workpiece
dimensional deviations.

The proposed method comprises three stages. The first stage involves matching the
mathematical model used for CAD-based cross-sectional contour feature extraction with
that used for modeling boundary contour curves (S110, S120). The burr distribution is
determined through linear contour scanning, and a mathematical model is established using
cross-sectional contour data to obtain boundary equations and perform burr detection and
trajectory generation. The second stage involves fitting the equations of boundary contour
curves in linear contour scanning (S130, S140). Boundary contours are determined using
linear contour scanning sensors to detect the actual position of the workpiece according to
the manufacturing tolerance of the process, to compensate for the dynamic errors of robotic
arms online, and to increase the control accuracy of robotic arms. The third stage involves
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detecting burrs and generating deburring trajectories (S150, S160). After the contour data
obtained using linear contour scanning sensors are processed and curve fitting is completed,
the cross-sectional boundary equations and the curves of the workpiece are obtained. These
equations can be used to divide the space into two parts to detect the burr distribution and
extract deburring trajectories. The procedures in the proposed method are described in
Figure 1.
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2.1. Matching the Mathematical Model

To detect burr distribution through linear contour scanning, mathematical models for
curves must be established using cross-sectional contour information to obtain boundary
equations. When the processing methods adopted for a target workpiece are known, a CAD
model can be used to determine the regions where burrs must be removed. Cross-sectional
images of the deburring regions must be obtained to derive the boundary contour curve
model. The procedure is described as follows:

1. The CAD model and target workpiece processing are analyzed to determine the
deburring region. In workpieces that have undergone cutting, the deburring regions
tend to be the processed edges. In those that have undergone casting, the deburring
regions tend to include the gates, risers, and parting lines (Figure 2).

2. The cross-sectional images of the deburring regions of the target workpieces along
the cutting direction (e.g., the direction of the processed edge or parting lines) are
obtained. To remove burrs on gates or risers, bow-shaped loops are used to plan
surface-seeking trajectories. The contours are divided into n segments according to
the cross-sectional contour curve characteristics, and the mathematical models for the
different curves are determined accordingly. Because the characteristics of distinct
cross-sectional boundary contour curves vary, their mathematical models vary. These
models may include polynomial boundary curve equations, circular boundary curve
equations, elliptic boundary curve equations, parabolic boundary curve equations,
and square–ellipse boundary curve equations.

3. The curve fitting errors are calculated and analyzed to determine whether they meet
specific values (e.g., a coefficient of determination > 0.99).

• For polynomial boundary curve equations, error analyses and model assessments
can be performed using the coefficient of determination. Assuming that a dataset
includes n observed values (i.e., y1, · · · , yn) and that the corresponding model-
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predicted values are f1, · · · , fn, respectively, the residual is defined as ei = yi − fi,
and the mean observed value is defined as y = 1

n ∑n
i=1 yi.

• The sum of squares of the observed and mean values are calculated using
SStot = ∑n

i=1(yi − y)2.
• The residual sum of squares of the predicted and observed values obtained using

the curve fitting model is calculated using SSres = ∑n
i=1(yi − fi)

2 = ∑n
i=1 ei

2.
• For polynomial boundary curve equations, the coefficient of determination is

R2 = 1− SSres
SStot

.

4. Curve fitting residual plot analyses are performed to verify the accuracy of the residual
distribution (Figure 3) according to the following criteria: (1) the residual value must
be close to 0; (2) the residual points must be randomly and uniformly distributed
between −1 and 1; (3) the residual point distribution must have no consistent pattern;
and (4) the residuals must not contain any predictable information.

5. The error analysis constraints, residual plot criteria, and minimum order equations
comprise the curve-fitting model of the boundary equations.

Appl. Sci. 2022, 12, x 5 of 15 
 

curve equations, elliptic boundary curve equations, parabolic boundary curve equa-
tions, and square–ellipse boundary curve equations. 

3. The curve fitting errors are calculated and analyzed to determine whether they meet 
specific values (e.g., a coefficient of determination > 0.99). 
• For polynomial boundary curve equations, error analyses and model assess-

ments can be performed using the coefficient of determination. Assuming that 
a dataset includes n observed values (i.e., 𝑦 , ⋯ , 𝑦 ) and that the corresponding 
model-predicted values are 𝑓 , ⋯ , 𝑓 , respectively, the residual is defined as 𝑒  = 𝑦 − 𝑓 , and the mean observed value is defined as y = ∑ 𝑦 . 

• The sum of squares of the observed and mean values are calculated using 𝑆𝑆 = ∑ (𝑦 − 𝑦 . 
• The residual sum of squares of the predicted and observed values obtained us-

ing the curve fitting model is calculated using 𝑆𝑆 = ∑ (𝑦 − 𝑓 = ∑ 𝑒 . 
• For polynomial boundary curve equations, the coefficient of determination is 𝑅 = 1 − . 

4. Curve fitting residual plot analyses are performed to verify the accuracy of the resid-
ual distribution (Figure 3) according to the following criteria: (1) the residual value 
must be close to 0; (2) the residual points must be randomly and uniformly distrib-
uted between −1 and 1; (3) the residual point distribution must have no consistent 
pattern; and (4) the residuals must not contain any predictable information. 

5. The error analysis constraints, residual plot criteria, and minimum order equations 
comprise the curve-fitting model of the boundary equations. 

 
Figure 2. Deburring regions: (a) processed edges, (b) parting lines, and (c) gates/risers. 

 
(a) (b) (c) 

Figure 3. Residual plot analyses: (a,b) nonconstant residuals, and (c) unsuitable model. 

  

Figure 2. Deburring regions: (a) processed edges, (b) parting lines, and (c) gates/risers.

Appl. Sci. 2022, 12, x 5 of 15 
 

curve equations, elliptic boundary curve equations, parabolic boundary curve equa-
tions, and square–ellipse boundary curve equations. 

3. The curve fitting errors are calculated and analyzed to determine whether they meet 
specific values (e.g., a coefficient of determination > 0.99). 
• For polynomial boundary curve equations, error analyses and model assess-

ments can be performed using the coefficient of determination. Assuming that 
a dataset includes n observed values (i.e., 𝑦 , ⋯ , 𝑦 ) and that the corresponding 
model-predicted values are 𝑓 , ⋯ , 𝑓 , respectively, the residual is defined as 𝑒  = 𝑦 − 𝑓 , and the mean observed value is defined as y = ∑ 𝑦 . 

• The sum of squares of the observed and mean values are calculated using 𝑆𝑆 = ∑ (𝑦 − 𝑦 . 
• The residual sum of squares of the predicted and observed values obtained us-

ing the curve fitting model is calculated using 𝑆𝑆 = ∑ (𝑦 − 𝑓 = ∑ 𝑒 . 
• For polynomial boundary curve equations, the coefficient of determination is 𝑅 = 1 − . 

4. Curve fitting residual plot analyses are performed to verify the accuracy of the resid-
ual distribution (Figure 3) according to the following criteria: (1) the residual value 
must be close to 0; (2) the residual points must be randomly and uniformly distrib-
uted between −1 and 1; (3) the residual point distribution must have no consistent 
pattern; and (4) the residuals must not contain any predictable information. 

5. The error analysis constraints, residual plot criteria, and minimum order equations 
comprise the curve-fitting model of the boundary equations. 

 
Figure 2. Deburring regions: (a) processed edges, (b) parting lines, and (c) gates/risers. 

 
(a) (b) (c) 

Figure 3. Residual plot analyses: (a,b) nonconstant residuals, and (c) unsuitable model. 

  

Figure 3. Residual plot analyses: (a,b) nonconstant residuals, and (c) unsuitable model.

2.2. Fit the Equations of Boundary Contour Curves (S130, S140) in Linear Contour Scanning

In metal and plastic processing, many processes (e.g., casting, forging, and injection
molding) can be used to mold workpieces quickly. However, they also produce high
engineering tolerances, resulting in large discrepancies between the actual workpiece
dimensions and standard dimensions. When this happens, using the original contour
curves obtained from the CAD model as the contours of the actual workpieces is impossible,
and linear contour scanning sensors must be used to determine the boundary contours.
This method can use the engineering tolerances obtained during processing to identify
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the actual workpiece contours, compensate for robotic arm dynamic errors online, and
improve the precision of robotic arm control. The calculation procedure is as follows:

1. After the mathematical models for the boundary contour curves of the target work-
pieces are determined, the workpiece contour cross-sectional information is obtained
using linear contour scanning sensors. When the sensors move and scan the work-
piece contours, they obtain as much information regarding the contours near burrs as
possible by setting the burrs as the center of the scans (Figure 4).

2. The contour information obtained using the linear contour scanning sensors is pro-
cessed, and the random sample consensus (RANSAC) method [22] is used to perform
the fitting. This prevents burr information from influencing the curve fitting results.

• Letting i = 0, t = 0, mbest = null, fbest = null, and tmax = null, the mathematical
models for the boundary curves are selected (similar to Step 3).

• A total of n samples are randomly selected, and the models are fit to obtain the
curve equation fi.

• Letting mi = 0 and ni = 0, the data points are substituted into the curve equations
to calculate the errors (δk), where mi and ni are the number of interior points and
exterior points, respectively.

• δk is compared with the allowable error (ε): if δk < ε, mi = mi + 1; otherwise,
ni = ni + 1.

• If mbest < mi, then mbest = mi and fbest = fi.
• When t = t+ 1, if tmax 6= null and t > tmax, the RANSAC procedure is performed

with tmax as the number of iterations. If not, the number of iterations is updated
to tmax =

log(1−P)
log(1−rn)

, where P is the expected probability of RANSAC obtaining the

correct model, and r is the ratio mi
mi+ni

, which is based on the numbers of interior
and exterior points.

3. Curve fitting is performed on the curve models obtained using the CAD cross-sectional
contour characteristics. Using a fourth-order polynomial boundary curve equation as
an example, the procedure is as follows:

• The fourth-order polynomial model is expanded to f (x) = a0 + a1x + a2x2 +

a3x3 + a4x4.
• If the contour curves are the curves of two different models, the contour points

obtained from linear contour scanning are divided into head and tail sections for fit-
ting; if the contour curves are the curves of a single model, the head and tail contour
points obtained from linear contour scanning are substituted into the equations for
fitting. The contour point dataset is {(x1, y1), (x2, y2), (x3, y3), · · · , (xn, yn)}

• The error sum of squares of the contour data points for the fourth-order polyno-
mial is calculated using E(a0, a1, a2, a3, a4) = ∑n

i=1(yi − (a0 + a1xi + a2xi
2 + a3xi

3

+a4xi
4))2, where a0, a1, a2, a3, and a4 are unknown variables.

• Curve fitting searches for a set of coefficients (a0, a1, a2, a3, and a4) that mini-
mize errors; therefore, a first-order equation with a derivative of zero is used to
determine the locations of the extrema, producing five linear equations. The si-
multaneous linear equations are solved to obtain the coefficients for the boundary
contour curve equations (i.e., a0, a1, a2, a3, and a4).

� Perform a partial derivation of E with respect to a0 ( ∂
∂a0

E(a0, a1, a2, a3, a4) = 0)
to solve for the position of the extreme value and obtain the first equa-
tion, which is expressed as follows: ∑n

i=0 a0 + a1 ∑n
i=0 xi + a2 ∑n

i=0 xi
2 +

a3 ∑n
i=0 xi

3 + a4 ∑n
i=0 xi

4 = ∑n
i=0 yi

� Perform a partial derivation of E with respect to a1 (
∂

∂a1
E(a0, a1, a2, a3, a4) = 0)

to solve for the position of the extreme value and obtain the second equa-
tion, which is expressed as follows: a0 ∑n

i=0 xi + a1 ∑n
i=0 xi

2 + a2 ∑n
i=0 xi

3 +
a3 ∑n

i=0 xi
4 + a4 ∑n

i=0 xi
5 = ∑n

i=0 xiyi



Appl. Sci. 2022, 12, 4852 7 of 15

� Perform a partial derivation of E with respect to a2 (
∂

∂a2
E(a0, a1, a2, a3, a4) = 0) to

solve for the position of the extreme value and obtain the third equation,
which is expressed as follows: a0 ∑n

i=0 xi
2 + a1 ∑n

i=0 xi
3 + a2 ∑n

i=0 xi
4 +

a3 ∑n
i=0 xi

5 + a4 ∑n
i=0 xi

6 = ∑n
i=0 xi

2yi
� Perform a partial derivation of E with respect to a3 ( ∂

∂a3
E(a0, a1, a2, a3, a4) = 0) to

solve for the position of the extreme value and obtain and the fourth equa-
tion, which is expressed as follows: a0 ∑n

i=0 xi
3 + a1 ∑n

i=0 xi
4 + a2 ∑n

i=0 xi
5 +

a3 ∑n
i=0 xi

6 + a4 ∑n
i=0 xi

7 = ∑n
i=0 xi

3yi
� Perform a partial derivation of E with respect to a4 ( ∂

∂a4
E(a0, a1, a2, a3, a4) = 0)

to solve for the position of the extreme value and obtain the fifth equa-
tion, which is expressed as follows: a0 ∑n

i=0 xi
4 + a1 ∑n

i=0 xi
5 + a2 ∑n

i=0 xi
6 +

a3 ∑n
i=0 xi

7 + a4 ∑n
i=0 xi

8 = ∑n
i=0 xi

4yi
� Solve the linear simultaneous equations, and obtain the coefficients of the

contour boundary curve equations (a0, a1, a2, a3, and a4).
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2.3. Detect Burrs and Generate Deburring Trajectories

The contour information obtained using the linear contour scanning sensors must be
processed and undergo curve fitting to obtain the boundary contour equations and curves
for the workpiece cross-sections. Thereafter, boundary contour equations are used to divide
the space into two intervals to detect the burr distribution according to the generated
deburring processing trajectories. The trajectory generation process is as follows:

1. The equation obtained through curve fitting is defined as the boundary contour curve
equation fi(x, y) = 0, and the space is divided into two intervals (i.e., workpiece
region A [the region on the same side as the sensor] and environmental region B [the
region on the same side as the sensor]). Intervals A and B correspond to the positive
and negative signs of equation function value fi; therefore, to obtain the positive
and negative signs of the functions corresponding to the equations in the two areas,
the sensor coordinates are substituted to derive fi(x, y) = c, which represents the
positive and negative signs of the function values corresponding to the inadmissible
interval. If the equation function value corresponding to the environmental area is <0,
then fi = − fi, and all the equation function values corresponding to the workpiece
intervals are ≤0 (Figure 5a). If the cross-sectional boundary contour curves are
composed of different line segments, the intersection area where fi < 0 is the inner
side of the workpiece cross-sectional contour (Figure 5b).

2. The contour point information obtained from linear contour scanning is substituted
into the equations. ε is the allowable boundary contour error, and its value is deter-
mined by sensor precision and the residual plot error values (Figure 6). If the value of
any function fi(x, y) > ε, burrs are located at (x, y).
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3. Deburring trajectories are generated according to the contour data and burr detection
results through the following procedure: (1) The bottom of the cutter is aligned with
the contour curve, with the cutter’s U axis and curve normal vector facing in the same
direction, to generate the deburring processing points and cutter direction. (2) The
cutter axis is placed parallel to the direction of the contour, the center of the cutter is
shifted in the direction of n1 according to the cutter radius, and the direction of the
contour is shifted by a specified amount (Figure 7).

4. The robotic arm is moved forward to the deburring processing points to remove
the burrs, and burr analyses and trajectory generation are performed for the next
boundary contour. Once all the deburring regions have been scanned and processed,
the deburring of the target workpiece is considered complete.

Appl. Sci. 2022, 12, x 8 of 15 
 

1. The equation obtained through curve fitting is defined as the boundary contour 
curve equation 𝑓 (𝑥, 𝑦 = 0, and the space is divided into two intervals (i.e., work-
piece region A [the region on the same side as the sensor] and environmental region 
B [the region on the same side as the sensor]). Intervals A and B correspond to the 
positive and negative signs of equation function value 𝑓 ; therefore, to obtain the pos-
itive and negative signs of the functions corresponding to the equations in the two 
areas, the sensor coordinates are substituted to derive 𝑓 (𝑥, 𝑦 = 𝑐, which represents 
the positive and negative signs of the function values corresponding to the inadmis-
sible interval. If the equation function value corresponding to the environmental area 
is <0, then 𝑓＝ − 𝑓 , and all the equation function values corresponding to the work-
piece intervals are ≤0 (Figure 5a). If the cross-sectional boundary contour curves are 
composed of different line segments, the intersection area where 𝑓  <  0 is the inner 
side of the workpiece cross-sectional contour (Figure 5b). 

  
(a) (b) 

Figure 5. External contour region recognition method. (a) Workpiece region and environmental 
region. (b) Workpiece cross−sectional contour. 

2. The contour point information obtained from linear contour scanning is substituted 
into the equations. ε is the allowable boundary contour error, and its value is deter-
mined by sensor precision and the residual plot error values (Figure 6). If the value 
of any function 𝑓 (𝑥, 𝑦 > 𝜀, burrs are located at (𝑥, 𝑦 . 

  
(a) 

Figure 5. External contour region recognition method. (a) Workpiece region and environmental
region. (b) Workpiece cross−sectional contour.

Appl. Sci. 2022, 12, x 8 of 15 
 

1. The equation obtained through curve fitting is defined as the boundary contour 
curve equation 𝑓 (𝑥, 𝑦 = 0, and the space is divided into two intervals (i.e., work-
piece region A [the region on the same side as the sensor] and environmental region 
B [the region on the same side as the sensor]). Intervals A and B correspond to the 
positive and negative signs of equation function value 𝑓 ; therefore, to obtain the pos-
itive and negative signs of the functions corresponding to the equations in the two 
areas, the sensor coordinates are substituted to derive 𝑓 (𝑥, 𝑦 = 𝑐, which represents 
the positive and negative signs of the function values corresponding to the inadmis-
sible interval. If the equation function value corresponding to the environmental area 
is <0, then 𝑓＝ − 𝑓 , and all the equation function values corresponding to the work-
piece intervals are ≤0 (Figure 5a). If the cross-sectional boundary contour curves are 
composed of different line segments, the intersection area where 𝑓  <  0 is the inner 
side of the workpiece cross-sectional contour (Figure 5b). 

  
(a) (b) 

Figure 5. External contour region recognition method. (a) Workpiece region and environmental 
region. (b) Workpiece cross−sectional contour. 

2. The contour point information obtained from linear contour scanning is substituted 
into the equations. ε is the allowable boundary contour error, and its value is deter-
mined by sensor precision and the residual plot error values (Figure 6). If the value 
of any function 𝑓 (𝑥, 𝑦 > 𝜀, burrs are located at (𝑥, 𝑦 . 

  
(a) 

Figure 6. Cont.



Appl. Sci. 2022, 12, 4852 9 of 15Appl. Sci. 2022, 12, x 9 of 15 
 

 
(b) 

Figure 6. Automatic burr detection. (a) contour fitting of processed edge. (b) contour fitting of part-
ing lines/risers. 

3. Deburring trajectories are generated according to the contour data and burr detection 
results through the following procedure: (1) The bottom of the cutter is aligned with 
the contour curve, with the cutter’s U axis and curve normal vector facing in the same 
direction, to generate the deburring processing points and cutter direction. (2) The 
cutter axis is placed parallel to the direction of the contour, the center of the cutter is 
shifted in the direction of 𝑛  according to the cutter radius, and the direction of the 
contour is shifted by a specified amount (Figure 7). 

  
(a) 

(b) 

Figure 7. Deburring trajectory generation. (a) workpiece edges. (b) parting lines/risers. 

4. The robotic arm is moved forward to the deburring processing points to remove the 
burrs, and burr analyses and trajectory generation are performed for the next bound-
ary contour. Once all the deburring regions have been scanned and processed, the 
deburring of the target workpiece is considered complete. 

Figure 6. Automatic burr detection. (a) contour fitting of processed edge. (b) contour fitting of
parting lines/risers.

Appl. Sci. 2022, 12, x 9 of 15 
 

 
(b) 

Figure 6. Automatic burr detection. (a) contour fitting of processed edge. (b) contour fitting of part-
ing lines/risers. 

3. Deburring trajectories are generated according to the contour data and burr detection 
results through the following procedure: (1) The bottom of the cutter is aligned with 
the contour curve, with the cutter’s U axis and curve normal vector facing in the same 
direction, to generate the deburring processing points and cutter direction. (2) The 
cutter axis is placed parallel to the direction of the contour, the center of the cutter is 
shifted in the direction of 𝑛  according to the cutter radius, and the direction of the 
contour is shifted by a specified amount (Figure 7). 

  
(a) 

(b) 

Figure 7. Deburring trajectory generation. (a) workpiece edges. (b) parting lines/risers. 

4. The robotic arm is moved forward to the deburring processing points to remove the 
burrs, and burr analyses and trajectory generation are performed for the next bound-
ary contour. Once all the deburring regions have been scanned and processed, the 
deburring of the target workpiece is considered complete. 

Figure 7. Deburring trajectory generation. (a) workpiece edges. (b) parting lines/risers.

3. Verifying the Automatic Deburring System

To verify the feasibility of the method proposed in this study, the Industrial Technology
Research Institute’s 12A62 robotic arm (which has a movement range of 1406 mm, a
repeatability accuracy of 0.06 mm, and an absolute positioning precision of approximately
5 mm, according to the ISO9283 standard for laser trackers) was used to test the automatic
deburring system. The method was applied to a bicycle fork processed through die casting.
The dimensions of the robotic arm are presented in Figure 8. The system consisted of a
Taiwan-made robotic arm controller, a Keyence LJ-X8080 online contour sensor (which had
a measurement depth of 41 ± 20.5 mm, a width of 30–39 mm [depending on the depth], a
repeatability accuracy of 0.5 µm, and a sampling frequency of 16 kHz), and a motorized
spindle with ∅6 four-edge standard milling cutters (Figure 9).
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To enable immediate deburring after scanning, the regions scanned by the contour
scanning sensors were placed as close to the processing locations of the spindle milling
cutters as possible. When the milling cutters moved to the burr locations after scanning,
the laser contour scanning sensors were required to obtain the next cross-sectional contour
information to determine the next processing trajectory point (Figure 10).
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After the system was set up, the robotic arm controller and contour output controller
were connected using network cables and the digital communication method. The robotic
arm controller obtained contour information by using the API provided by the contour
output controller. Once the contour information was obtained, adjustments were made
using the hand–eye calibration method [23] and the spindle coordinate system correction
method to determine the relative relationships among the contour sensors, spindle locations,
and robotic arm coordinate system.

The deburring process started at the location where the contour scanning sensors could
capture contour information. Once the contour information was obtained, the proposed
method was used to analyze the burring region and generate processing trajectories. The
burr locations were aligned with the spindle for deburring and to obtain the next cross-
sectional contour for additional analyses. The proposed procedure enables continuous
processing trajectory generation and complete deburring (Figures 11 and 12).
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Figure 12a shows the bicycle fork used for system verification. Figure 11 illustrates
the cross-sectional data from Figure 12a that were obtained using laser contour scanning
sensors. By applying the proposed method, the deburring trajectory could be generated for
the subsequent deburring process. The result of the processing along the cross-sectional
contour is displayed in Figure 12b.

The proposed method can be applied to deburr workpieces after molding as well
as to deburr workpiece edges after cutting. Because the processed edges comprise two
discontinuous line segments, the two segments must be fitted separately during curve
fitting (Figure 13). All the contour information was first input into the linear equation
to obtain the first line segment, and the interior point mi was removed from the contour
points obtained by the sensors to generate a new contour point set. The second fitting
was performed thereafter to obtain the mathematical equation for the second line segment.
Finally, the two-line segment equations were used to obtain the focus locations, after which
the processing trajectories were generated.
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4. Conclusions

This study focused on the use of automatic deburring technology on multi-axis mech-
anisms for real-time, online deburring trajectory recognition. The proposed automatic
deburring system may serve as a solution to certain robotic arm industry problems, espe-
cially those related to automated deburring. The contributions of this study are as follows:

• Regarding the automated equipment and systems integration technology required
by the robotic industry, this study developed a model and automated technology for
deburring using robotic arms, which may facilitate the integration between midstream
and downstream supply chains, create complementary and clustering effects, and
enhance the commercialized automated systems and relevant systems integration
technology used by domestic firms.

• This study’s technological contributions will help the domestic robotics industry
further improve and develop new applications for robotic arms and will facilitate
the development of complete solutions to the industrial robotic arm and machine
tool integration.

• The online deburring trajectory generation technology presented herein solves the
problems encountered by domestic firms when using automated robotic arms (e.g.,
requiring a series of calibrations and compensations, generating trajectories only after
using force control devices and offline programming software that can cost as much
as NT$4.3 million, and facing costs and inefficiencies that may create an inability to
satisfy industry demand).
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The method proposed in this study captured workpiece cross-sectional contours online
by using linear contour scanning sensors and adopted the RANSAC approach to identify
burr locations and generate trajectories in real-time, thereby achieving automatic deburring
processing. The method was tested using bicycle forks, and the results revealed that when
the processing quality was maintained, work that originally took three to four people
8–12-h to complete was completed by one person in 30 min. In addition, the production
cost was reduced by 70%. In the future, this method can be used by metal cutting and
molding firms to minimize the time and costs required to integrate automatic deburring
systems into their operations. The method can be integrated with smart mechanical system
unit controllers in the future to solve problems related to project development and planning
and can be used to build domestic controllers and smart processing systems to increase the
market share and technological independence of domestically manufactured equipment.
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Abbreviations

yi dataset
fi corresponding model-predicted values; corresponding model-predicted values
ei residual
y mean observed value
SStot The sum of squares of the observed and mean values
SSres The residual sum of squares of the predicted and observed values
R2 the coefficient of determination
tmax the number of iterations
P the expected probability of RANSAC
ai set of coefficients
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