
����������
�������

Citation: Gao, J.; Li, Y.; Xu, Y.; Lv, S.

A Two-Objective ILP Model of

OP-MATSP for the Multi-Robot Task

Assignment in an Intelligent

Warehouse. Appl. Sci. 2022, 12, 4843.

https://doi.org/10.3390/

app12104843

Academic Editors: Haoqian Huang,

Bing Wang and Yuan Yang

Received: 19 April 2022

Accepted: 9 May 2022

Published: 11 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

A Two-Objective ILP Model of OP-MATSP for the Multi-Robot
Task Assignment in an Intelligent Warehouse
Jianqi Gao , Yanjie Li *, Yunhong Xu and Shaohua Lv

School of Mechanical Engineering and Automation, Harbin Institute of Technology (Shenzhen),
Shenzhen 518071, China; gaojianqi205a@stu.hit.edu.cn (J.G.); 19s053099@stu.hit.edu.cn (Y.X.);
19S053101@stu.hit.edu.cn (S.L.)
* Correspondence: autolyj@hit.edu.cn

Abstract: Multi-robot task assignment is one of the main processes in an intelligent warehouse. This
paper models multi-robot task assignment in an intelligent warehouse as an open-path multi-depot
asymmetric traveling salesman problem (OP-MATSP). A two-objective integer linear programming
(ILP) model for solving OP-MDTSP is proposed. The theoretical bound on the computational time
complexity of this model is O(n!). We can solve the small multi-robot task assignment problem
by solving the two-objective ILP model using the Gurobi solver. The multi-chromosome coding-
based genetic algorithm has a smaller search space, so we use it to solve large-scale problems.
The experiment results reveal that the two-objective ILP model is very good at solving small-scale
problems. For large-scale problems, both EGA and NSGA3 genetic algorithms can efficiently obtain
suboptimal solutions. It demonstrates that this paper’s multi-robot work assignment methods are
helpful in an intelligent warehouse.

Keywords: multi-robot task assignment; intelligent warehouse; OP-MATSP; ILP; genetic algorithm

1. Introduction

With the development of the e-commerce and logistics industries, the advantages of
the intelligent warehouse have begun to emerge [1]. The intelligent warehouse is mainly
deployed by the multi-robot system [2], which can significantly improve efficiency and
reduce cost. Amazon’s order fulfillment center is the most mature intelligent warehouse
globally [3]. As shown in Figure 1, the intelligent warehouse comprises three parts: robots,
inventory pods, and inventory stations. The robots can operate autonomously in narrow
passages. All robots are homogeneous, where every robot has the same ability to move the
inventory pod. Robots are sometimes referred to as automated guided vehicles (AGVs).
The inventory pods are containers that can hold one or more kinds of goods and can
be transported by robots. The inventory stations have two types: picking stations and
replenishment stations. Picking or replenishing goods from inventory pods is primarily
done by workers. The workflow of an intelligent warehouse mainly includes multi-robot
task assignment [4] and path-finding [5]. The two processes interact with each other [6].
Practical task assignments can reduce costs and avoid path conflicts.

There are many methods for solving multi-robot task assignment problems, including
combinatorial optimization methods, market-based methods, swarm intelligence methods,
clustering, and so on [7]. Multi-robot task assignment also has many applications in in-
dustrial manufacturing, especially flexible manufacturing systems [8]. In [9], the scholars
explored the task assignment of material handling by multiple AGVs in complex random
production lines. In [10], the scholars use the tabu search algorithm to solve the problem of
simultaneous task assignments between machines and multiple AGVs in flexible manufac-
turing systems. In [11], the scholars discuss multi-objective multi-AGV task assignment in
flexible manufacturing systems using evolutionary algorithms. However, few studies are
about multi-robot task assignment in an intelligent warehouse.

Appl. Sci. 2022, 12, 4843. https://doi.org/10.3390/app12104843 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12104843
https://doi.org/10.3390/app12104843
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-4486-3740
https://doi.org/10.3390/app12104843
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12104843?type=check_update&version=1

Appl. Sci. 2022, 12, 4843 2 of 20

Figure 1. Two-dimensional schematic of Amazon’s order fulfillment center [3]. The orange squares
represent the robots. The green squares represent the inventory pods. The inventory stations are
shown only on the left side and are usually located around the perimeter of warehouse.

According to the number of tasks assigned during every time window, task assignment
can be divided into single-task assignment (STA) and multi-task assignment (MTA) [12].
Single-task assignment (STA) is deployed quickly, but multi-task assignment (MTA) is more
helpful in reducing costs and increasing efficiency. Single-task assignment (STA) is also
known as online task assignment. When a task arrives, the system assigns it to an idle robot
based on some heuristics, such as the task order (first come and first served, FCFS) [13], the
task priority [14], the distance between the task and the idle robot, the utilization of totes,
the age of the tasks [15], and so on. The system assigns multiple associated tasks to each
robot through an optimization model during each time window in multi-task assignment
(MTA). The scholars study multi-task assignment (MTA) in intelligent warehousing using
the genetic algorithms in [8,16,17]. However, the above studies only analyze one kind of
task, such as the picking task. They do not include all kinds of warehouse tasks, which
simplifies the actual task assignment in an intelligent warehouse.

This paper’s task assignment method belongs to multi-task assignment (MTA) and can
assign three different kinds of tasks. As shown in Figure 2, during a specific time window,
each robot starts from an initial position to complete a series of tasks and does not return.
There are three kinds of tasks: replenishment, moving, and picking. The replenishment
task means the robots carry the inventory pod to the replenishment station and return.
The moving task means the robots carry the inventory pods from their initial position to
another location. The picking task means the robots carry the inventory pods to the picking
stations and return. We assume that the robots carry the inventory pods to the initial
position when the robots complete the replenishment and picking task. The replenishment
and picking tasks are considered to be node tasks. On the other hand, because the initial
and end positions of the inventory pod in the moving task are different, the moving task
is considered to be an arc task. Because of the arc tasks, the cost between node tasks and
arc tasks varies depending on the order in which they are completed. The cost between
the tasks is asymmetric. After completing a series of tasks, each robot does not return to
the starting position but stays at the last task point and waits for the following command.
According to the above, the intelligent warehouse’s multi-robot task assignment problem
can be considered an open-path multi-depot asymmetric traveling salesman problem
(OP-MATSP). We treat each task as a city node and each robot as a traveling salesman.
Compared to earlier research, this work is the first to propose the OP-MATSP.

Appl. Sci. 2022, 12, 4843 3 of 20

Figure 2. The multi-robot task assignment in an intelligent warehouse.

Some scholars have studied warehouse task assignment based on the traveling sales-
man problem (TSP) [18], but they mainly discuss the order picking problem [19–21]. When
an order is received, the system sends a worker or a robot from the station to pick the items
of the order from different inventory pods and finally return to the station. We treat each
good in the order as a city node, each robot as a traveling salesman, and the station as the
depot. In these studies, each robot moves to the inventory pods to pick up all the goods
in the order and then returns to the start position. The above studies all belong to the
“worker-to-goods” model. This paper’s task assignment is based on the “live to human”
model, which is more efficient in an intelligent warehouse.

For the optimization objective of the problem, the studies in [19–21] only design the
pickup route for each vehicle through TSP, shortening its own distance to fulfill the order.
These studies do not consider the optimal total distance of all robots to complete the orders.
In [10], the optimization objective is mainly to minimize the manufacturing time to ensure
the system’s operating efficiency without balancing other optimization objectives. In order
to reduce the amount of charging and replacing, some scholars take the device’s energy
efficiency as an optimization objective. The scholars in [22] propose a distributed resource
management mechanism to determine the optimal transmission power for each device, in
which the interests, physical relationships, and energy availability among devices are all
considered. In this paper, we assume that the power of each robot is infinite. This paper
optimizes the total distance and total time for all robots to complete the task simultaneously.
The total distance is also known as the sum-of-cost (SOC). The total time is known as the
makespan (MS).

OP-MATSP can be converted from the multi-depot traveling salesman problem
(MTSP) [23]. As shown in Figure 3, each starting depot only has one traveling sales-
man who departs to visit the city node in the MTSP. When all city nodes have been visited,
all traveling salesmen return to their depots. The cost between each city node is the same.
The cost between each task node in this paper is asymmetric. By adding asymmetric
restrictions, such as [24], we can modify the MTSP model to a multi-depot asymmetric
traveling salesman problem (MATSP) model. In general, asymmetric models are more
complex to solve than symmetric models [25]. In this paper, each robot stops at the last task
node after completing a series of tasks and does not return to the starting depot, which is
an open path problem. By eliminating the last edge of the traveling salesman returning to
the starting depot, we can transfer the MATSP model to the OP-MATSP.

Appl. Sci. 2022, 12, 4843 4 of 20

(a) (b)

Figure 3. The diagram of MTSP and OP-MATSP. (a) Multi-depot traveling salesman problem (MTSP).
(b) Open path multi-depot asymmetric traveling salesman problem (OP-MATSP). d1 and d2 represent
depot. a to c, e to i represent the city nodes that the traveling salesman will visit.

As a generalization of TSP, the OP-MATSP is also an NP-hard combinatorial opti-
mization problem. The exact same algorithms can be used for OP-MATSP. We firstly
build a two-objective integer programming (ILP) model of OP-MATSP. Then, we solve the
small-scale problems using the Gurobi solver [26]. The Gurobi solver is the fastest and
most powerful mathematical solver available for ILP problems. To solve its non-inferior
solution, we transform the two-objective integer linear programming (ILP) model into a
single-objective problem by the linear weighting method [27]. We assign weight ω1 and ω2
to each objective function, and then add them together to form a new objective function and
obtain a solution to the two-objective integer linear programming (ILP) model by solving
this new objective function. However, it becomes complicated to solve the large-scale
problem. In this paper, the multi-chromosome coding-based genetic algorithms [28,29] are
used to solve the large-scale problems. The multi-chromosome coding genetic algorithm
has been proven to have a smaller search space and faster search speed in solving the
multiple traveling salesman problems (mTSP) [30]. We treat each robot’s task sequence as a
chromosome and each task as a gene in the chromosome. GEATPY is a high-performance
genetic algorithm library. In this paper, the multi-chromosome coding-based genetic al-
gorithms are selected in this library to solve the large-scale multi-robot task assignment
problem. We first solve small-scale problems using the multi-chromosome coding-based
genetic algorithm in GEATPY and compare the results with the Gurobi solver. We then use
the algorithms with higher solution performance to solve large-scale problems.

The main contributions of this paper can be summarized as follows:

• This paper regards the multi-robot task assignment in an intelligent warehouse as an
open-path multi-depot asymmetric traveling salesman problem (OP-MATSP). More-
over, the OP-MATSP is proposed for the first time in this paper.

• A two-objective integer linear programming (ILP) model of OP-MATSP is established.
Through this ILP model, we solve small-scale multi-robot task assignment problems
using the Gurobi solver.

• Multi-chromosome coding-based genetic algorithms are implemented to solve large-
scale multi-robot task assignment problems.

The remainder of this paper is structured as follows. Section 2 gives the problem
description and the two-objective ILP model. Section 3 presents the small-scale and large-
scale experiments’ results and discussions. Section 4 provides the conclusions.

Appl. Sci. 2022, 12, 4843 5 of 20

2. Methods
2.1. Task Definition

A warehouse task is determined by the initial position of the inventory pod, the end
position of the inventory pod, and the position of the picking (replenishment) station. We
use a six-dimensional coordinate to define the warehouse task as:

t = (xinit, yinit, xend, yend, xstation, ystation) (1)

where xinit, yinit represents the initial position of the inventory pod, xend, yend represents the
end position of the inventory pod, and xstation, ystation represents the position of the picking
or replenishment station.

We define two kinds of task cost: task own cost (TOC) and task-associated cost (TAC).
TOC is the cost for the robot to complete a task. TAC is the cost for a robot to go to another
task from the current task. The distance a robot travels to complete a task can be seen as
the task cost. In an intelligent warehouse, the robot can only move straight in the narrow
passages between the inventory pods, so we can use the Manhattan distance to calculate
the task cost. Then TOC of the node task and arc task can be defined as:

TOC(tnode) = 2|xinit − xstation|
+ 2|yinit − ystation|

(2)

TOC(tarc) = |xinit − xend|+ |yinit − yend| (3)

The TAC from task t to task t′ is the Manhattan distance between the end position of
task t and the initial position of another task t′. It can be defined as:

TAC(t, t′) = |xend − x′init|+ |yend − y′init| (4)

where t and t′ can represent the node task and arc task.

2.2. Multi-Robot Task Assignment in an Intelligent Warehouse

Figure 4 is a diagram of task sequences for the multi-robot task assignment in an
intelligent warehouse. There are 5 robots and 15 tasks, including 10 node tasks and 5 arc
tasks. The task sequences of robots are 〈r1, 12, 4, 13, 9〉, 〈r2, 1, 14〉, 〈r3, 6, 8, 2〉, 〈r4, 7, 11〉, and
〈r5, 10, 5, 0, 3〉. Each robot starts from a different position to complete tasks and does not
return to its start position. Each task can be completed only once by one robot. Each task
has a unique TOC. The TAC between node task t and arc task t′ is closely related to the
task execution order, that is, TAC(t, t′) 6= TAC(t′, t). This paper contains two optimization
objectives: sum-of-cost and makespan. The sum-of-cost is the sum of TOC and TAC for
all tasks. Makespan is the maximum value of the sum of TAC and TOC for the tasks
in each sequence. In a specific time window, when the number and type of all tasks
are confirmed, the ∑ TOC is a constant. Therefore, the value of sum-of-cost is mainly
determined by the TAC of all tasks, while makespan is related to the TOC and TAC of the
tasks in each sequence.

Appl. Sci. 2022, 12, 4843 6 of 20

Figure 4. Task sequences for the multi-robot task assignment.

2.3. Open-Path Multi-Depot Asymmetric Traveling Salesman Problem (OP-MATSP)

We can model the multi-robot task assignment in an intelligent warehouse as an
open-path multi-depot asymmetric traveling salesman problem (OP-MATSP). Each task is
considered to be a city node, each robot is considered to be a traveling salesman, and the
initial position of a robot is considered to be a starting depot.

OP-MATSP is another variant of TSP, consisting of m traveling salesmen, m depots,
and n city nodes. Only one traveling salesman can visit each city node. The mth traveling
salesman starts from the mth depot to visit respective city nodes until m traveling salesmen
visit all city nodes. Each traveling salesman stays at the last city node without returning to
the starting depot. OP-MATSP can be described as a directed weighted graph G = (V, A)
with set V = Vn ∪ Vm and set A. V = {1, · · · , n, n + 1, · · · , n + m} is the city node and
depot set. A = {(i, j)|i, j ∈ V, i 6= j} is the arc set. Subset Vn = {1, · · · , n} represents n city
nodes. Subset Vm = {n + 1, · · · , n + m} represents m depots. C =

(
cij
)

is the cost matrix
associated with each arc (i, j) ∈ A, and cij 6= cji (asymmetric).

2.4. Formulation of the Two-Objective ILP Model

In this section, a two-objective integer linear programming (ILP) model of OP-MATSP
is established. We first propose the sets, parameters, decision variables, constraints, and
objective function of the two-objective integer linear programming (ILP) model for the
multi-depot asymmetric traveling salesman problem (MATSP). Then, we can give the
two-objective ILP model for OP-MATSP by changing the objective function.

(1) Sets
Vn: the city node set.
Vm: the depot node set. Since each traveling salesman starts from a unique depot
node, we assume that the set of traveling salesmen is equal to the depot node set Vm.
V: the city and depot node set.

(2) Parameters
cij: the cost from node i to node j.
qi: the own cost of city node i.

(3) Decision variables
xm

ij : if mth traveling salesman visits the node i and moves to the next node j, then
xm

ij = 1; otherwise, xm
ij = 0, i, j ∈ V, m ∈ Vm.

Appl. Sci. 2022, 12, 4843 7 of 20

ym
i : if mth traveling salesman visits the node i, then ym

i = 1; otherwise, ym
i = 0, i ∈ V,

m ∈ Vm.
(4) Constraints

(a) The mth traveling salesman can only visit the city node from the mth depot
node, but not other depot nodes. To guarantee the above assumptions, we set
the following constraints:

xm
ij = xm

ji = 0, ∀i, j ∈ Vm, i 6= j, ∀m ∈ Vm (5)

(b) To prevent the traveling salesman from repeatedly visiting the same city node
or depot node, the following constraint is established:

xm
ii = 0, ∀i ∈ V, ∀m ∈ Vm (6)

(c) The relationship between decision variables xm
ij and ym

i can be expressed as:

∑
j∈V

xm
ji = ym

i , ∀i ∈ Vn, ∀m ∈ Vm (7)

∑
j∈V

xm
ij = ym

i , ∀i ∈ Vn, ∀m ∈ Vm (8)

(d) The number of node sequences is the same as the number of traveling salesmen.
To ensure each traveling salesman visits only one node sequence, we add the
following constraints:

∑
j∈Vn

xm
ij = 1, ∀i, m ∈ Vm (9)

∑
j∈Vn

xm
ji = 1, ∀i, m ∈ Vm (10)

(e) The city node can only be visited by one traveling salesman. To prevent one
city node from being repeatedly visited by different traveling salesmen, the
following constraints are established:

∑
j∈V

∑
m∈Vm

xm
ij = 1, ∀i ∈ Vn, i 6= j (11)

∑
i∈V

∑
m∈Vm

xm
ij = 1, ∀j ∈ Vn, i 6= j (12)

(f) To prevent the traveling salesman from visiting the previous node after visiting
the current node, we establish the following constraints:

∑
m∈Vm

xm
ij + ∑

m∈Vm

xm
ji < 2, ∀i, j ∈ V, i 6= j (13)

(g) To ensure the continuity of node sequence and avoid the fracture of node
sequence, the following flow balance constraint is established:

∑
j∈V

xm
ij = ∑

j∈V
xm

ji , ∀i ∈ V, ∀m ∈ Vm (14)

(h) We need to ensure that every node is visited and each traveling salesman’s
route forms a Hamiltonian cycle. To prevent sub-tours in the traveling sales-
man’s routing, we have to add sub-tour elimination constraints (SECs). The
SECs for the MATSP in this paper are Danzig–Fulkerson–Johnson (DFJ) [24]:

∑
i,j∈S

xij ≤ |S| − 1, 2 < |S| ≤ |V| − 1, ∀S ⊂ V (15)

Appl. Sci. 2022, 12, 4843 8 of 20

where |S| represents the cardinality of subset S , and |V| represents the cardi-
nality of set V. In each subset S , sub-tours are prevented.

(i) To ensure that each traveling salesman starts from the depot node and visits at
least one city node, we add the following constraints:

∑
i∈Vm

∑
j∈Vn

xm
ij = 1, ∀m ∈ Vm (16)

(5) Objective optimization functions
We will first propose two objective optimization functions based on MATSP. Sum-of-
cost consists of two parts: the sum of the costs of all city nodes ∑i∈Vn qi and the sum
of the costs between nodes in the node sequence ∑i∈V ∑j∈V ∑m∈Vm cijxm

ij . Because
∑i∈Vn qi is a constant, the expression of sum-of-cost (SOC) can be simplified as:

min f1 = ∑
i∈V

∑
j∈V

∑
m∈Vm

cijxm
ij (17)

Makespan is the maximum value of the total cost of each node sequence. Makespan
also includes two parts: the sum of the costs of all city nodes in the sequence
∑i∈V ∑j∈V cijxm

ij and the sum of the costs between nodes in the node sequence
sumi∈Vn qiym

i . We define the makespan as:

min f2 = max
m∈Vm

{
∑
i∈V

∑
j∈V

cijxm
ij + ∑

i∈Vn

qiym
i

}
(18)

Finally, we obtain the objective optimization function of OP-MATSP by changing the
two objective functions of MATSP. The difference between OP-MATSP and MATSP
is whether all traveling salesmen return to the depot after visiting all city nodes.
Therefore, we can get two objective optimization functions of OP-MATSP by subtract-
ing the cost of the traveling salesman returning the depot from the last city node in
Equations (17) and (18).
The sum-of-cost of OP-MATSP can be expressed as:

min f1 = ∑
i∈V

∑
j∈V

∑
m∈Vm

cijxm
ij − ∑

i∈Vn

∑
j∈Vm

∑
m∈Vm

cijxm
ij (19)

where ∑i∈Vn ∑j∈Vm ∑m∈Vm cijxm
ij represents the cost from the last city node to the depot

of all traveling salesmen.
The makespan of OP-MATSP can be expressed as:

min f2 = max
m∈Vm

{
∑
i∈V

∑
j∈V

cijxm
ij− ∑

i∈Vn

∑
j∈Vm

cijxm
ij + ∑

i∈Vn

qiym
i

}

where ∑i∈Vn ∑j∈Vm cijxm
ij represents the cost of the mth traveling salesman routing

from the last city node to the depot.
(6) The two-objective ILP model

In conclusion, a two-objective ILP model of OP-MATSP is established, through which
we can solve the multi-robot task assignment in an intelligent warehouse. The entire
two-objective ILP model is:

min f1 = ∑
i∈V

∑
j∈V

∑
m∈Vm

cijxm
ij − ∑

i∈Vn

∑
j∈Vm

∑
m∈Vm

cijxm
ij (20)

min f2 = max
m∈Vm

{
∑
i∈V

∑
j∈V

cijxmk
ij − ∑

i∈Vn

∑
j∈Vm

cijxm
ij + ∑

i∈Vn

qiym
i

}
(21)

Appl. Sci. 2022, 12, 4843 9 of 20

s.t. ∑
j∈Vn

xm
ij = 1, ∀i, m ∈ Vm (22)

∑
j∈Vn

xm
ji = 1, ∀i, m ∈ Vm (23)

∑
j∈V

∑
m∈Vm

xm
ij = 1, ∀i ∈ Vn, i 6= j (24)

∑
i∈V

∑
m∈Vm

xmk
ij = 1, ∀j ∈ Vn, i 6= j (25)

xm
ij = xm

ji = 0, ∀i, j, m ∈ Vm, i 6= j (26)

xm
ii = 0, ∀i ∈ V, ∀m ∈ Vm (27)

∑
m∈Vm

xm
ij + ∑

m∈Vm

xm
ji ≤ 2, ∀i, j ∈ V, i 6= j (28)

∑
j∈V

xm
ij = ∑

j∈V
xm

ji , ∀i ∈ V, ∀m ∈ Vm (29)

∑
i,j∈S

xij ≤ |S| − 1, 2 < |S| ≤ |V| − 1, ∀S ⊂ V (30)

∑
i∈Vm

∑
j∈Vn

xm
ij = 1, ∀m ∈ Vm (31)

∑
j∈V

xm
ji = ym

i , ∀i ∈ Vn, ∀m ∈ Vm (32)

∑
j∈V

xm
ij = ym

i , ∀i ∈ Vn, ∀m ∈ Vm (33)

2.5. Analysis of Computational Time Complexity

Before computing the above ILP model numerically, we first perform a theoretical
analysis of the OP-MATSP’s computational time complexity bound. We use the example
of OP-MATSP in Figure 3b to analyze the computational time complexity bound. There
are two depots, two traveling salesmen, and eight city nodes. Each depot has a traveling
salesman to visit the city node. As shown in Figure 5, the traveling salesman of depot d1
chooses the first city node to visit from the eight city nodes, then the traveling salesman
of depot d2 chooses another city node to visit from the remaining seven city nodes, until
the two traveling salesmen have visited all city nodes. We can see that the bound of the
computational time complexity in this example is O(8!). We can then can infer that the
bound of the computational time complexity of an OP-MATSP with m traveling salesmen
and n city nodes is O(n!).

From the computational time complexity of OP-MATSP, we can see that the computa-
tional cost of our proposed integer linear programming model is acceptable for small-scale
multi-robot task assignment problems but unacceptable for large-scale problems.

d1

ia b c e f g h

d2

ia b c e g h

ib c e g h ib c e h

ic e h ie h

ie i

Figure 5. The diagram of all possible state space to search. d1 and d2 represent depot. a to c, e to i
represent the city nodes that the traveling salesman will visit.

Appl. Sci. 2022, 12, 4843 10 of 20

3. Results and Discussion

We use Python3 for coding. The computer’s configuration is as follows: Intel Core i7
3.0 GHz processor, 32 GB RAM, and Windows 10 operating system.

3.1. Setting and Instance Generation

The coordinates of the tasks and depots in the small-scale problems are randomly
generated within the scope of 25 × 16 (m × m), while the coordinates in the large-scale
problems are randomly generated within the scope 1000 × 1000 (m ×m). For the small-
scale problem, there are four experiment instances. They include 3 robots with 10 tasks,
3 robots with 15 tasks, 5 robots with 20 tasks, and 5 robots with 25 tasks. One experiment
instance is conducted for a large-scale problem that consists of 5 robots with 100 tasks.
The sum-of-cost (SOC) obtained in the following experiments does not contain the TOC of
all tasks.

3.2. Small-Scale Problems Solved by Gurobi

This section uses the Gurobi solver to solve the small-scale multi-robot task assignment
problem. First, we use the linear weighting method to give different weight coefficients
w1 and w2 to the objective functions (19) and (20), respectively, to form the new objective
function f3:

min f3 = w1 × f1 + w2 × f2 (34)

when the weight coefficient (w1, w2) is equal to (1, 0) and (0, 1), we get the objective func-
tion with the minimum sum-of-cost (SOC) and makespan (MS). When w1, w2 ∈ (0, 1),
sum-of-cost (SOC) and makespan (MS) are both considered in the new objective function.
Then, we use the Gurobi solver to solve the new ILP model. We set the weight coeffi-
cients (w1, w2) to (1, 0) and (0, 1) in four small-scale experiments, respectively. We set the
maximum CPU runtime of the Gorubi solver to 900 s.

In order to verify the theoretical analysis of the computational time complexity in
Section 2.5, we perform a statistical analysis of the CPU running time of the Gurobi solver
in four small-scale experiments. Table 1 shows that as the scope of the experiment grows,
the minimum SOC and minimum MS-based CPU runtimes grow longer. Furthermore, the
CPU runtime based on minimum makespan (MS) is longer than that based on minimal
sum-of-cost (SOC) in the same experiment. Figure 6 compares the CPU runtime based on
the minimum SOC and the computational time complexity of the same experiment. The left
and right vertical axes are the logarithmic values of CPU runtime and computational time
complexity based on the minimum SOC, respectively. We can see that the growth trend
of the above two curves is consistent with the increase of the problem size, which further
verifies that our theoretical analysis of the computational time complexity is correct.

Figures 7–10 represent the task sequence of each robot in the small-scale experiment
instances, respectively. Because the solution result based on the minimum sum-of-cost
(SOC) is only related to the TAC between tasks and has nothing to do with the TOC of the
task itself, the task nodes appear to cluster in Figures 7a–10a. The solution results obtained
based on the minimum makespan (MS) are not only related to TAC but also TOC, so the
task sequences are chaotic without the evident cluster phenomenon in Figures 7b–10b.

Table 1. The computer’s CPU runtime and the computational time complexity.

Item Ex-1 Ex-2 Ex-3 Ex-4

CPUtimeSOC 0.18 3.9 39.97 208.45
CPUtimeMS 1.08 362.08 900.57 1 900.4 1

O(n!) 10! 15! 20! 25!
1 The CPU runtime reaches the set threshold of 900 s.

Appl. Sci. 2022, 12, 4843 11 of 20

Figure 6. The comparison of the CPU runtime based on the minimum SOC and the computational
time complexity.

(a) Minimum sum-of-cost. (b) Minimum makespan.

Figure 7. Task sequences in experiment 1, including 3 robots and 10 tasks.

(a) Minimum sum-of-cost. (b) Minimum makespan.

Figure 8. Task sequences in experiment 2, including 3 robots and 15 tasks.

Appl. Sci. 2022, 12, 4843 12 of 20

(a) Minimum sum-of-cost. (b) Minimum makespan.

Figure 9. Tasksequences in experiment 3, including 5 robots and 20 tasks.

(a) Minimum sum-of-cost. (b) Minimum makespan.

Figure 10. Task sequences in experiment 4, including 5 robots and 25 tasks.

To explore the practical significance of the task assignment method in this paper, we
compare it with single-task assignment (STA). Most of the existing intelligent warehouses
adopt single-task assignment (STA). The approach based on the nearest distance between
the start point of the task and the idle robot is more widely adopted. We now simulate
it using the following method. First, we assign a task to the robot that is closest to the
task starting position. Then, when a robot completes the task, we give the next task to the
robot based on the nearest distance. When all tasks within the time window are given to all
robots, we end the simulation process.

Based on the above four small-scale experiments, we compare the task assignment
method based on the integer programming (ILP) model with the single-task assignment
based on the nearest distance. In the nearest-distance-based single-task assignment, after
the robot completes the task, it selects the nest task with the nearest distance to itself
each time. Essentially, the single-task assignment gets a local optimal solution. In each
task time window, the integer-linear-programming-based multi-task assignment (MTA)
determines the execution order of tasks according to the relationship between tasks, which
will obtain an optimal solution. We use Gap to represent the difference of sum-of-cost (SOC)
or makespan (MS) obtained by single-task assignment (STA) based on the nearest distance
and the ILP model. The expression of the Gap for sum-of-cost (SOC) and makespan (MS) is:

GapSOC = (SOCSTA − SOCILP)/SOCSTA (35)

GapMS = (MSSTA −MSILP)/MSSTA (36)

The results are shown in Table 2. The minimum sum-of-cost (SOC) and makespan (MS)
obtained by the ILP model is reduced by at least 30% and 37.6%, respectively, compared to
the nearest-distance-based single-task assignment (STA), and even by 44.3% and 50.2% in
some cases. The results show that the integer linear programming (ILP)-based multi-task
assignment (MTA) has great advantages over the single-task assignment method based on
the nearest distance for small-scale problems.

Appl. Sci. 2022, 12, 4843 13 of 20

Table 2. Comparison of single-task assignment (STA) and ILP-model-based task assignment for
small-scale experiments.

Index Item Ex-1 Ex-2 Ex-3 Ex-4

SOC
STA 345 598.5 773 889.05

ILP model 192 399 517.1 622.1
GapSOC 44.3% 33.3% 33.1% 30%

MS
STA 135 229 227 277.6

ILP model 77 143 113 139
GapMS 43% 37.6% 50.2% 49.9%

To further explore the task assignment of each robot in the four small-scale experiments,
the cost of each robot’s task sequence is represented by a histogram under the patterns
of (w1, w2) = (1, 0), (w1, w2) = (0, 1), and single-task assignment (STA). As shown in
Figure 11, when (w1, w2) = (0, 1), the total cost of each robot’s task sequence is relatively
balanced and the value of makespan (MS) is the smallest. When (w1, w2) = (1, 0), the
sum-of-cost (SOC) is the smallest. For the single-task assignment (STA) based on the nearest
distance, the values of sum-of-cost (SOC) and makespan (MS) are larger than the other two
task assignment patterns.

(a) Ex-1 (b) Ex-2

(c) Ex-3 (d) Ex-4

Figure 11. The cost for each robot’s task sequence under different task assignment methods.

From the above analysis, we know that the two-objective integer linear program-
ming (ILP)-based multi-robot task assignment in this paper has practical significance and
can significantly improve the operating efficiency and reduce the operating cost of an
intelligent warehouse.

3.3. Large-Scale Problems Solved by the Multi-Chromosome Coding-Based Genetic Algorithm

For large-scale problems, multi-chromosome coding-based genetic algorithms are
implemented. This kind of genetic algorithm not only has a smaller search space [30] but
also facilitates the integer coding for the multi-robot task assignment.

Appl. Sci. 2022, 12, 4843 14 of 20

The multi-chromosome coding-based genetic algorithm also includes chromosome
coding, population initialization, selection, crossover, mutation, and other processes. First,
the integer coding process of the multi-chromosome genetic algorithm is described. The
number of chromosomes of each individual in the population is equal to the number of
robots. For a multi-robot task assignment problem containing n tasks and m robots, the
task set is Vn, and the robot set is Vm. Each task represents a gene. Each individual in
the population contains m chromosomes. The sequence of genes represents the order of
tasks. After many generations of evolution, we pick out the best individuals from the
population and assign them to robots. Then, 5 robots and 20 tasks are used to illustrate the
multi-chromosome integer coding process, as shown in Figure 12. The specific generation
process of a random initial population of size S is as follows: First, the order of the original
task sequence needs to be disrupted, and then a robot is randomly chosen and assigned the
first task of the new task sequence. It then randomly chooses a robot from all the robots
and gives the second task to that robot. When all tasks are assigned, the individual of
the population will be retained if every robot has at least one task. Otherwise, it will be
discarded and re-assigned. The process is repeated until the population size reaches S.
The objective function (34) is used to evaluate the population’s individual. When weight
coefficient (w1, w2) is equal to (1, 0) and (0, 1), respectively, we get the best individual of
the population with the minimum sum-of-cost (SOC) and makespan (MS).

Figure 12. Multi-chromosome integer coding process of the genetic algorithm.

We use the multi-chromosome coding-based genetic algorithm in the GEATPY li-
brary to solve the large-scale multi-robot task assignment problem. GEATPY is a high-
performance genetic algorithm library, which can be found on https://github.com/geatpy-
dev/geatpy (accessed on 1 January 2022). We first test the eight kinds of multi-chromosome
coding-based genetic algorithms on the small-scale experiment instances. Eight kinds of
multi-chromosome coding-based genetic algorithms are shown in Table 3, including four
types of single-objective and four types of multi-objective. Selection strategies of genetic
algorithms include tournament, roulette wheel, and unconstrained random. We choose the
partial matching crossover and reverse mutation operators that come with the GEATPY
library for both crossover and mutation operators. We choose partial matching crossover
and reverse mutation operators for both crossover and mutation operators. Regarding
the crossover probability and mutation probability, we choose Pc = 0.7 and Pm = 0.5 in
the single-objective genetic algorithm, respectively, and Pc = 1 and Pm = 1 in the multi-
objective genetic algorithm. The iteration number of the genetic algorithm is 5000, and the
population size is 100.

Then, we compare this with the results of the ILP model using the Gurobi solver,
respectively. The experiment instances with different weight coefficients and different
genetic algorithms are repeated 10 times, respectively. In each small-scale experiment, we
statistically obtain the best and average values of sum-of-cost (SOC) and makespan (MS)
from 10 repetitions of the genetic algorithms. We use Gap to represent the difference of
sum-of-cost (SOC) or makespan (MS) obtained by the multi-chromosome coding-based

https://github.com/geatpy-dev/geatpy
https://github.com/geatpy-dev/geatpy

Appl. Sci. 2022, 12, 4843 15 of 20

genetic algorithm (GA) and the ILP model. The expression of Gap for sum-of-cost (SOC)
and makespan (MS) is:

GapSOC = (SOCGA − SOCILP)/SOCGA (37)

GapMS = (MSGA −MSILP)/MSGA (38)

Table 3. Multi-chromosome coding-based genetic algorithm templets of GEATPY .

Type Templet Selection Crossover Mutation

Single-obj

soea_psy_EGA_templet 1 Tournament partial matching (Pc = 0.7) Invertion (Pm = 0.5)
soea_psy_SEGA_templet 2 Tournament partial matching (Pc = 0.7) Invertion (Pm = 0.5)
soea_psy_SGA_templet 3 Roulette Wheel partial matching (Pc = 0.7) Invertion (Pm = 0.5)

soea_psy_studGA_templet [31] Tournament partial matching (Pc = 0.7) Invertion (Pm = 0.5)

Multi-obj
moea_psy_awGA_templet 4 Tournament partial matching (Pc = 1) Invertion (Pm = 1)

moea_psy_NSGA2_templet [32] Tournament partial matching (Pc = 1) Invertion (Pm = 1)
moea_psy_NSGA2_archive_templet 5 Tournament partial matching (Pc = 1) Invertion (Pm = 1)

moea_psy_NSGA3_templet [33] unconstrained random partial matching (Pc = 1) Invertion (Pm = 1)
1 This is the elitist reservation GA algorithm. 2 This is the strengthen elitist reservation GA algorithm. 3 This is
the simple GA algorithm. 4 This is the multi-objective awGA algorithm. 5 This is the NSGA-II algorithm with
global archive.

The comparison results of the multi-chromosome coding-based genetic algorithm and
the ILP model are shown in Table 4. In the same experiment, the Pareto frontier extreme
values obtained from the multi-objective genetic algorithm are equal to or close to the
results obtained by the Gurobi solver. The best value of makespan obtained by awGA,
NSGA2, NSGA2-archive, and NSGA3 in experiment 4 is smaller than the result obtained by
the Gurobi solver. This indicates that when the problem scale reaches 5 robots and 25 tasks,
the best value obtained by some genetic algorithms is better than that of the Gurobi solver.

To make it easier to compare the performance of each genetic algorithm in the four
small-scale experiments, we use box-whisker plots to display the results. Based on Table 4,
the box-whisker plots on the minimum sum-of-cost (SOC) and makespan (MS) are shown
in Figures 13 and 14. It can be seen that as the number of robots and tasks increases, the
Gap between the maximum and minimum results obtained by the same genetic algorithm
becomes larger under the same number of iterations. The stability of the solution results
gradually deteriorates. Among the eight tested genetic algorithms, the algorithms of EGA
and NSGA3 perform relatively better. Therefore, we next choose these two algorithms to
solve the large-scale problems.

The large-scale experiment instance includes 5 robots and 100 tasks. We use the two
algorithms to solve the experimental case 10 times. To further explore the influence of the
number of iterations of the genetic algorithm on the solution results, we set the number of
iterations to 5000 and 20,000, respectively. The other parameters are the same as those of
the small-scale experiment. We use the Gap to represent the difference between sum-of-cost
(SOC) or makespan (MS) when the number of iterations is 5000 and 20,000. The expression
of the Gap for sum-of-cost (SOC) and makespan (MS) is:

GapSOC = (SOC5000 − SOC20,000)/SOC5000 (39)

GapMS = (MS5000 −MS20,000)/MS5000 (40)

As shown in Table 5, when the number of iterations is 5000 and 20,000, the Gaps
between the best value and the average values of the sum-of-cost (SOC) and makespan
(MS) obtained by the EGA algorithm are all less than 4%. For the NSGA3 algorithm, the
Gap is less than 1%. The results show that the two genetic algorithms have achieved
good sub-optimal results when the number of iterations is 5000. They can be applied to
other large-scale multi-robot task assignment problems of the intelligent warehouse. When
the number of robots and tasks grows, we should appropriately increase the number of
iterations of the genetic algorithm to obtain better results.

Appl. Sci. 2022, 12, 4843 16 of 20

Table 4. Comparison results of the multi-chromosome coding-based genetic algorithms and ILP model in the small-scale experiments.

Ex Index
soea-EGA soea-SEGA soea-SGA soea-studGA moea-awGA moea-NSGA2-archive moea-NSGA2 moea-NSGA3

Best Aveg Best Aveg Best Aveg Best Aveg Best Aveg Best Aveg Best Aveg Best Aveg

Ex-1

SOC 192 195.8 192 200.1 195.5 204.6 192 196.7 192 198.2 192 194.6 192 196.5 192 192
GapSOC 0% 1.94% 0% 4.05% 1.79% 6.16% 0% 2.39% 0% 3.13% 0% 1.34% 0% 1.03% 0% 0%

MS 77 78.6 77 82.1 80 83 77 78.7 77 77.1 77 77 77 77 77 77.3
GapMS 0% 2.04% 0% 6.21% 3.75% 7.23% 0% 2.16% 0% 0.13% 0% 0% 0% 0% 0% 0.39%

Ex-2

SOC 399 403.9 399 414.1 429.5 437.4 399 409.1 406.5 414.7 399 403.65 399 403.7 399 400.7
GapSOC 0% 1.21% 0% 3.65% 7.1% 8.78% 0% 2.47% 1.85% 3.79% 0% 1.15% 0% 1.16% 0% 0.42%

MS 143 150.6 143 152.2 160 162.3 144 146.9 143 144 143 144.6 143 145.09 143 143.2
GapMS 0% 5.05% 0% 6.04% 10.63% 11.89% 0.69% 2.65% 0% 0.69% 0% 1.11% 0% 1.58% 0% 0.14%

Ex-3

SOC 523.25 535.12 534.6 552.99 571.6 588.21 525.5 534.92 524.6 531.98 518.1 532.15 520.6 531.93 518.1 526.97
GapSOC 1.18% 3.37% 3.27% 6.49% 9.53% 12.09% 1.6% 3.33% 1.43% 2.8% 0.19% 2.83% 0.67% 2.79% 0.19% 1.87%

MS 119.9 126.17 125 131.33 133.5 135.53 119.4 130.93 122 126.25 117 120.05 116 119.36 116.4 120
GapMS 5.75% 10.44% 9.6% 13.96% 15.36% 16.62% 5.36% 13.69% 7.38% 10.5% 3.42% 5.87% 2.59% 5.33% 2.92% 5.38%

Ex-4

SOC 629 645.53 725 755.09 755.6 793.1 639.1 647.16 631.1 652.01 625.5 640.31 622.1 635.6 622.1 637.89
GapSOC 1.1% 3.63% 14.19% 17.61% 17.67% 21.56% 2.66% 3.87% 1.43% 4.59% 0.54% 2.84% 0% 2.12% 0% 2.48%

MS 148.9 153.5 141 157.29 159.6 165.84 139 149.13 138 149.8 136.4 142.63 136.4 140.73 137.6 142.44
GapMS 6.65% 9.45% 1.42% 11.63% 12.91% 16.18% 0% 6.79% −0.72% 7.21% −1.91% 2.55% −1.91% 1.23% −1.02% 2.42%

Appl. Sci. 2022, 12, 4843 17 of 20

Figure 13. Box-whisker plots of sum-of-cost obtained by eight kinds of genetic algorithms on the
small-scale experiments.

Figure 14. Box-whisker plots of makespan obtained by eight kinds of genetic algorithms on the
small-scale experiments.

Appl. Sci. 2022, 12, 4843 18 of 20

Table 5. Large-scale experiment results by genetic algorithms.

Index Interation
EGA NSGA3

Best Aveg Best Aveg

SOC
5000 186,274 188,044 183,507 185,334

20,000 182,712 184,076 182,074 184,494
GapSOC 1.91% 2.11% 0.78% 0.45%

MS
5000 40,410 42,021 37,241 37,836.2

20,000 39,552 40,455.3 37,272 37,795.7
GapMS 2.12% 3.73% −0.08% 0.11%

4. Conclusions

This paper proposes a two-objective integer linear programming (ILP) model of
open-path multi-depot asymmetric traveling salesman problem (OP-MDATSP) for the
multi-robot task assignment in an intelligent warehouse. The theoretical bound on the com-
putational time complexity of this model is O(n!). Then, we transfer the two-objective linear
integer programming model to a single-objective model using the linear weight method.
We solve this single-objective model on a small-scale problem using the Gurobi solver, and
we compare the results with the nearest distance-based single-task assignment method.
The values of the minimum sum-of-cost and makespan obtained based on the ILP model
are much lower than those of the the nearest-distance-based single-task assignment (STA).
After testing eight kinds of different multi-chromosome coding-based genetic algorithms
in four small-scale experiments, we find that two genetic algorithms, EGA and NSGA3,
perform relatively better. We use them to solve the large-scale problems. The results of
the large-scale experiments show that the two genetic algorithms can solve large-scale
problems well. This shows that the multi-robot task assignment method proposed in this
paper has great practical significance for the intelligent warehouse to reduce its operating
cost. In addition, we can adjust the weight coefficients in the objective function of this
paper according to the needs of the actual scene.

For the following work, we will consider the path conflicts between robots during the
task assignment of the intelligent warehouse. In addition, this paper only considers task
assignment in a static state, where all task points and robot positions are determined. In the
future, we will consider some unexpected scenarios, such as the dynamic change of robot
state and task point state, to further verify the robustness of our method. In this paper,
we assume that the robot’s power is infinite and do not consider issues such as charging,
which we will study in the following work.

Author Contributions: Conceptualization, formal analysis, methodology, and writing—original draft
preparation by J.G.; funding acquisition, project administration, supervision, and writing—review
and editing by Y.L.; data curation, investigation, resources, and software by Y.X.; validation and
visualization by S.L. All authors have read and agreed to the published version of the manuscript.

Funding: Our project is supported by the Shenzhen Basic Research Program JCYJ20180507183837726
and the National Natural Science Foundation U1813206, 61977019.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We thank anyone who has provided guidance and assistance with this paper. In
particular, we thank the reviewers and editors of the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Appl. Sci. 2022, 12, 4843 19 of 20

References
1. deKoster, R. Automated and Robotic Warehouses: Developments and Research Opportunities. Logist. Transp. 2018, 38, 33–40.

[CrossRef]
2. Farinelli, A.; Boscolo, N.; Zanotto, E.; Pagello, E. Advanced approaches for multi-robot coordination in logistic scenarios. Robot.

Auton. Syst. 2017, 90, 34–44. [CrossRef]
3. Wurman, R.P.; D’Andrea, R.; Mountz, M. Coordinating hundreds of cooperative, autonomous vehicles in warehouses. AI Mag.

2007, 29, 1752–1759.
4. NZanywayingoma, F.; Yang, Y. Effective task scheduling and dynamic resource optimization based on heuristic algorithms in

cloud computing environment. KSII Trans. Internet Inf. Syst. 2017, 11, 5780–5802.
5. Erdmann, M.; Lozano-Perez, T. On multiple moving objects. In Proceedings of the1986 IEEE International Conference on Robotics

and Automation, San Francisco, CA, USA, 7–10 April 1986; Volume 3, pp. 1419–1424. [CrossRef]
6. Wagner, G.; Choset, H.; Ayanian, N. Subdimensional Expansion and Optimal Task Reassignment. In SOCS, Proceedings of the 5th

Annual Symposium on Combinatorial, Niagara Falls, ON, Canada, 19–21 July 2012; Association for the Advancement of Artificial
Intelligence: Palo Alto, CA, USA, 2012.

7. Khamis, A.; Hussein, A.; Elmogy, A. Multi-robot task allocation: A review of the state-of-the-art. Coop. Robot. Sens. Netw. 2015,
2015, 31–51.

8. Liu, Y.; Ji, S.; Su, Z.; Guo, D. Multi-objective AGV scheduling in an automatic sorting system of an unmanned (intelligent)
warehouse by using two adaptive genetic algorithms and a multi-adaptive genetic algorithm. PLoS ONE 2019, 14, e0226161.
[CrossRef]

9. Pan, X.Y.; Wu, J.; Zhang, Q.W.; Lai, D.; Xie, H.L.; Zhang, C. A case study of AGV scheduling for production material handling.
Appl. Mech. Mater. 2013, 411, 2351–2354. [CrossRef]

10. Zheng, Y.; Xiao, Y.; Seo, Y. A tabu search algorithm for simultaneous machine/AGV scheduling problem. Int. J. Prod. Res. 2014,
52, 5748–5763. [CrossRef]

11. Mousavi, M.; Yap, H.J.; Musa, S.N.; Tahriri, F.; Md Dawal, S.Z. Multi-objective AGV scheduling in an FMS using a hybrid of
genetic algorithm and particle swarm optimization. PLoS ONE 2017, 12, e0169817. [CrossRef]

12. Su-yan, T.; Yi-fan, Z.; Li, Q.; Yong-lin, L. Survey of task allocation in multi Agent systems. Xi Tong Gong Cheng Yu Dian Zi Ji Shu
[Syst. Eng. Electron.] 2010, 32, 2155–2161.

13. Axsäter, S. On the first come–first served rule in multi-echelon inventory control. Nav. Res. Logist. 2007, 54, 485–491. [CrossRef]
14. Shi, J.; Bao, Y.; Leng, F.; Yu, G. Priority-Based Balance Scheduling in Real-Time Data Warehouse. In Proceedings of the 2009 Ninth

International Conference on Hybrid Intelligent Systems, Shenyang, China, 12–14 August 2009; Volume 3, pp. 301–306. [CrossRef]
15. Bolu, A.; Korçak, Ö. Adaptive task planning for multi-robot smart warehouse. IEEE Access 2021, 9, 27346–27358. [CrossRef]
16. Zhang, J.; Yang, F.; Weng, X. A building-block-based genetic algorithm for solving the robots allocation problem in a robotic

mobile fulfilment system. Math. Probl. Eng. 2019, 2019, 6153848. [CrossRef]
17. Vivaldini, K.; Rocha, L.; Fróes, N.; Becker, M.; Moreira, A. Integrated tasks assignment and routing for the estimation of the

optimal number of AGVS. Int. J. Adv. Manuf. Technol. 2015, 82, 719–736. [CrossRef]
18. Lenstra, J.K.; Kan, A.R. Some simple applications of the travelling salesman problem. J. Oper. Res. Soc. 1975, 26, 717–733.

[CrossRef]
19. De Koster, R.; Le-Duc, T.; Roodbergen, K.J. Design and control of warehouse order picking: A literature review. Eur. J. Oper. Res.

2007, 182, 481–501. [CrossRef]
20. Theys, C.; Bräysy, O.; Dullaert, W.; Raa, B. Using a TSP heuristic for routing order pickers in warehouses. Eur. J. Oper. Res. 2010,

200, 755–763. [CrossRef]
21. Azadnia, H.A.; Taheri, S.; Ghadimi, P.; Saman, Z.M.M.; Wong, Y.K. Order batching in warehouses by minimizing total tardiness:

A hybrid approach of weighted association rule mining and genetic algorithms. Sci. World J. 2013, 2013, 246578. [CrossRef]
22. Tsiropoulou, E.E.; Paruchuri, S.T.; Baras, J.S. Interest, energy and physical-aware coalition formation and resource allocation

in smart IoT applications. In Proceedings of the 2017 51st Annual Conference on Information Sciences and Systems (CISS),
Baltimore, MD, USA, 22–24 March 2017; pp. 1–6.

23. Benavent, E.; Martínez, A. Multi-depot multiple TSP: A polyhedral study and computational results. Ann. Oper. Res. 2013,
207, 7–25. [CrossRef]

24. Dantzig, G.; Fulkerson, R.; Johnson, S. Solution of a large-scale traveling-salesman problem. J. Oper. Res. Soc. Am. 1954, 2, 393–410.
[CrossRef]

25. Odili, J.B.; Noraziah, A.; Zarina, M. A Comparative Performance Analysis of Computational Intelligence Techniques to Solve the
Asymmetric Travelling Salesman Problem. Comput. Intell. Neurosci. 2021, 2021, 6625438. [CrossRef] [PubMed]

26. Bixby, B. The gurobi optimizer. Transp. Res. Part B 2007, 41, 159–178.
27. Liu, Z.; Liu, G.; Wang, H.; He, F. The linear weighting method for solving a class of non-differentiable multiobjective programming

problem. In Proceedings of the 2011 International Conference on Multimedia Technology, Hangzhou, China, 26–28 July 2011;
pp. 3273–3276.

28. Ronald, S.; Kirkby, S.; Eklund, P. Multi-chromosome mixed encodings for heterogeneous problems. In Proceedings of the 1997
IEEE International Conference on Evolutionary Computation (ICEC ’97), Indianapolis, IN, USA, 13–16 April 1997; pp. 37–42.
[CrossRef]

http://doi.org/10.26411/83-1734-2015-2-38-4-18
http://dx.doi.org/10.1016/j.robot.2016.08.010
http://dx.doi.org/10.1109/ROBOT.1986.1087401
http://dx.doi.org/10.1371/journal.pone.0226161
http://dx.doi.org/10.4028/www.scientific.net/AMM.411-414.2351
http://dx.doi.org/10.1080/00207543.2014.910628
http://dx.doi.org/10.1371/journal.pone.0169817
http://dx.doi.org/10.1002/nav.20225
http://dx.doi.org/10.1109/HIS.2009.275
http://dx.doi.org/10.1109/ACCESS.2021.3058190
http://dx.doi.org/10.1155/2019/6153848
http://dx.doi.org/10.1007/s00170-015-7343-4
http://dx.doi.org/10.1057/jors.1975.151
http://dx.doi.org/10.1016/j.ejor.2006.07.009
http://dx.doi.org/10.1016/j.ejor.2009.01.036
http://dx.doi.org/10.1155/2013/246578
http://dx.doi.org/10.1007/s10479-011-1024-y
http://dx.doi.org/10.1287/opre.2.4.393
http://dx.doi.org/10.1155/2021/6625438
http://www.ncbi.nlm.nih.gov/pubmed/33986793
http://dx.doi.org/10.1109/ICEC.1997.592264

Appl. Sci. 2022, 12, 4843 20 of 20

29. Ciesielski, V.; Scerri, P. Compound optimisation. Solving transport and routing problems with a multi-chromosome genetic
algorithm. In Proceedings of the 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World
Congress on Computational Intelligence (Cat. No. 98TH8360), Anchorage, AK, USA, 4–9 May 1998; pp. 365–370. [CrossRef]

30. Ye, D.; Liu, G.; He, B. Multi-chromosome Genetic Algorithm for Multiple Traveling Salesman Problem. J. Syst. Simul. 2019, 31,
36–42.

31. Khatib, W.; Fleming, P.J. The stud GA: A mini revolution? In Proceedings of the International Conference on Parallel Problem
Solving from Nature, Amsterdam, The Netherlands, 27–30 September 1998.

32. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol.
Comput. 2002, 6, 182–197. [CrossRef]

33. Deb, K.; Jain, H. An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting
Approach, Part I: Solving Problems with Box Constraints. IEEE Trans. Evol. Comput. 2014, 18, 577–601. [CrossRef]

http://dx.doi.org/10.1109/ICEC.1998.699760
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1109/TEVC.2013.2281535

	Introduction
	Methods
	Task Definition
	Multi-Robot Task Assignment in an Intelligent Warehouse
	Open-Path Multi-Depot Asymmetric Traveling Salesman Problem (OP-MATSP)
	Formulation of the Two-Objective ILP Model
	Analysis of Computational Time Complexity

	Results and Discussion
	Setting and Instance Generation
	Small-Scale Problems Solved by Gurobi
	Large-Scale Problems Solved by the Multi-Chromosome Coding-Based Genetic Algorithm

	Conclusions
	References

