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Abstract: This paper describes the development of three main functionalities for a domestic mobile
service robot and an automatic benchmarking system used for the systematic performance evaluation
of the robot’s functionalities. Three main robot functionalities are addressed: (1) People Perception,
(2) People Following and (3) Pick and Placing, where the hardware and software systems developed
for each functionality are described and demonstrated on an actual mobile service robot, with the
goal of providing assistance to an elderly person inside the house. Furthermore, a set of innovative
benchmarks and an automatic performance evaluation system are proposed and used to evaluate the
performance of the developed functionalities. These benchmarks are now made publicly available and
is part of the European Robotics League (ERL)-Consumer to systematically evaluate the performance
of service robot solutions at different testbeds around Europe.

Keywords: domestic service robots; benchmarking; performance evaluation system; pick and placing;
human perception; human following

1. Introduction

Mobile robot systems are now being successfully deployed in different application
domains such as manufacturing, medicine, logistics and search and rescues [1–4]. However,
in terms of domestic service applications, mostly simple systems such as floor and pool
cleaning have reached maturity [5]. Domestic assistance, in particular for handicapped
and elderly people, is still a great challenge of our society where mobile robots can be
significantly beneficial. Domestic environments are complex, namely due to their dynamic
and unstructured conditions and the need for a close interaction with objects [6] and
humans [7]. This complexity arises from a wide variety of challenges: perception [8],
navigation [9], HRI [10], manipulation [11] and task planning [12]. A general purpose
service robot for a domestic environment is required to handle different tasks such as setting
the table, serving food, cleaning the house, interacting with humans, finding and picking
up objects, recognizing and handling visitors. A survey of robot systems integrating some
of those capabilities in RoboCup@Home competitions can be found in [13]. To perform
such complex tasks, the robot needs to hold and employ a variety of smaller specific
skills (referred to here as functionalities), such as navigation, speech recognition, object
perception and manipulation, where a set of hardware/software modules are utilized for
each functionality.

Quantitative evaluation of a robot’s ability to perform a specific task or functionality,
in real-world conditions, is currently considered an open challenge. Different research
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efforts [14] have recommended protocols and methods for an evidence-based evaluation of
robotics research. When interaction with the environment is needed, such as interaction
with people or objects, a solution is still missing that can guarantee experiment reproducibil-
ity, i.e., the possibility of repeating the experiment by other independent researchers to
verify the results, and repeatability, i.e., the characteristic of an experiment that gives the
same outcome when executed at different locations or different times.

This paper describes the implementation of three key functionalities for a domestic
service robot, People perception, People following and Pick and placing, while proposing
three innovative functionality benchmarks and an autonomous performance evaluation
system for systematic evaluation of these three functionalities. These benchmarks are
now integrated into the benchmarking system of the European Robotics League (ERL-
Consumer) [15], which aims at systematic performance evaluation of robot solutions in the
format of competitions [16]. The ERL-Consumer challenge occurs frequently at different
testbeds around Europe and covers the domain of consumer service robotics, with current
focus on applications for the benefit of addressing societal challenges such as healthy aging
and longer independent living.

The structure of this paper is as follows: Section 2 introduces some of the related work
on robot benchmarking and the targeted functionalities. Section 3 describes the implemen-
tation of three robot functionalities for an actual domestic service robot , while describing in
detail the hardware and software systems used for each functionality.
Section 4 presents three functionality benchmarks for the systematic performance evalua-
tion of the three robot functionalities and presents an automatic benchmark control and
performance evaluation system for the quantitative evaluation of robot functionalities.
Section 5 presents experiments and results from trials where the benchmarks and the bench-
marking system are used to evaluate the functionalities presented in Section 3. Finally,
Section 6 concludes the paper with the conclusion and future works.

2. Related Work

Over the recent years, advanced service robot systems are rapidly growing in domestic
applications, capable of performing specific skills or functionalities, such as manipula-
tion [17] or object recognition [18], or complex global tasks [13]. The emergence of many
different solutions has led to the need for a more systematic evaluation of the performance
of robotic systems [19] and is triggering initiatives to create benchmarks and standard
experimental testbeds. Our approach to benchmarking robot solutions is based on the
definition of two types of benchmarks that were originally introduced in a former project,
RoCKIn [19,20]:

• Functionality Benchmarks (FBMs): evaluates the performance of hardware and soft-
ware systems dedicated to a single and specific functionality, in the context of ex-
periments focused on that functionality. Examples: Navigation FBM and Object
Perception FBM;

• Task Benchmarks (TBMs): evaluate the performance of integrated robot systems exe-
cuting complex tasks that need the interaction/composition of different functionalities.
Examples: Welcoming Visitors TBM and Cleaning the house TBM.

In our previous work, we have demonstrated a set of TBMs and FBMs in the context
of Service Robot competitions and introduced FBMs such as Navigation, Object Perception
and Speech Understanding [16]. In this paper, we will introduce three additional FBMs
while developing and evaluating three key functionalities for a domestic service robot.

Human–robot interaction (HRI) is one of the most important capabilities that a do-
mestic service robot needs to hold, of which People perception is the first key element
for having a successful HRI. People perception can be divided into several sub-problems:
(1) detecting the presence of a person, (2) estimating the person’s position and (3) recog-
nizing the identity of the detected person. To detect a person, many different sensors and
approaches are available today, ranging from simple laser-based leg detectors [21,22] to
detecting heat signatures through a thermal camera [23] or other computer vision tech-
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niques [24]. Upon detection, the person’s position in the world can be estimated using the
depth component of an RGB-D camera, laser sensors [25] or using a stereo camera [26] or
multi-view images. Finally, for person recognition or people re-identification, the state-of-
the-art methods mostly rely on vision sensors and deep learning methods trained from
RGB images or videos [27,28] but also using other sensors such as depth cameras [29] or
infrared cameras [30] to overcome visual limitations such as varying light conditions or
changes in clothing, amongst others.

In the context of HRI, in particular for domestic and consumer applications, the ability
for a robot to effectively follow a human is significantly important. For example, to follow
a child, the elderly or a visitor inside the house or to carry the bags of a person inside an
airport or a retail store. The people-following problem is commonly addressed by (1) de-
tecting and tracking a target person in the environment and (2) controlling the movement
of the robot to maintain a desired distance with the target person. Most solutions for
people following addressed in the literature rely on visual cues [31,32], however, attempts
using other type of sensors such as laser scanners or a combination of sensors are also
available [33].

Pick and place manipulation is yet another important capability that is crucial for
service and domestic service robots [34], for example, to set up a dining table or find and
deliver objects in the house. Such capability is tightly linked to the object detection and
recognition functionality and would require a robust image processing algorithm [35]. A
pick and place routine usually consists of four main steps [36]: (1) choosing a grasp on
the item, (2) planning a motion to grasp the item, (3) planning a motion to the placement
location and (4) plan a motion to extract the gripper. The visual servoing method [37] has
been widely used in the literature to integrate visual information in the robot arm’s control
loop. Its fundamental idea is to continuously estimate the pose of the target object relative
to the end-effector using a camera. This pose is used as an error value to be minimized by
a control law, which prescribes the manipulator motion necessary to approach the target
object. Several variants of this technique have been developed, including the recent direct
visual servoing approach which considers the complete image as the input (instead of
artificial markers) by calculating its luminance map [38] or by feeding it to a deep neural
network [39]. Neural networks have also been applied to the grasp-selection problem to
achieve firm grasps on unknown objects [40]. Fully end-to-end reinforcement learning
systems have been developed [41,42] which are able to learn complete grasping policies
based only on RGB images and using a substantial amount of experience data gathered
from multiple robots running simultaneously.

3. Robot Functionalities: People Perception, Human Following and Pick and Placing

This section describes the hardware and software systems used for developing three
main robot functionalities for a domestic mobile service robot. Section 3.1 briefly describes
the mobile robot platform developed and upgraded for the intended research work as well
as for participating in major robot competitions such as ERL and RoboCup@Home, while
the later subsections will present the three functionalities in detail:

• People perception (Section 3.2);
• Human following (Section 3.3);
• Pick and placing (Section 3.4).

3.1. Mobile Robot System

The MOnarCH robot (mbot), shown in Figure 1, originally designed to interact with
children inside hospitals [9] and to participate at domestic robot competitions [43], was
improved and used to develop the three functionalities presented in this paper. In addition
to various other sensors and actuators, described in [9], the robot is now equipped with
25 m range laser scanners, which are used for mapping, navigation and obstacle avoidance
and a display with touch screen. On top of this platform, we have now installed additional
devices, namely, a 6 DoF arm for manipulation (Kinova Gen2), a directional microphone for
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speech interaction (Røde VideoMic Pro) and an Orbbec Astra RGB-D camera positioned on
the (rotating) head for object detection and localization, people tracking, obstacle perception
and visual servoing. The mobile robot features one on-board computer with i7 processor,
graphics card NVIDIA GTX 1060 AERO. It has an overall weight of 25 Kg and a maximum
velocity of 2.5 m/s with 1 m/s2 acceleration. The system includes WiFi communications,
which, among other purposes, enable it to communicate with a home automation system
to send remote commands and read remote sensors. All the code running in the mbot is
written in Python and C++, supported by the Robot Operating System (ROS) and some of
its packages.

Figure 1. The Mbot mobile robot at the ISR/IST ERL certified test bed performing a pick and
place operation.

3.2. People Perception

People perception is an important functionality required for robots operating in prox-
imity of humans, in particular for robots in home and consumer environments expected to
interact with humans. To obtain an efficient and complete people perception functionality,
we apply and merge several techniques that allow the robot to (1) detect the presence
of a person, (2) to locate the position of the person and to (3) identify the identity of the
detected person.

In this work, we employed a technique common to both detecting people and objects
based on the Darknet YOLO [44] method. This method allows the detection in real-time of
multiple people by returning a 2D bounding box of the detected people in the camera frame.
The method receives RGB images from the RGB-D camera and uses the full images as input
to a pre-trained neural network, resulting in an image that is divided into several regions
and predicting possible bounding boxes with associated probabilities for each region.

Upon detection, an estimate of the person’s 3D position is computed. This is achieved
by using the information registered by the RGB-D camera that supplies both RGB and
depth images. These two images are synchronized (≈12 Hz), then the corners of the
detected bounding box are found in the depth image. The bounding box is shrunk to
increase the density of interest points, and the center of this bounding box is defined as an
approximation to the detected person’s position [45].

For people recognition, the used method is based on face recognition techniques [46].
The algorithm receives sampled frames from the RGB-D camera and feeds the image
to a pre-trained neural network that detects all faces in an image by using the method
Histogram of Oriented Gradients [47]. When all faces in an image are detected, each
face has 68 face landmarks estimated [48] so that the face can be rotated and scaled to be
centered in a square. This image is then fed to one other pre-trained neural network that
returns an embedding of 128 measurements of each face [49] that can be used to compare
and recognize faces. Then, for each image, the obtained embedding is compared with the
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previously known faces by applying a linear Support-Vector Machine (SVM) Classifier that
returns the name of the person with closest embedding match, above a certain tolerance
threshold. Algorithm 1 describes the implementation of this method while Figure 2 shows
an instance from one of the face recognition trials.

Algorithm 1: Face detection algorithm.
Result: Face detected from a group of known faces
input : rgb_image, known_faces_list[]

1 begin
2 frame = Sample(rgb_image);
3 face_list = face_detection_nn(frame);
4 for face in face_list do
5 face_features = features_estimator(face);
6 face_centered = center(face, face_features);
7 embedding = face_encodings(face_centered);
8 face_estimate = classifier(embedding, known_faces_list[]);
9 end

10 end

Figure 2. Face recognition of an encountered person (on the right) from a pool of 6 known faces (on
the left).

3.3. Person Following

The Person Following module requires that the People Perception component, de-
scribed in Section 3.2, is working correctly and a person can be correctly detected, identified
and his/her location can be accurately estimated. Our people following method is built on
top of an autonomous waypoint navigation method previously developed for our robot [45].
The base navigation is the ROS navigation stack (http://wiki.ros.org/navigation, (accessed
on 1 September 2020)) with AMCL (http://wiki.ros.org/amcl, (accessed on 15 September
2020)), a particle filter based localization implementation. For motion planning, a Dijk-
stra based global planner is used as well as the Dynamic Window Approach used as the
local planner.

Algorithm 2 describes the Person Following routine. After obtaining the position of
the target person relative to the robot’s base and, consequently, relative to the map’s frame,
the algorithm calculates the desired goal pose where the robot should be located at. This
goal pose is then fed to the autonomous navigation stack that guides the robot to the target
position taking the shortest path while also avoiding obstacles. If the target person moves
positions, then the robot will track the movement and reapply the algorithm.

Steps for calculating the goal pose ( lines 5 to 17 of the Algorithm 2) can be summarized
in the following manner, where r is the desired distance that the robot should keep from
the person:

1. A circle of radius r, number of points npc and density of points dp is created around
the target (npc = dpr).

http://wiki.ros.org/navigation
http://wiki.ros.org/amcl


Appl. Sci. 2022, 12, 4819 6 of 21

2. All the points are ordered by the distance to the robot.
3. The points are tested to check if they are free in the costmap.
4. Check if there is any obstacle between the robot and the target.
5. If there are points in this circle that satisfy these conditions, the closest point to the

robot is used. If there is not, r increases and the algorithm returns to step 1.
6. The orientation of the robot is chosen from the calculated position towards the person.

Algorithm 2: Person following algorithm
Result: The robot follows a certain person.
input : target_person_pose, robot_pose, map, r, dp

1 begin
2 while people_following is true do
3 if person_moved(target_person_pose, old_person_pose) then
4 target_pose = ø
5 while target_pose = ø do
6 circle[] = circle_creation(target_person_pose, r, dp);
7 ordered_circle[] = order(circle[], robot_pose);
8 ordered_circle[] = check_availability(ordered_circle[], map);
9 if ordered_circle is not empty then

10 target_pose = ordered_circle[first_element];
11 orientation = get_orientation(target_pose, target_person_pose);
12 break;
13 end
14 else
15 r = r + increase_constant;
16 end
17 end
18 Move_To(target_pose, orientation);
19 old_person_pose = target_person_pose;
20 end
21 rotate_head_towards(target_person_pose);
22 end
23 end

Figure 3 illustrates an example of people following from an actual trial where the robot
selects the best possible goal position while navigating through a narrow corridor.

Figure 3. Person following example. The yellow sphere represents the person position, blue spheres
represent the possible positions the robot could be at the desired distance to the person and the
purple line is the path the robot chose from its position to the chosen target position.
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3.4. Pick and Placing

For the Pick and Placing functionality, an approach based on the visual-servoing
technique is implemented for reaching and grasping objects. The method relies on the
RGB-D camera in the MBot’s head to continuously estimate both the end-effector and
target poses and then uses their difference as a positioning error to be minimized through
proportional control of the arm. Since both poses are in the camera frame, this approach is
less sensitive to errors in the calibration of both the camera and the arm joints.

3.4.1. Target Object Localization

Although traditional visual-servoing implementations use artificial markers on the
target object, recent advances in image recognition allow for regular objects to be detected
without markers. We use a YOLO v3 [44] Convolutional Neural Network, trained on the
COCO dataset containing images of 80 object classes. The network outputs a 2D bounding
box around detected objects in the camera frame (as shown in Figure 4a) at a high refresh
rate (>10 Hz).

To estimate the 3D pose of an object, the central portion of the bounding box is
sampled, and its depth values are obtained. The 25th percentile depth value is selected
as representative of the object depth d. This percentile was chosen to remove potential
outliers. A ray is then projected from the camera lens and intersects the center of the YOLO
bounding box. This ray is obtained through a pinhole camera model and is represented by
unit vector r. The 3D object pose ĝc (Figure 4b) is obtained by multiplying this direction
vector by the depth value: ĝc = d · r.

(a) (b)

Figure 4. Target localization: (a) YOLO bounding box; (b) 3D pose obtained through depth sampling.

3.4.2. End-Effector Localization

To obtain the end-effector pose we used an alternative strategy, where three AR Tags
were placed on the end-effector, and the ALVAR package [50] was employed to track the
tags and precisely estimate the wrist’s 3D pose. As we are only modifying the robot and
not the environment, this method does not limit the applicability of the solution, while
providing more stability and accuracy compared to the previous approach.

When any wrist tag is visible to the robot, the ALVAR package outputs the pose of
the main tag M. To obtain the pose of the hand h, which is the point that should approach
the object, as shown in Figure 5, we establish a transform tm

h that describes the hand in the
marker frame. A simple frame transformation yields the required hand pose in camera
frame: ĥc = M̂c

mtm
h .
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Figure 5. End-effector localization through ALVAR tags (M: marker pose, h: hand pose).

3.4.3. Visual-Servo Control

After estimating the object (ĝc) and end-effector (ĥc) poses in the camera-frame, the
error is computed as the difference between the two and minimized by the following
proportional control law [37]:

u0 = −k T̂0
c (ĥ

c − ĝc) (1)

where T̂0
c is the transformation matrix from camera to root frame, based on measurements;

k is a proportional gain parameter; and u0 is the resulting root-frame velocity required for
the arm to approach the object.

Since both poses are subject to the same camera calibration, the accuracy of the system
is independent from calibration errors. The system is also robust to joint sensor errors
as the end-effector is being continuously observed in the camera frame. To control the
arm in joint-velocity mode, the end-effector’s Cartesian velocity must be translated into
six joint velocities for the arm’s revolute joint actuators. This is done through inverse
differential kinematics where the arm’s Jacobian matrix is inverted through singular value
decomposition and multiplied by the end-effector velocity vector, resulting in a column
vector of joint velocities, sent to the arm driver. Figure 6 shows the diagram for the
described architecture.

Visual servoing is used on the final grasp approach, after the end-effector is already
visible to the MBot’s head camera. We developed a complete grasping pipeline, making use
of the MoveIt! ROS framework, that begins by placing the arm in a pregrasp pose (selected
based on a modular criterion, currently the object’s height), which subsequently activates
visual servoing, stopping when an acceptable distance s (configurable, currently 1.2 cm) is
reached, at which point the fingers are closed and the object is grasped.

YOLO CNN + Depth

ALVAR tag tracker

u0 = −k T̂ 0
c
(ĥc

− ĝc) q̇ = J†(q) u0 Arm
driver

RGB-D

RGB

ĝc

ĥc

Target object

Visual Servoing

u0

(eef vel)

q̇
(joint

localization

End-effector
localization

vels)

joint angles change,

causing a change in J
†

Arm is moved, causing
a change in the image

Head-camera image

RGB-D

Differential Kinematics

Figure 6. Diagram of the visual servoing architecture for reaching and grasping objects.

3.4.4. Pick and Place Pipeline

The complete Pick and Place pipeline is implemented as a state machine, and its
pseudo-code is presented in Algorithm 3:
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Algorithm 3: Object-grasping pipeline

1 Function PickPlace(object_type, target_pos):
2 start_localizer(object_type)
3 sweep_head()
4 turn_head_to_object(object_t f )
5 pose← select_pregrasp_pose(object_tf)
6 pregrasp(pose)
7 visual_servo()
8 close_gripper()
9 lift_eef()

10 move_eef(target_pos)
11 lower_eef()
12 open_gripper()
13 go_to_pose(’mbot_resting’)

The pipeline is triggered by calling an ROS service, using two fields as input: the type
of object to grasp and the target pose where the object should be placed. The position of
the object is tracked by the YOLO CNN and depth estimator, and its position (object_t f )
is published as an ROS tf transform. The sweep_head procedure turns mbot’s head left
and right to look for the object and allows it to build an octomap of the scene, which is
used for collision avoidance in the arm’s motion planning. The head is then turned so
that the object is centered in the frame. The select_pregrasp_pose procedure is then
executed, with the goal of computing an end-effector pose that positions the wrist in the
frame, enabling the use of visual servoing. The MoveIt! framework is used to calculate
and execute the pregrasp motion plan. With the end-effector in frame, the final approach
is performed through visual servoing, minimizing the error in the camera frame until
it reaches a threshold, at which point the gripper is closed, and the object is lifted. The
end-effector is moved to place the object on the target position relative to the table, and it is
then lowered, the gripper is opened and the arm returns to the resting position. Figure 7
shows the robot executing the pipeline, and more examples can be seen in a video available
at https://youtu.be/CZaLNTZ_ITU (accessed on 30 October 2020 ).

Figure 7. Successful Pick and Place execution by the Mbot robot.

4. Functionality Benchmark

This section describes the functionality benchmarks (FBMs) and the automatic bench-
marking system that was designed to automatically evaluate the performance of the three
robot functionalities addressed in this paper. These three functionality benchmarks will be
part of the ERL benchmarking system that evaluates domestic robot solutions at different
certified testbeds around Europe.

4.1. Automatic Benchmarking System

The benchmarking system employs a software called Referee, Scoring and Benchmark-
ing Box (RSBB), which was developed to support and execute benchmarks. The objective
of the system is, first, to measure and evaluate the behavior of robots and, second, to collect
the benchmark information that can later be analyzed and made available as datasets. To
achieve this, the RSBB wirelessly interacts with the robots, interacts with users through a

https://youtu.be/CZaLNTZ_ITU
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graphical user interface (GUI) and with other systems such as home automated devices
and Motion Capture (MoCap) systems to obtain the ground-truth information of robots,
objects and people.

The RSBB is a collection of ROS packages that communicate with each other through
ROS topics and services and with the robots through the Protobuf protocol (see
Figure 8). The RefBox (Referee Box) acts as the core for the communication between
the robot, the GUI (Graphical User Interface), the BmBox (Benchmarking Box) and other
external systems such as the MoCap system and Home Automation Devices. The BmBox
loads and executes the benchmark scripts when requested by the RefBox.

The RSBB executes a benchmark trial by running a script that sends the goals and
benchmark related information to the robots, collects the results and the ground-truth
information about the environment and finally computes the score for the trial. The
Benchmark Scripts are implemented on top of a framework that facilitates the interaction
with the core in order to exchange commands and information from the robots and people,
in particular the referee, who controls the RSBB during the execution of the benchmark.
The benchmark scripts also communicate with the external software to collect additional
information, e.g., the MoCap software. The robots are connect to the RSBB on a Wireless
network (see Figure 9). The robots communicate with the RSBB through a ROS package
running on the robot. This package provides a simplified interface exposing the relevant
topics and services for each specific benchmark and makes the communication protocol
transparent to the users. To isolate the ground truth data from the robots, parts of the
system run on different networks than the one dedicated to the communication between
robot and the RSBB. Hence, the position measured from the MoCap system is not accessible
by the robots.

The RSBB automatically executes all the packages needed to execute a benchmark
and the user only selects the benchmark to execute and the robot to connect to, allowing
any person to easily install and operate the RSBB. Information and instructions from the
benchmark script are shown in a Graphical User Interface (GUI) during the execution to
guide the user (see Figure 10).

Another objective of the RSBB is to facilitate scripting new benchmarks. A benchmark
script is composed of a sequence of goals for the robot and a set of manual operations
presented to the user. Goals are transmitted through an ROS service and are used to send
information about the goal (e.g., the coordinates where an object should be placed, see
Section 4.4) and to receive its execution result (e.g., which person the robot recognized, see
Section 4.3). A manual operation provides instructions or requests information from the
user (e.g., to place the black cup on the table or ask Peter to move inside the target area).
The scripting framework also provides a simplified interface to score and completely log
the benchmarks.

Figure 8. RSBB packages and communication diagram.
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Linux PC / RSBB

Windows PC

MoCap

Switch

HAD

Switch

MoCap

Cameras

Switch

Wireless

Router

RSBB Core

RSBB Comm

MoCap Interface

HAD Interface

MoCap Software

Benchmark

Script

Robot

Figure 9. RSBB machine and its network diagram. Solid lines indicate wired connection, while
dashed lines indicate wireless connection.

Figure 10. Panels of the RSBB GUI: (A) Benchmark control: To select the target robot and benchmark,
and to start/stop the benchmark; (B) Manual operation: Prints a desired manual action to be executed
by the operator, who clicks on the button when it is done; (C) Benchmark monitoring: Shows
errors/warnings and the currently active robots; (D) Score: Displays the current benchmark score.
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The RSBB software, along with its documentation and tutorials, is now publicly
available at (RSBB: https://github.com/rockin-robot-challenge/rsbb (accessed on 10 Au-
gust 2020), RSBB robot communication package: https://github.com/rockin-robot-chal
lenge/at_home_rsbb_comm_ros (accessed on 10 August 2020), Benchmark script tuto-
rial: https://github.com/rockin-robot-challenge/rsbb/blob/master/rsbb_etc/doc/bm
box/benchmark_script_tutorial.md (accessed on 10 August 2020)).

4.2. People Perception

A functionality benchmark for evaluating the ability of robots in correctly detecting,
identifying and locating humans was designed and developed. The benchmark requires an
empty space of predefined dimensions (3 m× 3 m) that will host a set of human targets. The
coordinates of this area and the world’s reference frame are provided to the the benchmark
users. This area is captured by a MoCap system that measures the ground-truth position of
the humans inside the target area. Human targets are asked to enter the target area, upon
request of the RSBB system, while holding a MoCap marker set, shown in Figure 11, or to
wear a hat with the markers.

Figure 11. MoCap marker set used on the human targets and the robots to measure their true position
in the world.

A set of human targets consisting of both males and females are chosen for the
benchmark. The procedure for this FBM is described as follows:

1. The robot is placed on a predefined location outside the specified target and is con-
nected to the RSBB network.

2. The test starts by the RSBB upon receiving the readiness signal from the robot.
3. The RSBB then randomly selects a subject from the set of human targets and requests

the person to move inside the area.
4. After the person is in place, the operator uses the RSBB’s GUI to press the “Manual

Operation Complete” button.
5. The RSBB sends a request signal for the robot to start with the the functionality

attempt, i.e., to detect, identify and locate the target.
6. The robot then communicates the perception results to the RSBB.
7. The RSBB asks the subject to move out of the area and randomly selects the next

person to enter.

Steps 3 to 5 are repeated for all subjects, and the RSBB automatically computes and
communicates the trial score.

For each perception attempt, the robot is expected to communicate the following:

• The 2D position of the person with respect to the world reference frame.
• The identity of the person who is inside the target area.

At the end of a trial, the RSBB evaluates the perception performance of a robot
by computing:

1. The percentage of correctly recognized peoples;

https://github.com/rockin-robot-challenge/rsbb
https://github.com/rockin-robot-challenge/at_home_rsbb_comm_ros
https://github.com/rockin-robot-challenge/at_home_rsbb_comm_ros
https://github.com/rockin-robot-challenge/rsbb/blob/master/rsbb_etc/doc/bmbox/benchmark_script_tutorial.md
https://github.com/rockin-robot-challenge/rsbb/blob/master/rsbb_etc/doc/bmbox/benchmark_script_tutorial.md
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2. The localization error for all the detected peoples;
3. The trial’s execution time.

Before the benchmark is executed, the robot can collect information about the subjects
in order to collect training data.

4.3. Person Following

This FBM was designed to evaluate the capabilities of robots in effectively
following humans.

The steps for the procedure of the FBM are as follows:

1. The robot is placed on the starting position in front of a person.
2. The test starts by the RSBB, upon receiving the readiness signal from the robot.
3. A start signal is sent by the RSBB, and the benchmark starts.
4. The person starts to walk and visits a set of locations inside the arena, occasionally

stopping and then resuming the walking.
5. The robot is expected to maintain a desired distance with the person while avoiding

obstacles and other people that can interrupt the motion of the robot.
6. The benchmark is terminated after a predefined duration, and a timeout signal is sent

out by the RSBB.

The performance of the following behavior is computed with the help of the MoCap
system that continuously measures the true pose of the robot and the target at all times.
Both the robot and the target person are equipped with MoCap markers. To derive the pose
of the robot’s odometric center with respect to the origin, the relative pose of the marker
set with respect to the robot’s center is required. This is simply obtained by the RSBB
before the benchmark by placing the robot on the origin of the test bed and measuring
the transformation between the marker set and the origin. The three-dimensional poses of
the human target and the robot are projected onto the ground plane, and their Euclidean
ground distance is continuously computed.

A performance score is computed based on the following:

1. MA: The accuracy in following and maintaining the desired relative distance to
the target;

2. MT : The total covered distance while following the target. The robot is considered to
be following the target if it is within a tolerance range of the desired distance.

The previous criteria encourage both accurate and fast solutions with minimum
interruption requests by the robot. Since this benchmark requires continuous tracking of
the robot and the person by the MoCap system, which might be interrupted due to marker
occlusions or unexpected movements in regions not captured by the MoCap system, a
benchmark reliability metric is also calculated indicating how well the benchmark system
was able to capture the trial.

The three metrics are described in the following equations:

MA =
∑s∈S |D(robots, persons)− Ddesired|

#S
(2)

MT = ∑
s∈S

D(rs−1, rs), if Dmin ≤ D(rs, ps) ≤ Dmax (3)

Benchmark Reliability =
#S

#S + #F
(4)

where S and F are the sets of successful and failed MoCap samples, respectively; the
D(a, b) function is the L2 norm between two 2D positions; and Dmin, Dmax and Ddesired are
configurable parameters (for the experiments in this work, their values are 0.15 m, 3.5 m
and 2 m, respectively).
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4.4. Pick and Placing

This FBM evaluates the ability of a domestic service robot to correctly grasp, pick and
place objects. In particular, the benchmark focuses on the picking and placing capabilities
of robots, which is an important functionality for domestic applications, such as to prepare
a dining table.

Figure 12 illustrates a schematic diagram of the benchmarking procedure. The RSBB
requests the operator to place objects one by one, on top of a table in front of the robot. The
robot needs to correctly grasp, lift up and then place the object on a target position that is
specified by the RSBB.

The steps for the FBM are as follows:

1. The robot is placed in front of the table.
2. The benchmark trial starts by the RSBB, after the readiness signal is received by

the robot.
3. The RSBB randomly selects an item from the list of items and asks the referee to place

it on the table in a random location.
4. The RSBB sends the execution request with information about the identity of the

object and the desired target location.
5. The robot must then grasp, pick up and place the object on the specified target location.
6. The robot sends the complete attempt signal to the RSBB and announces its readiness

for the next object.

This process is repeated for all items in the item list. Evaluation of the performance is
based on the following:

1. The percentage of correctly grasped objects. A successful grasp is automatically
detected by the RSBB system once it detects that the height of the object has increased
by a pre-defined threshold;

2. The error in the placement position with respect to the specified target location;
3. The execution time.

Figure 12. Illustration of the Pick and Placing benchmark with the objective of grasping, picking and
placing the object on a specified target position. MoCap markers attached under the object allow the
MoCap system to continuously measure the true object pose.

A set of common household objects of different shapes is currently used for this
benchmark. As the focus of this FBM is on picking and placing capabilities, the nature
of the object placed on the table is communicated to the robot by the RSBB to assist the
robot with perception. In the future, we plan to release a set of standard 3D printed objects
for this benchmark to further facilitate perception and to obtain a detailed performance
evaluation covering a wide range of object shapes and rigidities.

To acquire the true pose of an object, a stand equipped with MoCap markers is placed
under the objects on the table. An L-shaped tool is also attached to the table, carrying
both MoCap markers and a visual tag that indicate the reference of the table to the MoCap
system and to the robot. Both tools are shown in Figure 13. This allows the RSBB to acquire
the true pose of objects relative to the table origin.
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Figure 13. Object stand and table origin tool, both fitted with MoCap markers.

5. Experiments and Results

This section describes evaluation of the functionalities presented in Section 3, imple-
mented and tested on our Mbot domestic service robot, using the Functionality Bench-
marks and the automatic benchmarking system presented in Section 4. Videos of tri-
als for each of the functionality benchmarks are available below (People Perception:
https://www.youtube.com/watch?v=pcJfcczA964 (accessed on 3 December 2020), People
Following: https://www.youtube.com/watch?v=reOBLMX4X5U (accessed on 3 December
2020), Pick and Placing: https://www.youtube.com/watch?v=lv5KLJC40pI (accessed on 3
December 2020)).

5.1. People Perception

The People Perception method presented in Section 3.2 was implemented on our
Mbot robot, and the People perception FBM was used to test and evaluate the method. As
mentioned before, in the People Perception FBM, the benchmarking system automatically
records the true and estimated position of every person, computes the position error and
checks to see if the robot has correctly recognized the person. An average position error
and a percentage of correct identifications is computed at the end of a trial. Table 1 shows
results from a single benchmark trial. Figure 14 illustrates the perception results from
six different trials of this FBM.

Table 1. People Perception FBM results for 5 People.

Position Error Detection Time

Person 1 0.1918 m 0% 9.0 s
Person 2 0.0735 m 100% 10.7 s
Person 3 0.1481 m 0% 7.5 s
Person 4 0.1916 m 100% 11.2 s
Person 5 0.2502 m 100% 11.2 s

Trial Result 0.1710 m 60% 9.9 s

Figure 14. People Perception FBM results per trial.

https://www.youtube.com/watch?v=pcJfcczA964
https://www.youtube.com/watch?v=reOBLMX4X5U
https://www.youtube.com/watch?v=lv5KLJC40pI
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5.2. People Following

In the People Following FBM, the main data collected are the position of the robot and
the position of the person from which the evaluation metrics are calculated automatically.
Figure 15 shows the path of the robot when following a person inside the ISRoboNet@Home
testbed, while using the People Following method described in Section 3.3.

Figure 15. Path of robot, where the red lines indicate the path estimated by the robot and the blue
lines indicate the paths measured by the MoCap system.

Figure 16 shows the FBM results from seven different trials, indicating the three output
metrics that are provided by the benchmarking system. The total distance covered by the
robot while following and the average deviation from the desired distance indicate how
well the robot has performed the following behavior. The benchmark reliability metric
shows how well the benchmark trial was captured by the benchmarking system in different
runs. The reliability score can easily be increased to near 100% by increasing the number of
MoCap cameras and carefully positioning the cameras to cover all regions of the arena.

Figure 16. People Following FBM results per trial.

Figure 17 shows the relative distance between the robot and the person as measured
by the robot and the MoCap system. The desired following distance to be maintained by
the robot was 2 m, and the robot was considered to be following if its relative distance was
inside a threshold indicated by the yellow region. The MoCap distance of 0 symbolizes the
moments when the MoCap system was unable to locate the person or the robot, and hence
that data point was not considered.
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Figure 17. The relative distance between the person and the robot, estimated by the robot and the
MoCap system in one of the FBM trials. The threshold for considering the robot to be following a
person is indicated by the yellow area.

5.3. Pick and Placing

To evaluate the Pick and Placing method and its functionality benchmark, five objects
were chosen and added to the FBM’s configuration file: a water bottle, a tall mug, a large
coffee cup, an espresso cup, and an orange. Figure 18 shows the objects used for the test.

Figure 18. Household objects used in the Grasping and Manipulation FBM.

The benchmark routine was repeated three times. In each trial, objects were placed
on the table one object at a time, randomly selected by the RSBB, for the robot to pick and
move to a target location as defined by the RSBB.

Figure 19 displays the grasping rate ( the percentage of objects successfully grasped
and lifted by at least 2 cm) and the placement accuracy ( the average placement error to the
object’s target position) for the three trials.

Figure 19. Pick and Placing FBM results per trial.
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The RSBB calculates both scores automatically by tracking the 3D pose of the object
obtained by the MoCap system. Figure 20 show the vertical and horizontal movement of
the object, tracked by the RSBB system, while being grasped and re-positioned as part of a
benchmark trial.

Figure 20. A Pick and Place attempt captured by the RSBB system. Left: Variation in the object’s
height relative to the table, describing a successful picking. Right: X, Y trajectory of the object on the
table, showing a correct re-positioning of the object to the target location.

6. Conclusions

This paper described efforts toward the development of three main functionalities for
a mobile service robots aimed to perform daily domestic tasks, with the goal of providing
assistance to elderly or handicapped persons inside a house. Furthermore, a set of novel
functionality benchmarks and an innovative performance evaluation system was described
for the systematic evaluation of the three robot functionalities. These benchmarks and the
benchmarking system are now available to be used at different certified test beds around
Europe under the European Robotics League (ERL)-Consumer that evaluate advanced
domestic robot solutions under the umbrella of scientific robot competitions. Currently,
a total of six functionality benchmarks have been implemented and are ready to be used
with the proposed automatic benchmarking system. We aim to continue this route to
include other FBMs and cover other functionalities needed for a domestic service robot.
Furthermore, we aim to enhance the existing FBMs to include additional benchmarking
metrics and algorithms that allow automatic calculation of performance scores and to
further increase the benchmark autonomy. Equipping the testbed and objects with sensors
to detect and evaluate robot–object interactions (for example, to quantitatively characterize
the capability of a robot in interacting with objects, opening doors or pushing a wheel chair)
is among the future work envisioned for this project.
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