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Abstract: The prosthetic feet that are most often prescribed to individuals with K3/K4 levels of
ambulation are the ESR feet. ESR stands for energy-storing and -releasing. The elastic energy is stored
by the elastic elements in composite materials (carbon fiber or glass fiber). ESR feet must be developed
and optimized in terms of stiffness, taking into account the loads that a healthy human foot undergoes
and its kinematics while walking. So far, state-of-the-art analyses show that the literature approaches
for prosthetic foot design are not based on a systematic methodology. With the aim of optimizing the
stiffness of ESR feet following a methodological procedure, a methodology based on finite element
structural analysis, standard static testing (ISO 10328) and functional verification was optimized and
it is presented in this paper. During the path of optimization of the foot prototypes, this methodology
was validated experimentally. It includes the following: (i) geometry optimization through two-
dimensional finite element analysis; (ii) material properties optimization through three-dimensional
finite element analysis; (iii) validation test on physical prototypes; (iv) functionality verification
through dynamic finite element analysis. The design and functional verification of MyFlex-γ, a three-
blade ESR foot prosthesis, is presented to describe the methodology and demonstrate its usability.

Keywords: finite element analysis (FEA); prosthetic feet; stiffness optimization; biomechanics

1. Introduction

Current commercially available prostheses are mostly energy-storing -and -releasing
(ESR) feet and they are the most prescribed prosthetic feet for individuals with K3 and
K4 levels of ambulation. ESR feet are passive prosthetic devices made of elastic elements,
which ensure the ESR feet work as springs that store energy during the mid-stance of the
gait cycle and release it for the propulsion during late stance [1,2]. The elastic elements are
generally leaf springs, also called blades, of composite materials (carbon fiber-reinforced
plastic—CFRP; or glass fiber-reinforced plastic—GFRP). The stiffness of the elastic elements
is a crucial characteristic of foot prostheses. Stiffness depends on the geometries and the
material properties, especially for ESR feet [3,4], and the choice of the global stiffness cate-
gory of foot prostheses depends on the weight and the users’ activity levels [5]. Moreover,
the few active ankle prosthetic devices on the market are joined to feet by a system of
composite leaf springs (see Table 1 for remarkable examples). The contribution of the elastic
elements is always significant.

The present work aims to propose and apply a systematic methodology that includes
elastic elements in the design process of prosthetic feet. The methodology combines
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numerical and experimental techniques for the design and the functional verification of
foot prostheses. The proposed methodology consists of three main phases: (i) the design
phase, which includes the stiffness and safety optimization; (ii) the mechanical test phase on a
physical prototype; and (iii) the functionality verification phase. The stiffness optimization,
carried out during the design phase, is performed using static structural finite element (FE)
analyses (FEA). Optimizing a passive foot prosthesis means optimizing its stiffness in
such a way that it gives rotations in both dorsiflexion and plantarflexion similar to the
rotations of a healthy foot. In the ankle–foot system of a human who has not suffered
any amputation to the lower limbs, there are muscles that control every movement giving
the desired or necessary rotation. With transtibial amputation, most of the muscles are
eliminated or reduced and a passive device such as the ESR foot cannot guarantee active
control as muscles do. However, by studying the literature, it is possible to determine the
loads to which a healthy foot is subjected while walking and its corresponding rotations.
Therefore, an ESR foot can be optimized in terms of stiffness considering the loads it is
subjected to and the rotations it must make while walking.

Table 1. Commercial active and semi-active foot prostheses with composite elastic foot.

Manufacturer Model Website (Access Date) Country

Blatchford Elan www.blatchford.co.uk (1 November 2021) UK
Blatchford ElanIC www.blatchford.co.uk (1 November 2021) UK

Fillauer Raize www.fillauer.com (1 November 2021) USA
Freedom-Innovations Kinnex 2.0 www.freedom-innovations.com (1 November 2021) USA

Össur Proprio Foot www.ossur.com (1 November 2021) Iceland
Ottobock Empower www.ottobock.com (1 November 2021) Germany

In previous publications, FEA was used with different aims in the design/study of
prosthetic feet. Omasta et al. and Bonnet et al. used FEA to analyze the stress-strain
behavior of load-bearing components [6,7]. Bonnet et al. also used FEA to analyze the
energy stored by an ESR foot [7]. FEAs were also applied to the design of foot prostheses
that comply with standards such as ISO 22675 (www.iso.org, accessed on 1 January 2021) [8]
or American Orthotic and Prosthetic Guidelines (AOPA, www.aopanet.org, accessed on 1
January 2021) [9]. FEA was used by Prost et al. to carry out the stiffness optimization
of the elastic elements of passive [10] prosthetic feet, while Sheperd et al. used it for
the same aim but to optimize a quasi-passive [11] foot prosthesis. The profile shapes of
prosthetic feet were to obtain an optimal roll-over by carrying structural FEAs [12,13].
Dao et al. designed an ESR foot with elastic elements in the composite materials (glass
fiber) [14]. Rigney et al. included FEA in a methodology that concerned ESR prosthetic foot
characterization; however, they did not propose it as a tool to design a new energy-storing
and -releasing foot [15]. Tryggvason et al. presented a work where the main aim was to
create a model which was meant to serve as a platform for iterative modifications of a foot
prosthesis design by simulating a standardized dynamic mechanical test (ISO/TS 16955),
wherein the foot performed a complete roll-over [16]. Table 2 summarizes the literature on
the use of FEA for the design and analysis of prosthetic feet characterized by the elastic
elements in composite materials. So far, state-of-the-art analyses show that the literature
approaches relatively to prosthetic foot design are not based on a systematic methodology.

This work aims to introduce a methodology that helps the designer develop their
initial idea of a foot prosthesis by combining ergonomic and functional requirements
with stiffness and strength requirements and choosing the most suitable materials. In the
methodology, two different FE models of the foot prosthesis were built during the first
phase (design phase, Section 3.1). The first FE model was two-dimensional (2D FE model)
and considered the foot prosthesis only in the sagittal plane (Section 3.1.1). The second FE
model was three-dimensional (3D FE model); the profile shapes of the elastic elements in the
sagittal plane were the ones optimized in the 2D FE analysis (Section 3.1.2). In previously
published studies, 3D FEAs have been carried out to perform stiffness optimization of the
energy-storing parts [12,13,16]. However, when the analysis aims to study the effect of
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www.ossur.com
www.ottobock.com
www.iso.org
www.aopanet.org


Appl. Sci. 2022, 12, 97 3 of 26

varying many geometric parameters on the behavior of the prosthesis, 3D FEA is time-
consuming. Therefore, the 2D FE model built in the present work is aimed to be used as a
tool to determine the effect of the geometry variation on the foot prosthesis behavior in
the sagittal plane, reducing the computation time. The 3D FE model was built to perform
a more detailed structural analysis, aiming to optimize the stiffness and the strength of
the prosthetic device. The optimization was carried out by determining the final material
properties to use; therefore, the lamination sequence of the layers of CFRP was used to
build the elastic elements. In previous studies, the composite elastic elements have been
simplified by simulating them with isotropic properties in 3D FEAs [12–14]. Simplifying
the laminate composites as isotropic materials could lead to high approximated results,
both in terms of stiffness and strength points of view. In Section 3.1.2, a guideline to build
the 3D FE model is given, also specifying the constraints and the load conditions of the
equivalent of ISO 10328 static tests. The second phase of the present methodology is the FE
model validations. The 2D and 3D FE models and analyses were subsequently subjected to
validation through an ISO 10328-inspired static test (mechanical test phase, see Section 3.2).
The design phase was carried out by optimizing the stiffness of the ESR foot with static loads;
thus, the validation phase was carried out with static tests. Nevertheless, the foot prostheses
were loaded dynamically during use. Therefore, it is crucial to understand the behavior of
the foot prostheses when they are under dynamic conditions. Two approaches to verify
the functionality and study prosthetic feet’s behavior when subjected to dynamic loads
are proposed. They were both carried out through two-dimensional FE analysis, wherein
only the motions in the sagittal plane were considered. The load conditions of the first
approach consisted of a simplified version of the dynamic test proposed in the ISO 10328
standard, whereby the foot was loaded at the heel and toe with two platforms, simulating
the ground reaction forces (Section 3.3.2). The second approach is based on the ISO 22675
and ISO/TS 16955 standards load conditions, whereby a tilting table simulated the relative
rotation between the thigh and the ground and an actuator simulated the ground reaction
forces by pushing the thigh–shank–foot system (Section 3.3.3) downwards. As a case study
to describe the methodology and demonstrate its usability, the stiffness optimization of an
ESR foot is presented: the MyFlex-γ foot, size 25, for 60 kg users and K3/K4 as a level of
ambulation. The configuration of the composite blades of MyFlex-γ is similar to the ESR
foot Pro-Flex Pivot by Össur.

Table 2. Aim and type of simulations and material properties used in previous works where finite
element analysis is applied to study foot prostheses.

Ref. Aim Type Mat. Prop.

Omasta et al. [6] analysis 3D Static linear, isotropic
Bonnet et al. [7] analysis 3D static linear, isotropic
Naveed et al. [8] design 3D dynamic linear, isotropic
Santana et al. [9] design 3D static non linear, orthotropic
Prost et al. [10] design 3D static linear, isotropic

Shepherd et al. [11] design 3D static linear, isotropic
Mahmoodi et al. [12] design 3D dynamic linear, isotropic

Ke et al. [13] design 3D static linear, isotropic
Dao et al. [14] design 3D static/dynamic linear, isotropic

Rigney et al. [15] analysis 3D static/dynamic linear, isotropic
Tryggvason et al. [16] design 3D dynamic non linear, orthotropic

2. Requirements

Designing ESR feet means optimizing the stiffness of their elastic elements. The basic
definition of stiffness of a loaded structure is stiffness equal to load divided by the deformation.
In the present case, the deformation corresponds to the rotation of the foot in the sagittal
plane (dorsiflexion and plantarflexion). On the other hand, the load corresponds to the
ground reaction forces. In this section, the ankle–foot range of rotation on the sagittal plane
(Section 2.1) and the ground reaction forces (Section 2.2) during normal ground walking are
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given. Normal ground walking is a cyclic movement. The cyclic movement is properly called
the gait cycle or stride. It consists of two main phases, the stance phase (when the foot is
touching the ground) and the swing phase. For the aim of the design methodology, the work
is focused on the stance phase only. The stance phase consists of three sub-phases: the early
stance, the mid stance and the late stance. The heel portion of the ESR foot absorbs the impact
of the foot prosthesis against the ground in the early stance; the elastic elements store elastic
energy during mid stance, then release it during the late stance for the push off.

2.1. The Ankle Rotation on the Sagittal Plane

The ankle range of motion while walking on normal ground is significantly influenced
by several factors, such as walking velocity, age and gender [17–24]. However, the curves
that describe the behavior of the ankle rotations for different conditions follow the same
path. Thus, the healthy human ankle rotation has an initial plantarflexion during early
stance (from 8% to 12% of the gait cycle) that goes from −1° to −8°. The maximum
dorsiflexion before heel-off occurs from 60% to 70% of the gait cycle and goes from 6° to 16°
of ankle rotation.

2.2. The Vertical Ground Reaction Forces during Normal Ground Walking

The gait cycle is influenced by different factors, not only kinematically but also in
terms of how the foot impacts the ground at heel strike and toe strike and how it loads the
ground during the entire stance phase. The forces exchanged by the foot and the ground are
called ground reaction forces. The value of ground reaction forces during normal walking vary
under different conditions, for instance, depending on different walking velocities [21].
The vertical ground reaction forces during normal ground walking have two peaks (M-shaped
ground reaction force); the first peak is at the early stance and it is between 95% to 130% of the
body weight; the second peak is at the end of the mid-stance and it is from 95% to 105% of
the body weight.

2.3. The ISO 10328 Standard Static Test

The stiffness characterization and safety verification of ESR feet and foot prostheses,
in general, are carried out with static tests regulated by standards, such as the ISO 10328,
or the AOPA Guidelines. According to both the standard and the guidelines, the forefoot
and the heel are loaded in two separate tests. The force is imposed on the forefoot and the
heel with a platform. For the heel test/plantarflexion test, the foot is relatively inclined
backwards by 15° to the platform to simulate the angle between the foot and the ground
at heel strike. When loaded, the foot prosthesis is subjected to a plantarflexion. For the
toe test/dorsiflexion test, the foot is relatively inclined forward by 20° to the platform to
simulate the angle between the foot and the ground at the end of the stance phase, at the
toe-off. When loaded, the prosthetic device is subjected to dorsiflexion. For the stiffness
determination of the foot prosthesis, the settling force (ISO 10328) is used and its maximum
value depends on the weight category of the intended users. For the plantarflexion test,
the settling force at the heel is from 105% (100 kg weight category) to 125% (60 kg weight
category) of the body weight of the user. For the dorsiflexion test, the settling force at the
forefoot is from 94% (100 kg user) to 108% (60 kg user) of the body weight of the user. Both
the forces are imposed with a rate between 100 N/s and 250 N/s.

2.4. Biomechanical Requirements

Based on the kinematics (Section 2.1), the loads (Section 2.2) and the standard test
(Section 2.3), the target is to optimize the elastic elements of the foot prosthesis in order to
provide the aimed rotations both in plantarflexion and dorsiflexion during normal ground
walking; as objective chosen for the present work, the foot must have a plantarflexion at
early stance comprised in the range between −5° and −8° when the heel is loaded with
between 95% and 130% of the body weight of the intended users and dorsiflexion in the
range between 14° and 18° when the forefoot is loaded between around 95% and 108%
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of the weight category. The values of dorsiflexion and plantarflexion and of the loads
corresponding to them vary according to the end user; therefore, even if using this same
methodology, the biomechanical objectives can vary.

2.5. Foot Prosthesis Configuration

The ESR foot considered to demonstrate the usability of the design methodology
is MyFlex-γ, whose design is inspired by Pro-Flex Pivot by Össur. MyFlex-γ can be
subdivided into three functional groups (see Figure 1), i.e., the ankle group (ankle frame
and tube connector), the tendon group (link and spring holder) and the foot group (lower
blade, middle blade and upper blade).

Tube

Connector

Upper Blade

Middle

Blade

Lower Blade

Spring 

Holder

Link

L = 250 mm

h
 ≅

8
0
 m

m

≅ 1/3 L

Ankle Frame

Figure 1. Dimensions and simplified 3D CAD of MyFlex-γ.

When the foot is loaded at the heel (early stance, before toe strike), the heel portion of
the lower blade, as well as the middle blade, is subjected to a deflection. On the other
hand, when the foot is loaded at the forefoot (late stance, after heel-off ), the upper blade and
the middle blade are deflected and deformed in respect to each other—see Figure 2. The
deflection of each of the above-mentioned elastic parts depends on their elasticity, intended
as material properties, and their geometries, which define the contact—thus, how they
deflect each other. Given this, the geometry and material optimizations are fundamental to
reaching the prosthetic foot’s targeted stiffness.

Maximum Plantarflexion Maximum Dorsiflexion

Lower Blade and Middle Blade are 

deflected and deformed to each other

Middle Blade and Upper Blade are 

deflected and deformed to each other

Figure 2. Deflection of the blades in respect to each other when the foot prosthesis is loaded at the
heel and at the forefoot.

3. Materials and Method

The design and functionality verification methodology proposed consists of a proce-
dure made of three main phases: (i) the design phase, (ii) the mechanical test phase to validate
the design and (iii) the functional verification phases. In Figure 3, the flowchart of the design
and functionality verification is depicted.

Once the requirements were defined and once the foot prosthesis configuration was
chosen, an initial geometry of the foot prosthesis (two-dimensional CAD model) was drawn
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and used in the design phase. The FE models built and used to optimize the stiffness of the
foot prosthesis were then validated through static tests, loading a physical prototype of the
prosthesis. Functional verification was subsequently made through two 2D dynamic FEAs
built upon the 2D FE model of the design phase.

Dorsiflexion/Plantarflex

ion Range of Motion

Ground Reaction Force 

at Normal Ground 

Walking

REQUIREMENTS

Foot Prosthesis 

Configuration

Initial Geometry

2D FE model:

Geometry 

Optimization

Geometry Re-design

3D FE model:

Material Optimization
Material Re-definition

DESIGN PHASE

Static Mechanical Test

2D FE model:

re-adaptation

2D FE model:

ISO-10328 inspired 

dynamic test

2D FE model:

ISO 22675 – ISO/TS 

16955 dynamic testF
U

N
C

T
IO

N
A

L

V
E

R
IF

IC
A

T
IO

N
VALIDATION

Figure 3. Flowchart of the design methodology: design phase, validation phase and functional verifica-
tion phase.

3.1. Design Phase

The most important locomotion’s degree of freedom of the foot is the rotation in the
sagittal plane. Therefore, to simplify the preliminary stiffness optimization of the prosthesis,
based mainly on the modification of the geometry of the prosthetic device, a 2D FE model
was built to simulate the motion of the foot in the sagittal plane (Section 3.1.1). Once the
geometry in the sagittal plane was defined, a 3D FE model was built to carry out a more
detailed simulation, wherein the composite elastic elements were optimized by modifying
the laminate material properties, working mainly on the type, orientation and numbers
of layers of CFRP prepregs (Section 3.1.2). Before explaining in detail the various stages
of the proposed methodology, it is reminded that optimizing a passive foot prosthesis
means optimizing its stiffness in such a way that it gives rotations in both dorsiflexion and
plantarflexion similar to the rotations of a healthy foot, when such prosthesis is subjected
to loads (ground reaction forces) similar to those to which a healthy foot is subjected. For
the present application, as already mentioned in Section 2.4, the aim is to optimize the
prosthesis’ stiffness in such a way that, when it is loaded at the heel with a load between
95% and 130% of the weight of the user, it gives a plantarflexion between −5° and −8°;
when it is loaded at the toe with a load between 95% and 108% of the body weight, it must
give a dorsiflexion between 14° and 18°.

3.1.1. Geometry Optimization: 2D FE Model

In this first step of the design phase, geometry optimization was carried out through a
2D FEA. For example, this step can be used to optimize the profile shapes of an already
defined configuration of elastic elements, to configure the energy-storing parts of a new
ESR foot, or to investigate the behavior of an existing prosthetic device after modifications
or additions of other functional components, such as dampers and actuators.

Optimizing the geometry of a foot prosthesis is very important, especially with regard
to ESR feet and their elastic components. Although the result of the 2D FE model in terms
of stiffness is not definitive, this model is essential to optimize the shapes of the various
elastic components to ensure the full range of motion needed to walk. A non-optimization
of the shapes of the elastic components can bring a range of motion too reduced or too
wide. Regardless of the stiffness of the elastic components, if the range of motion is too
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small, the foot rotates around the ankle joint up to a certain angle and then, a sudden
sensation of increase in the equivalent rotational stiffness around the ankle joint follows.
Due to this sudden increase in stiffness of the ankle joint, the foot no longer rotates around
the ankle and the heel comes off the ground before the desired moment. This situation
can be perceived by the user as a sudden disappearance of the support, which can cause
discomfort or even a fall of the user. If the range of motion is too wide, the foot may
continue to rotate in dorsiflexion beyond the desired limit by delaying the hell-off. Even
this situation can generate discomfort or even a fall of the user.

For MyFlex-γ, geometry optimization was focused on the profile shape of the middle
blade and the upper blade, aiming to meet the biomechanical requirements previously
defined (Section 2.4). The lower blade used for the present application was provided by
Össur and it was already optimized for the chosen weight category. Then, an initial 2D
geometry of the foot was drawn bearing in mind the dimensional parameters defined by
the human anatomy such as length L of the foot, the height h of the ankle joint from the
ground and the distance d of the ankle joint from the heel, which is around 1/3 of the foot
length. For the present application, the length of the foot was 250 mm and the height of the
ankle joint was between 80 mm and 100 mm, as shown in Figure 1.

Load conditions. The CAD model was drawn in the x–y plane and imported into ANSYS
Workbench. The FE model was simulated in a 2D static structural analysis. Following the
ISO 10328 standard, the dorsiflexion test was simulated by loading the FE model with a
platform at the forefoot. For the plantarflexion test, the FE model was loaded at the heel.
The platforms were moved by imposing 10 mm of displacement for the plantarflexion test
and 50 mm for the dorsiflexion test. The shank was constrained with a fixed support at
the top of the tube connector. For the present application, the loads and the constraints are
depicted in Figure 4.

Reaction Force Reaction Force

Imposed Displacement

Fixed Fixed

M

J

15°
20°

G
M

J

G

Y-pf

X-pf

Y-pf

X-pf

Y Y

X X

Figure 4. Schematic image of the boundary conditions used for the 2D FE model of the Design step,
which was used to simulate the static tests according to ISO 10328. The heel was loaded with an
inclined platform (−15°) to which a displacement was imposed (10 mm); the forefoot was compressed
with a 20° inclined platform which was moved until 50 mm. In both cases, the platform was free to
move along its longitudinal direction.

The geometry optimization was carried out by varying the geometric parameters.
These parameters depend on the foot prosthesis architecture and the designers can choose
them. For MyFlex-γ, the parameters are depicted in Figure 5 and listed in Table 3. The
upper blade was defined in the sagittal plane by 6 parameters. The parameter UBt is the
thickness, while the parameters c1, c2, c3, c4 and c5 define the curvatures of the curved
profile of the upper blade, which was composed by 6 straight sections—starting from the
metatarsus (front), c1 is the relative inclination between the first and the second section,
c2 is the relative inclination between the second and third section, etc. The middle blade,
which had a straight profile in the sagittal plane, was defined only by its length (MBL)
and thickness (MBt). The lower blade, provided by Össur, had been already optimized, in
terms of shape and material properties, for specific users’ weight categories.
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c1
c2

c3
c4

c5

250

8
0
-1

0
0

Figure 5. Geometric parameters of MyFlex-γ varied in the 2D FE model of the design phase—see
Table 3.

Table 3. Geometric parameters of MyFlex-γ varied in the 2D FE model of the design phase—see
Figure 5.

Parameter Min Value Max Value

upper blade thickness UBt (mm) 6.00 8.50 defined in step 2
upper blade curvature 1 UB c1 (deg) 1.00 3.00
upper blade curvature 2 UB c2 (deg) 1.00 3.00
upper blade curvature 3 UB c3 (deg) 1.00 3.00
upper blade curvature 4 UB c4 (deg) 1.00 3.00
upper blade curvature 5 UB c5 (deg) 3.00 5.00

middle blade length MBL (mm) 150 175
middle blade thickness MBt (mm) 7.00 10.00 defined in step 2

Mesh modeling. The FE model was built in ANSYS Workbench. PLANE183 (ANSYS)
elements were used for mesh building; these were two-dimensional 8- and 6-node elements
with quadratic displacement behavior and two translations at each node as degrees of
freedom. The final 2D FE model of MyFlex-γ was meshed (Figure 6), presenting a total of
10,000 nodes corresponding to 20,000 degrees of freedom.

Figure 6. Mesh modeling and width assignment in the transversal direction. The 2D FE model was
meshed with PLANE183 elements, for a total of 10,000 nodes without the platform and 20,000 with
the platform.

Contacts modeling. The contacts between parts had to be modeled differently according
to the real conditions. For parts that worked bending toward each other with slight sliding,
the contacts were modeled as frictional using pure penalty formulation and 0.1 was set as
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the normal stiffness factor. For contacts that could be modeled as glued/bonded, the bonded
contact type was used with augmented Lagrange formulation and 1 was set as the normal
stiffness factor.

In the present work, the upper blade, middle blade and lower blade bent toward each
other with slight sliding when the foot was loaded. Therefore, the contacts between the
upper blade and middle blade and between the middle blade and the lower blade were
modeled as frictional contact using pure penalty formulation. The ankle frame and the upper
blade were joined together with two M8 bolts along the longitudinal direction; for this
condition, the contact between the ankle frame bottom surface and the upper blade top
surface could be modeled as bonded to simplify the simulation, using augmented Lagrange
formulation. A summary of the contacts is presented in Table 4.

Table 4. Contacts’ properties. See also Figure 7. AF = ankle frame; UB = upper blade; MB = middle
blade; LB = lower blade; SH = spring holder; TC = tube connector.

Surface 1 Surface 2 Type Formulation Frict. Coeff. Norm. Stiff. Fact.

AF top UB bottom bonded augm.Lagrange - 1.00
UB bottom MB top frictional pure penalty 0.20 0.01
MB bottom LB top frictional pure penalty 0.20 0.01
MB bottom SH top frictional pure penalty 0.20 0.01
AF ankle TC ankle no separation augm.Lagrange - 1.00

Contact

lower blade-foot shell:

Frictional, Friction Coeff. = 0.2

Fixed

Contact 

middle blade-lower blade:

Frictional, Friction Coeff. = 0.2

Contact

upper blade-middle blade:

Frictional, Friction Coeff. = 0.2

Contact 

ankle frame-upper blade:

Bonded

Contact 

tube connector-ankle frame:

No Separation

Contact 

middle blade-spring holder:

Frictional, Friction Coeff. = 0.2

Body to Body Joint: 

Beam

Body to Body Joint: 

Spring

Body to Body Joint: 

Spring

Figure 7. Joint and contact modeling in the 2D FE model. See also Table 4 for detailed information.

For the 2D FE model of MyFlex-γ, a no-separation contact type between the tube
connector and the ankle frame (see Figure 7) was used to model the ankle joint; a no-
separation contact type allows frictionless motions to be performed without separation of
the parts.

Joints: Pretensioned bolts were modeled as preloaded springs, where the preload
given as force was equal to the bolt pretension of the corresponding bolt. More specifically,
the bolts were modeled as longitudinal springs body-to-body joints (longitudinal COMBIN14,
ANSYS). Both the nodes of the COMBIN14 element were applied as direct attachment to
the nodes of the connected parts. The elastic elements were joined together with two
pretensioned M8 bolts in the physical MyFlex-γ that could be seen as a single bolt in
the sagittal plane. In addition, the middle blade and the spring holder were joined with
preloaded M6 screws. Bolt pretension was simulated as a normal force given to the
longitudinal springs body-to-body joints, which corresponded to the standard bolt pretensions
for M6 (7.4 kN, 8.8 class, frictional coefficient = 0.20) and M8 (13.7 kN, 8.8 class, frictional
coefficient = 0.20). Connection links with hinge joints at both extremities were modeled
with body-to-body beam joints (BEAM3, ANSYS). BEAM3 is a 2D uniaxial element with
tension, compression and bending capabilities and it has the translations in both directions
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of the x–y plane and the rotation around the z-direction at each node. In MyFlex-γ, the
link part, characterized by two hinge joints that connected the tube connector to the spring
holder, was modeled by BEAM3.

Simulation conditions: ESR feet elastic elements are subjected to high deflections. There-
fore, the 2D FE model was simulated in a nonlinear static structural analysis environment.

Simulation outputs: The behavior of the foot can be evaluated in two different modali-
ties by plotting the reaction force at the fixed constraint against the platform displacement in
the yp f direction (see Figure 4) or against the foot rotation. The foot rotation is calculated
by using two virtual markers (G and M in Figure 8). The positions of the virtual markers
were chosen considering the marker-set protocol [21,25]. Since the shank was fixed, the J
marker was considered as (0,0).

Fixed

M
G

J

A) B)

α
Zf

Yf

Xf

x

y

Figure 8. The foot rotation α is calculated as the variation of the angle between the shank axis and
the GM line. The G and M markers taken into account in (A) are referred to the reflective markers
(grey circles in (B)) considered by Leardini et al. [25].

The displacements of the virtual markers (given in the global x–y reference) are given
as direct output of the simulation and they can be considered as functions of the platform
displacement vp f in the vertical direction yp f of the same platform (see Figure 4). Therefore,
the displacements of the G marker in the global x- and y-directions are

uG = uG(yp f ) (1)

vG = vG(yp f ) (2)

The displacement of the M marker in the global x- and y-directions are

uM = uM(yp f ) (3)

vM = vM(yp f ) (4)

If (xG0;yG0) and (xM0;yM0) are the initial positions of G and M markers, referred to J
(0;0), the coordinates of G and M are:

xG(yp f ) = xG0 + uG(yp f ) (5)

yG(yp f ) = yG0 + vG(yp f ) (6)

xM(yp f ) = xM0 + uM(yp f ) (7)

yM(yp f ) = yM0 + vM(yp f ) (8)

The foot rotation ∆α is calculated as the variation of the angle between the GM line
and the horizontal direction (Figure 9). The initial angle α0 between the GM line and the
horizontal direction and the rotation ∆α of the foot are calculated as:

α0 = arctan
( y0G − y0M

x0G − x0M

)
(9)

∆α = α − α0 (10)
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In Equation (10), α is determined as

α = arctan
( yG − yM

xG − xM

)
(11)

G

G’

M
M’

Platform Displacement

J = J’

Figure 9. Virtual markers displacement during static dorsiflexion test. Platform displacement at
0 (black and white image) mm vs. platform displacement at 50 mm.

3.1.2. Material Properties Optimization: 3D FE Model

With the 2D FE model, the profile of the elastic elements and the general geometry
of the foot prosthesis in the sagittal plane were defined. The 3D CAD model for the 3D
FE model was built upon the geometry obtained in the previous step of the design phase
methodology (Section 3.1.1). The elastic elements of ESR feet, in general, are laminate
composite and they are built by stacking, in sequence, layers of CFRP (carbon fiber-
reinforced plastic) or GFRP (glass fiber-reinforced plastic) prepregs, which are sheets of pre-
impregnated fibers (generally pre-impregnated with resin) and they can be unidirectional or
woven. The stiffness of each of the elastic elements of the ESR feet is defined by lamination
sequence, type, number, orientation and order of each layer. For MyFlex-γ, unidirectional
and woven CFRP prepregs were used. The lamination sequence of CFRP prepregs layers
was optimized to reach the targeted stiffness, thus meeting the biomechanical requirements
defined in Section 2.4. The elastic properties of the CFRP prepregs used are gathered in
Table 5.

Table 5. Orthotropic elasticity of CFRP prepregs used to manufacture the upper blade, middle blade
and lower blade.

Type Gramm. Thick. E1 E2 E3 G12 G23 G13 ε12 ε23 ε13

g/m2 mm GPa GPa GPa GPa GPa GPa - - -

UD 150 0.151 112.5 7.4 7.4 4.3 2.6 4.3 0.33 0.44 0.33
UD 250 0.251 112.5 7.4 7.4 4.3 2.6 4.3 0.33 0.44 0.33
W 200 0.234 61.3 61.3 6.9 3.3 3.3 2.7 0.04 0.30 0.30

Loads and constraints: The 3D FE model is intended to be validated with a mechanical
test on a physical prototype of a foot prosthesis. In the ISO 10328 standard, the foot
is loaded with an inclined platform, which means two inclined actuators are required,
one for the heel and one for the toe, to compress the foot prosthesis. A dedicated test
setup was designed and built (Figure 10) to avoid the necessity of two inclined actuators.
The ISO 10328-equivalent test setup was characterized by a vertical piston that pushed a
platform upward. The relative inclination between the foot and the platform was created
by two different adapters that inclined the foot backwards by 15° and forwards by 20°.
The platform, free to move along the longitudinal direction of the foot, compressed the
foot prosthesis, fixed at the top. A vertical displacement was imposed to the platform to
compress the foot at the heel and at the toe in two different tests to simulate the ground
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reaction forces at both the early and the late stance, respectively. The total displacement
was 10 mm and 50 mm at the heel and the toe load conditions, respectively, because of
the different range of motion of the foot during plantarflexion and dorsiflexion. For the
toe load, the platform was moved upward linearly at a rate from 3 mm/s to 4 mm/s.
The platform moved linearly along the vertical direction for the heel load to compress the
foot at a rate from 0.6 mm/s to 0.8 mm/s. These rate values, both for the plantarflexion
and dorsiflexion tests, were chosen for a reason of convergence of the simulations. It was
verified that the results did not change if the dorsiflexion simulation was performed at
a rate of 3 mm/s or at a rate of 4 mm/s. The exact same applies to the plantarflexion
simulation. This is justified by the fact that the simulation was still in rate values under
static conditions.

Reaction Force

Fixed

A

M

FH

J

Reaction Force

A

M

F

H

J

ISO 10328 static test

(dorsiflexion)

Equivalent ISO 10328 static test

(dorsiflexion)

Figure 10. The ISO 10328 dorsiflexion static test compared to the equivalent test with vertical actuator.

The results from the design phase FEAs can be plotted as reaction force against the
rotation, or reaction force against the platform displacement.

Components modeling: The 3D CAD Model was imported into ANSYS by setting 3D as
the analysis type. All isotropic parts were provided as solid to ANSYS, while composite
parts were surfaces—Figure 11. All parts involved in contacts were modeled as flexible
elements (platform, foot shell, lower blade, middle blade, upper blade, ankle frame and
spring holder), while the parts connected with joints were modeled as rigid bodies (link
and tube connector)—see Figures 12 and 13.

Based on the results obtained from the 2D FE model in the previous step, the initial
values of thicknesses and elastic properties of the composite parts were predefined and
used as a reference to define the lamination sequences of layers of CFRP prepregs. Then,
the types, the numbers, the orientations and the order of the layers of CFRP prepregs were
changed until the targeted thickness and elastic properties (calculated with the Classical
Theory of Laminates) were reached.

Simplified Foot Shell

Surface models of upper 

blade and middle blade 

for ACP modeler

Figure 11. Isotropic parts were provided as solid, while composite components were surfaces. The
Össur lower blade was assumed as isotropic with approximated properties. The foot shell was
simplified considering the areas underneath the lower blade only.
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Figure 12. Mesh modeling of the components considered flexible in the analysis. The elastic ele-
ments, including the lower blade and the foot shell, were mainly modeled with SOLID186 elements
(quadratic behavior). Ankle frame, spring holder and platform were modeled with SOLID185
elements (linear behavior).

Figure 13. The 3D FE models for plantarflexion and dorsiflexion tests.

The 3D CAD model of the foot prosthesis was provided to ANSYS in Geometry. The
lamination sequences of the composite parts were modeled inside ANSYS Composite PrePost
(ACP). The main fiber direction for each of the composite parts is depicted in Figure 14 and
it corresponds to the longitudinal direction of the foot prosthesis. Then, the composite parts
were exported from ACP to Static Structural modeler as solid, with the final thicknesses.

Mesh modeling: The flexible components (platform, foot shell, lower blade, middle
blade, upper blade, ankle blade and spring holder) were meshed. The elastic elements,
including the lower blade and the foot shell, were mainly modeled with SOLID186 elements,
which were 20-node elements with 3 degrees of freedom at each node and with quadratic
behavior. SOLID187 elements (10-node elements with 3 degrees of freedom per node) were
used for irregular areas. Ankle frame, spring holder and platform were modeled with
SOLID185 elements, 8-node elements with 3 degrees of freedom at each node and linear
behavior. The final 3D FE model of MyFlex-γ consisted of around 1,800,000 degrees of
freedom (600,000 nodes) (Figures 12 and 13).

Middle Blade fiber direction

Upper Blade fiber direction

Middle Blade stack up direction

Upper Blade stack up direction

Figure 14. Modeling of the composite parts. The lower blade was considered to be isotropic with
elastic properties close to Össur Pro-Flex Pivot’s sole blade.



Appl. Sci. 2022, 12, 97 14 of 26

Contact modeling: As in the 2D FE model, for parts that bend to each other with slight
sliding, the contacts were modeled as frictional using pure penalty formulation and 0.1 was
set as the normal stiffness factor (the factor was set to 1 for normal dominated conditions).
For contacts that could be modeled as glued/bonded, the bonded contact type was used
with augmented Lagrange formulation and 1 was set as the normal stiffness factor. In MyFlex-γ,
the upper blade, the middle blade and the lower blade bend to each other with slight
sliding when the foot is loaded. The contacts between the upper blade and the middle
blade and between the middle blade and the lower blade were modeled as frictional contact
using pure penalty formulation. The contact between the ankle frame bottom surface and the
upper blade top surface was modeled as bonded to simplify the simulation, using augmented
Lagrange formulation. The contacts’ properties used in the present 3D model are summarized
in Table 6.

Table 6. Contacts’ properties. See also Figure 15. AF = ankle frame; UB = upper blade; MB = middle
blade; LB = lower blade; SH = spring holder; TC = tube connector.

Surface 1 Surface 2 Type Formulation Frict. Coeff. Norm. Stiff. Fact.

AF top UB bottom bonded augm.Lagrange - 1.00
UB bottom MB top frictional pure penalty 0.20 0.01
MB bottom LB top frictional pure penalty 0.20 0.01
MB bottom SH top frictional pure penalty 0.20 0.01

Contact

lower blade-foot shell:

Bonded

Fixed

Contact 

middle blade-lower blade:

Frictional, Friction Coeff. = 0.2

Contact

upper blade-middle blade:

Frictional, Friction Coeff. = 0.2

Contact 

ankle frame-upper blade:

Bonded

Body to Body Joint 

tube connector-ankle frame:

Revolute

Contact 

middle blade-spring holder:

Frictional, Friction Coeff. = 0.2

Body to Body Joint: 

Revolute

Body to Body Joint: 

Spring

Body to Body Joint: 

Spring

Body to Body Joint: 

Revolute

Body to Body Joint: 

Fixed

Figure 15. Joint and contact modeling in the 3D FE model. See also Table 6.

Bolt modeling: In MyFlex-γ, the elastic elements were joined together with two
preloaded M8 bolts. In addition, the middle blade and the spring holder were joined
with preloaded M6 screws. The screws were modeled as preloaded spring joints (ANSYS;
COMBIN14) and with specific axial stiffness and pretensions that corresponded to M8
(front bolts) and M6 (spring holder bolts). The extremities of the springs were applied, as
remote attachments, on the portions of the upper-blade top surface and on the bottom of the
lower-blade surface to simulate the washers’ section.

Loads and constraints: The FEA was carried out in a nonlinear static structural anal-
ysis by enabling the large deflection option. The vertical displacement was imposed on the
platform, free to move along the x-direction and fixed along y (transverse)-direction (see
Figures 10 and 13). The platform compressed the ESR foot and the reaction force was
measured where the fixed support constraint was set.

3.2. Mechanical Test Phase

In the equivalent test setup, a hydraulic press machine (INSTRON 8033) was used
as an actuator to compress the physical prototype of the foot prosthesis. The relative
inclination between the foot and the platform was obtained by specifically designed
adapters (Figure 16). As in the 3D FE model of the design phase (Section 3.1.2), the platform
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was moved under displacement control; it moved upwards linearly with the same rate
used in the design phase, i.e., 0.6–0.8 mm/s in the plantarflexion test and 3–4 mm/s in the
dorsiflexion test, to replicate the same conditions. Thanks to a linear guide, the platform
that pushed the foot prosthesis upward was free to move along the longitudinal direction
of the same foot prosthesis. The platform was mounted on the linear guide, attached to a
frame that could freely move when the hydraulic piston was actuated. The results of the
mechanical test can be given as displacement–reaction force, where the displacement was
the vertical motion of the platform and the reaction force was measured at the top of the
inclination adapter with a load cell. By applying markers to the prosthesis of the foot, the
rotations could also be determined; therefore, the stiffness curve of the prosthesis could be
plotted as rotation–reaction force. Knowing, from the simulations, the ratio of the platform
displacement and rotation of the foot, the results from the mechanical tests could be plotted
as rotation–reaction force even without the use of markers.

Fixed
Fixed

15° inclination adapter

20° inclination adapter

Figure 16. ISO 1328 equivalent static tests: actual plantarflexion and dorsiflexion tests and 3D Cad
model of the test set up, in plantarflexion test configuration.

3.3. Functionality Verification Phase

The functionality verification of the foot prosthesis was conducted in two different
modalities, both through transient structural FEAs. The first modality was a simplified
dynamic test inspired by the cyclic tests from ISO 10328 (Section 3.3.2). The cyclic tests
proposed in ISO 10328 relate to normal walking activities where loads occur regularly with
each step. In the second modality, the roll-over task of the foot prosthesis was simulated
and it is inspired by the dynamic tests from ISO 22675 and ISO/TS 16955 (Section 3.3.3).

3.3.1. Two-Dimensional FE Model Adjustment

The 2D FE models used to simulate the two dynamic tests were built upon the 2D
FE model developed in Section 3.1.1. The 2D FE model was characterized by speeding
up the simulations in the case of geometry optimization, carried out by changing specific
geometric parameters. Nevertheless, two-dimensional FE models are less precise than
three-dimensional FE models. The first reason is, in the 2D FE model, the width of each
part cannot be set as variable, as depicted in Figure 17. The second reason is geometric and
concerns the holes, which are not considered in the 2D FE model, which is depicted again
in Figure 17.

The third reason regards the material properties. The orientation of the fibers in
composite materials is fundamental, in terms of both stiffness and strength. In the 3D
FE model, the fibers were modeled following the curvatures of the components (middle
blade and upper blade in MyFlex-γ). The same situation did not occur in the 2D FE model.
Therefore, the 2D FE model built as described in Section 3.1.1 was simulated again. The
widths of the elastic parts were slightly adjusted to obtain the same displacement force curves
obtained in the static mechanical test (Section 3.2).
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2D FE Model 
constant width for each part

3D FE Model 

Figure 17. The width of each part in the 2D FE model was constant and the holes were not considered.

3.3.2. ISO 10328 Cyclic Tests

The re-adapted 2D FE model of the foot prosthesis was used to simulate the cyclic
tests proposed in the ISO 10328 standard. Constraints, contacts, mesh modeling, joints,
materials and width (dimension in the transverse direction) were the same for the foot
prosthesis, while the load conditions were changed. The foot was loaded at the heel and
forefoot with two platforms (Figure 18). The two platforms compressed the foot prosthesis
with two forces (Figure 19), simulating the ground reaction forces during the gait cycle.
The heel and the forefoot platforms were inclined by −15° and 20°, respectively. An initial
space between the forefoot platform and the foot prosthesis was given (Figure 18). The
forefoot touched the front platform when the forefoot force started to increase from 0 N
(around 22% of the gait cycle, Figure 19). The first contact between the forefoot and forefoot
platform simulated the toe strike. By considering the values of the ground reaction forces
specified in Section 2 and the 60 kg weight category of users, the heel force peak was 764 N,
while the forefoot force was 635 N. The same virtual markers used in Section 3.1.1 were
used to calculate the rotation of the ankle–foot. For the dynamic analysis, an entire gait
cycle of 1 s was considered.

Fixed

Heel Force Forefoot Force

ISO 10328 dynamic test

Fixed

Initial Space

Figure 18. ISO 10328 cyclic test configuration: the heel platform was inclined at −15°, while the
forefoot platform had an inclination of 20°. The heel and the forefoot forces followed the paths given
in Figure 19.
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Figure 19. M-shaped force: the qualitative behavior of the heel and the forefoot forces are based on
ISO 10328 dynamic test, while the maximum values (130% of the body weight for the heel force and
108% for the forefoot force) are from literature—see the Biomechanical Requirements in Section 2.4. In
the present work, a 60 kg body weight was used; therefore the peaks were 764 N and 635 N. The
forces were imposed as shown in Figure 18.

3.3.3. ISO 22675–ISO/TS 16955 Dynamic Test

The re-adapted 2D FE model of the foot prosthesis was used to build the present model
to simulate the ISO 22675–ISO/TS 16955 dynamic/roll-over test. Other parts were added,
such as the shank, the thigh and the tilting table (Figure 20). The contacts, mesh modeling,
joints, materials and width (dimension in the transverse direction) were the same used
in the first step of the design phase. The connection between the shank and the ankle–foot
system was modeled as a bonded contact. The contact between the knee portion of the
thigh and the knee portion of the shank was modeled in the FE model as a no-separation
contact to create the knee joint. The thigh remained vertical and was free to move along the
vertical direction only. The tilting table was rotated according to ISO 22675–ISO/TS 16955,
while the M-shaped force was imposed from the top of the thigh (Figure 20). The angle
between the foot and the tilting table ranged from −20° to 40° (Figure 20). The rotation of
the foot during the roll-over test was calculated using the virtual markers G, M, J and K.
First of all, the initial coordinates of each marker were determined from the CAD model
as G (xG0;yG0), M (xM0;yM0), J (xJ0;yJ0) and K (xK0;yK0). The displacements of the virtual
markers during the roll-over test were direct outputs of the simulation—uG, uM, uJ and uK,
in the x-direction, and vG, vM, vJ and vK, in the y-direction. The coordinates of the markers
during the roll-over test were: G(xG0 + uG;yG0 + vG), M(xM0 + uM;yM0 + vM), J(xJ0 + uJ ;yJ0
+ vJ) and K(xK0 + uK;yK0 + vK). The rotation ∆α of the foot was given as the variation of the
angle between the shank axis and the GM line. The angle α between the shank axis and the
GM line was given as follows:

α = αs − αGM (12)

where αs is the angle between the shank axis and the horizontal direction, calculated as

αs = arctan
( (yK0 + vK)− (yJ0 + vJ)

(xK0 + uK)− (xJ0 + uJ)

)
(13)

whereas αGM is the angle between the GM line and the horizontal direction, which is
calculated as follows:

αGM = arctan
( (yG0 + vG)− (yM0 + vM)

(xG0 + uG)− (xM0 + uM)

)
(14)

The rotation of the foot was then calculated in the following way:

∆α = α − α0 (15)

with α0 as
α0 = αs0 − αGM0 (16)
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where αs0 and αGM0 are the initial angle between the shank axis and the horizontal direction
and the initial angle between the GM line and the horizontal line, respectively. For the
dynamic analysis, an entire gait cycle of 1 s was considered.
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Figure 20. ISO–22675: the tilting table simulates the relative rotation between the ground and the
thigh. The force F depends on the weight category and the maximum value was 130% of the body
weight (BW). For the 60 kg weight category, the maximum value of the force F was 764 N. The tilting
table ranged from −20° to 40°.

4. Results and Discussion

The results obtained from the design, the mechanical test and the functional verification
phases are presented and discussed in the following sections. In addition, the comparison
of the time elapsed to carry out the simulations is presented.

4.1. Design Phase Results
4.1.1. Geometry Optimization: 2D FE Model Results

Several combinations of the parameters listed in Table 3 and depicted in Figure 5 were
used to carry out more than 1000 simulations. From these 1000+ simulations, the final
and pre-optimized values of the parameters were obtained and are listed in Table 7. The
tabulated values are the final values from the 2D model for the weight category that was
chosen to be developed (60 kg), while they are not the final values for the 3D model. In fact,
of these values, the values of the thickness of the two blades in the 3D model change based
on their stack-up sequence (which is defined in the 3D model, during the optimization of
the properties of the materials).

Table 7. Final geometric parameters that define the profile shape of MyFlex-γ elastic elements, for
the 60 kg weight category. See Figure 5.

Parameter Final Value

upper blade thickness UBt (mm) 6.80
upper blade curvature 1 UB c1 (deg) 2.00
upper blade curvature 2 UB c2 (deg) 2.00
upper blade curvature 3 UB c3 (deg) 2.20
upper blade curvature 4 UB c4 (deg) 2.50
upper blade curvature 5 UB c5 (deg) 4.20

middle blade length MBL (mm) 163
middle blade thickness MBt (mm) 7.60

The choice of the final parameters was based on the rotation–reaction force. However,
different configurations of the geometry could give similar results in terms of stiffness.
Thus, stress and approximated final weight of the device were also used as evaluation
parameters. However, among the 1000+ simulations, a configuration was considered
optimal if the curve foot rotation–reaction force fell into the optimal area, highlighted in
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the graphs in dark grey, as the intersection of the two lighter grey areas in Figure 21.
These areas, both for the dorsiflexion and for the plantarflexion, were defined considering
the biomechanical requirements previously reported in Section 2.4. Among the 1000+
combinations, the results from one of the non-optimal combination were taken into account
to be compared with the results coming from the final combination of parameters that
was considered pre-optimized. The dashed curve falls only partially into the optimal
plantarflexion area (Figure 21), although the same combination of parameters already gives
a curve that falls into the optimal dorsiflexion area. On the other hand, the black straight
line is the curve that describes the stiffness of the combination of parameters considered
pre-optimized. By varying the combinations of the parameters, similar stiffness curves can
be obtained in dorsiflexion and different stiffness curves in plantarflexion or vice versa.
This situation depends on the configuration of the elastic elements of each foot prosthesis
to be optimized. In this application, one or more combinations of geometric parameters
were considered to be those sought for biomechanical objectives if the stiffness curves fell
within the ranges of rotations and loads defined in Section 2.4. However, for future works,
exploiting the proposed methodology, optimization functions can be implemented in such
a way that the choice of the final configuration is not based only on the evaluation of the
stiffness curves.
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Figure 21. Results from the first stage of the design phase. The results from the pre-optimized
configuration (Table 3) are compared to the results of a random configuration. The vertical shadow is
the rotation range that the foot must have (values defined and specified in Section 2.4, “Biomechanical
Requirements”, i.e., between −5 degrees and −8 degrees in the plantarflexion and between 14 degrees
and 18 degrees in the dorsiflexion). The horizontal shadow is the range of the ground reaction force
(between 95% and 130% in plantarflexion and between 95% and 108% in dorsiflexion of the body
weight of the user). The intersection area between the two shadows is the optimal area in which
the curve of stiffness of the foot must fall, so that the foot rotates up to the degrees desired when
subjected to ground reaction forces.

The stiffness curves, plotted as foot rotation–reaction force in Figure 21, are also provided
as platform displacement–reaction force, as shown in Figure 22.
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Figure 22. The stiffness curves presented as foot rotation–reaction force in Figure 21 can be also
presented as platform displacement–reaction force.
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4.1.2. Material Properties Optimization: 3D FE Model

The final lamination sequences of the upper blade and the middle blade were obtained
after varying the types, the orientations and the numbers of layers of CFRP prepregs and
are reported in Table 8.

Table 8. Final lamination sequences of the upper blade and the middle blade. The properties of the
three types of CFRP prepregs are listed in Table 5. The directions of the fibers and the stack up for the
upper blade and middle blade are depicted in Figure 14.

Part Type Orientation (deg) No. of Layers Total Thickness (mm)

Woven 200 g/m2 0 3 0.702
Woven 200 g/m2 45 2 0.468

Upper blade Unidir. 250 g/m2 0 18 4.518
Woven 200 g/m2 45 2 0.468
Woven 200 g/m2 0 3 0.702

total = 6.858

Woven 200 g/m2 0 3 0.702
Unidir. 250 g/m2 0 5 1.255
Unidir. 150 g/m2 0 10 1.510

Middle blade Woven 200 g/m2 0 3 0.702
Unidir. 150 g/m2 0 10 1.510
Unidir. 250 g/m2 0 5 1.255
Woven 200 g/m2 0 3 0.702

total = 7.636

This prototype was made with the aim of validating the two 2D and 3D models of
the design phase. For the present application, no fiber orientation other than 0° and 45°
was used, to simplify the manufacturing of the prototype. Other orientations, such as 30
degrees, may also be considered for further optimization. As can be seen in Table 8, 45°
oriented fibers were only found in the upper blade, while, in the middle blade, they were
absent. Based on the result from the point of view of stress/strength, fibers woven oriented
at 45° led to too-high stress values when the prosthesis was subjected to operating loads
and this can be justified by the shape of the middle blade, shown in Figure 23. The two
parts into which the middle blade was divided into its fork shape were dimensionally too
narrow; further, 45° oriented fibers reduced the strength of the entire laminate.

x (0°)

y (90°)

Figure 23. Shape of the middle blade of MyFlex-γ.

The stiffness in dorsiflexion and plantarflexion of the foot prosthesis (modeled with
the final lamination sequences) are presented as foot rotation–reaction force in Figure 24 and
as platform displacement–reaction force in Figure 25.

Considering the strength properties of the materials used to realize the elastic com-
ponents (Table 9), the stress–strength ratio analysis for these components was carried out.
The Tsai–Wu criterion was used as the assessment criterion of the composite parts (the
upper blade and the middle blade). When the foot was loaded with the 220% of the weight
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category, the inverse reserve factor was under 0.5 (Figure 26) in the most critical area. An
inverse reserve factor of 0.5 corresponded to a safety factor of 2.

Table 9. Orthotropic strength of CFRP prepregs used to manufacture the upper blade, middle blade
and lower blade. T1, T2 and T3 are the tensile strength; C1, C2 and C3 are the compressive strength;
S12, S23 and S13 are the shear strength.

Type Gramm. Thick. T1 T2 T3 C1 C2 C3 S12 S23 S13

g/m2 mm MPa MPa MPa MPa MPa MPa MPa MPa MPa

UD 150 0.151 2200 29 29 −1082 −100 −100 60 30 60
UD 250 0.251 2200 29 29 −1082 −100 −100 60 30 60
W 200 0.234 805 805 50 −509 −509 −170 125 65 65
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Figure 24. Comparisons among the static plantarflexion and dorsiflexion 2D FEAs and 3D FEAs
and the mechanical tests on the physical prototype with stiffness curves givens as reaction force–
rotation. Again, the vertical shadow is the rotation range that the foot must have (values defined and
specified in Section 2.4, “Biomechanical Requirements”, i.e., between −5 degrees and −8 degrees
in the plantarflexion and between 14 degrees and 18 degrees in the dorsiflexion). The horizontal
shadow is the range of the ground reaction force (between 95% and 130% in plantarflexion and
between 95% and 108% in dorsiflexion of the body weight of the user). The intersection area between
the two shadows is the optimal area in which the curve of stiffness of the foot must fall, so that the
foot rotates up to the degrees desired when subjected to ground reaction forces.
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Figure 25. Comparisons among the static plantarflexion and dorsiflexion 2D FEAs and 3D FEAs and
the mechanical tests on the physical prototype with stiffness curves given as reaction force–displacement.
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Tsai-Wu Criterion

Inverse Reserve Factor at 220% of the 

weight category

Figure 26. Upper blade and middle blade evaluated with the Tsai–Wu criterion; the most critical
areas, when the foot was loaded with the 220% of body weight of intended users, presented an inverse
reserve factor of 0.5, which means a safety factor of 2.

4.2. ISO 10328 Equivalent Static Test Results

Once the stiffness optimization of its elastic components was performed, a prototype
of MyFlex-γ was built. The composite elements were manufactured using the lamination
sequences for the upper blade and the middle blade listed in Table 8. In addition, the other
components were designed with the same safety factor. The assembled physical prototype
was tested with the ISO-10328 equivalent static test setup, as presented in Section 2.3. The
results are plotted as rotation–reaction force in Figure 24 and as displacement–reaction force in
Figure 25.

The dorsiflexion curves, which are reported as rotation–reaction force (Figure 24), or as
displacement–reaction force (Figure 25), are quite similar. Therefore, it can be said that both
the 2D FE and 3D FE models were validated with the mechanical tests carried out on the
physical prototype of MyFlex-γ.

If the curves of dorsiflexion are very similar to each other, the same cannot be said
for those of plantarflexion. In fact, 2D FEA and 3D FEA curves diverge from the test
curve obtained for the physical prototype. The reasons for the divergence could be the
following: (i) the not-perfect mounting of the foot prosthesis on the test set-up; (ii) the not
perfect CAD and FE modeling of the foot shell; (iii) manufacturing defects that can cause
slight variations in the geometry of the physical prototype; (iv) the joints, such as the ankle
joint, hinge joints between the link and tube connector, and between the link and spring
holder, modeled without friction—thus, approximated; (v) the heel of the foot shell not
fully covered by the platform, as depicted in Figure 27.

Heel portion: not completely

covered by the heel platform

Interference between spring holder

and the foot shell

Figure 27. Plantarflexion test: the heel of the foot shell was not completely covered by the platform.

The plantarflexion displacement–reaction force curve obtained from the 3D FEA resulted
stiffer than the curve obtained from the mechanical test after around 6–7 mm of the vertical
displacement of the platform. After 6–7 mm of vertical displacement, the heel was not
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fully supported by the heel platform. The vertical support caused this situation (Figure 27),
which was not considered in the 3D FEA. During the heel test, the contact area between
the heel and the platform shifted forward. The distance between the point of application
of the force and the center of the ankle joint was reduced. This condition did not occur
in the mechanical test after 6–7 mm; the contact between the foot and the heel platform
did not evolve as it should have. With the same torsional stiffness of the foot prosthesis
in the sagittal plane, the force necessary to generate a plantarflexion was higher in the
3D FEA due to the shorter lever arm. It has to be specified that the platform was built
according to standards. However, the space for the heel portion of the foot was not enough.
For a more appropriate assessment of the plantarflexion stiffness, the heel platform (see
Figure 27) should provide more space, or the vertical face should be removed. In the case
of the dorsiflexion test, the test setup did not present a space issue. It is interesting to note
that the two dorsiflexion stiffness curves are in good agreement. This condition should
provide confidence in the 3D FE model presented in the design phase (Section 3.1.2).

4.3. Functionality Verification Results
4.3.1. ISO 10328 Cyclic Tests

Figure 28 shows how the elastic elements were deflected when the foot was subjected
to the ISO 10328 cyclic test.

0 10 20 30 40 50 60
Gait Cycle (%)

Figure 28. The deflection sequence of the 2D FE model of the prosthesis during ISO 10328 cyclic test.

The foot prosthesis had its maximum plantarflexion around −6.4° and maximum
dorsiflexion around 15°. Both the values are comprised in the ranges specified in the
Requirements section (Section 2.4), as also highlighted in Figure 29.
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Figure 29. The rotation of the foot prosthesis when subjected to the ISO 10328 cyclic test.

4.3.2. ISO 22675–ISO/TS 16955 Roll-over Test

The behavior of the of the leg prosthesis during ISO 22675 is shown in Figure 30. The
maximum plantarflexion of MyFlex-γ was −5°, while the maximum dorsiflexion was 15°.
The maximum plantarflexion obtained during early stance is comprised in the range of the
targeted angles during normal walking. In addition, the maximum dorsiflexion during
mid-stance is inside the aimed range (Figure 31).
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Figure 30. The lower leg prosthesis behavior when subjected to the ISO 22675 roll-over test.
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Figure 31. The rotation of the foot prosthesis when subjected to the ISO 22675 roll-over test.

4.3.3. Elapsed Time of Calculation Comparison: 2D FE Model vs. 3D FE Model

One of the advantages of the present methodology is to reduce the time of calculation
during geometry optimization, where the effects of the variation in several geometric
parameters are investigated. In previously published works on foot prostheses, geometry
optimization has been carried out through 3D FE models [12,13]. The 2D FE model aims
to provide a design tool to study the influence of the geometry on the foot prosthesis
behavior, giving the result in a shorter time than performing 3D FEAs. The time elapsed
to carry out a structural FEA depends on the computing power of the calculator used.
However, in similar conditions (same computing power), the time necessary to perform
the FEAs depends on several factors, such as the number of degrees of freedom of the FE
models. In Table 10, the number of nodes and number of degrees of freedom from the
2D FE model (Section 3.1.1) and the 3D FE model (Section 3.1.2) are listed. In the present
specific application, the 2D static FEA that simulated the dorsiflexion test required a time
of calculation of 45 s, while the equivalent 3D FEA required a time of calculation of 4 h and
19 min.

Table 10. Number of nodes and number of degrees of freedom from the 2D FE model (Section 3.1.1)
and the 3D FE model (Section 3.1.2).

Step Type of Simulation Number of Nodes Number of Deg. of Freedom

1 2D Static 10,000 20,000
2 3D Static 600,000 1,800,000

5. Conclusions

A methodology based on finite element (FE) analysis (FEA) and experimental tech-
niques for designing the elastic elements of prosthetic feet and their functionality verifi-
cation is presented. The present methodology can be exploited for different purposes. It
can be used to design new configurations of energy-storing and -releasing (ESR) feet for
different weight categories. It can be applied as a tool to study new systems that can be
added to an existing ESR foot to change its stiffness/damping properties. Furthermore, it
can be used to study the behavior of active prosthetic feet where their working principle
relies on actuators combined with the elastic foot. The methodology is subdivided into
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three main phases: the design phase, the validation phase and the functionality verification phase.
The design phase consists of two steps based on FEA. In the validation phase, the FE models
are validated through a static test on physical prototypes. In the functionality verification
phase, two standard dynamic tests from ISO 10328 and ISO 22675 are simulated. In the case
study of the ESR foot MyFlex-γ, the static 2D FE model from the first step of the design
phase resulted to be a reliable and fast-response tool to predict the influence of geometric
parameters on the behavior of the ESR foot. In addition, the 2D FE model resulted to be
a reliable instrument to find the optimal values of these geometric parameters. With the
static 3D FE model (the second step of the design phase), it was possible to optimize the
material properties of the composite elastic elements. By optimizing the geometry and the
material properties, it was possible to obtain the correct stiffness of the foot prosthesis for a
specific weight category of users, providing a device with a safety factor of 4. The stiffness
curves obtained from the 3D model resulted comparable to the results from the ISO 10328
equivalent mechanical test (validation phase). Therefore, the FE models can be considered
validated. The rotation angles of the foot obtained in the model based on the dynamic test
ISO 10328 and the model based on the dynamic test ISO 22675 are within the target range
of motion. The two dynamic tests can be considered alternatives to each other. They can be
both considered helpful for a preliminary assessment of the prosthesis dynamic behavior
before testing the prototype with amputee users.
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