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Abstract: Past studies on deep-lying tunnels under the assumption of plane strain have generally
neglected the influence of intermediate principal stress even though this affects the surrounding
rocks in the plastic zone. This study proposes a finite difference method to compute the stress strain
plastic region and displacement of a tunnel based on the Drucker–Prager (D–P) yield criterion and
non-associated flow rule and considering the influences of intermediate principal stress and the strain-
softening behavior of surrounding rock. The computed results were compared with those of other
well-known solutions and the accuracy and validity of the method were confirmed through some
examples. Parameter analysis was conducted to investigate the effects of intermediate principal stress
on stress-strain, the plastic region, the ground response curve, and the dilatability of surrounding
rock. The results showed that the plastic radius Rp, the residual radius Rd, and radial displacement
of surrounding rock first decreased and then increased with increasing intermediate principal stress
coefficient b from 0 to 1, with the minimums occurring at b = 0.75. On the contrary, the peak and rate
of variation of the dilatancy coefficient first increased and then decreased with increasing b and the
dilatancy coefficient Kψ gradually transitioned from nonlinear to linear variation. Meanwhile, the
inhibition of the plastic radius and radial displacement gradually weakened with increasing support
pressure, whereas the dilatancy coefficient of the tunnel opening gradually increased.

Keywords: tunnels; intermediate principal stress; D–P yield criterion; numerical solution; strain-
softening behavior

1. Introduction

Underground tunnels dominate constructed underground structures in rock engi-
neering and include highway and railway tunnels, underground workshops, mines, and
hydraulic tunnels. Underground engineering results in the destruction of the original
stress equilibrium state and in the redistribution of stress in the surrounding rock of the
tunnel. This results in the formation of an area of increased stress, which can cause tunnel
deformation and failure, and even rock burst [1–3]. Therefore, the accurate prediction of
the distribution of stress, plastic radius, and displacement of the plastic zone of surround-
ing rock is of great significance and provides the basis for the analysis of the stability of
surrounding rock. However, comparisons between experimental results and yield criteria-
calculated stress state and plastic range of surrounding rock have indicated contradictions,
with large discrepancies sometimes shown. Therefore, the selection of a suitable yield
criterion can increase the accuracy of a calculated stress state.

Many recent studies have proposed analytical solutions for models of complete
elasto-plasticity, elasto-brittleness, and strain-softening of surrounding rock using the
Mohr–Coulomb (M–C) yield criterion or Hoek–Brown (H–B) yield criterion [4–13]. Al-
though these studies are of practical and theoretical value, they do not consider the effect

Appl. Sci. 2022, 12, 85. https://doi.org/10.3390/app12010085 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12010085
https://doi.org/10.3390/app12010085
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-5262-1007
https://doi.org/10.3390/app12010085
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12010085?type=check_update&version=2


Appl. Sci. 2022, 12, 85 2 of 18

of intermediate principal stress on the deformation and failure resulting from tunnel ex-
cavation. However, both theory and practical observations indicate that most of the rock
mass remains in a three-dimensional (3D) stress state after the tunnel excavation and
unloading. Many studies, both theoretical and experimental [14–16], have shown that
the strength of geotechnical materials is closely related to intermediate principal stress.
Therefore, ignoring the effect of intermediate principal stress by rock mass strength can
lead to deviations in engineering design. There is currently only a gradual application
of strength criteria considering the influence of intermediate principal stresses within the
study of surrounding rock of tunnels and related rock engineering. These applications
mainly include the Drucker−Prager (DP) series strength criterion and the Unified Strength
Theory (UST). Based on UST, Yu et al. [17] proposed that intermediate principal stress
could be represented by a parameter b and the other two principal stresses in the plastic
zone. However, this assumption lacks a strong theoretical basis. A study by Xu [18] that
considered the effect of intermediate principal stress applied the unified strength theory
of Yu et al. [17] to the calculation of a circular tunnel. Hou [19] applied the Levy–Mises
constitutive relationship to deduced the expression of intermediate principal stress in the
plastic zone as the average of the other two principal stresses. However, the Levy–Mises
constitutive relationship for metallic materials is not suitable for geotechnical materials.
Zhang Qiang et al. [20] applied the UST to study the effect of intermediate principal stress
on the range of the fracture zone and deformation of the surrounding rock of a deeply
buried tunnel. However, they did not provide a method for calculating intermediate prin-
cipal stress. A finite difference method, which is used to calculate the strain-softening
behavior of rock masses considering the effect of intermediate principal stress, has been
proposed to calculate intermediate principal stress based on the unified failure criterion
and non-flow associated flue [21]. However, the UST does not consider the influence of
hydrostatic pressure on the deformation of surrounding rock and its complex form of ex-
pression is not convenient for application within engineering. The D–P criterion introduces
the influence of intermediate principal stress, thereby providing a more practical solution to
this kind of problem [22]. Therefore, the present study analyzed the effect of intermediate
principal stress on the rock surrounding a tunnel using the D–P criterion.

The dilative angleψ is generally used in elastoplastic analysis of deeply buried circular
tunnels to express capacity expansion after unloading. Most current research on the shear
dilative model has concentrated on the rock mass. In contrast, studies analyzing stresses of
circular tunnels have mostly taken the dilative angle into account as a constant parameter
or linear variable [5,23–26]. However, the dilative angle of rock mass cannot be considered
a constant or linearly changing within practical engineering due to surrounding pressure
and plastic shear strain. Detournay [3] proposed an attenuation model of the dilatancy co-
efficient for the surrounding rock of a circular tunnel. Subsequently, Alejano [13] proposed
a nonlinear attenuation relationship between the dilatancy angle ψ and confining pressure
based on the peak dilatancy function of the fractured rock mass. Zhao [26] found that
the dilative angle of the rock mass presents a nonlinear relationship with the surrounding
pressure and plastic shear strain.

The present study aimed to consider the softening properties of the rock mass and
the effect of intermediate principal stress on the strength of the rock mass. The D–P
criterion and non-correlated flow rule were applied to derive a finite difference numerical
method as representative of the stress field, displacement field, and plastic radius of the
surrounding rock under uniform stress. The influences of different factors on the stress,
strain, deformation, and plastic range of surrounding rock were studied and compared
with the solutions of the M–C and UST criterion. The results of the present study can
provide a significant theoretical foundation for the assessment of stability and structural
design of a deeply buried tunnel.
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2. Description of the Problem
2.1. Theoretical Representation of a Tunnel Surrounded by Rock Mass

As shown in Figure 1, the excavation of a deeply buried tunnel with a cylindrical
form is assumed as an axisymmetric plane strain problem by ignoring the influence of
gravity and defining the principal stress outside the vertical section as the intermediate
principal stress [1,27]. Assuming that the rock mass is homogeneous and isotropic, subject
to the initial hydrostatic stress field of σ0, the plastic region with radius Rp is formed by
the excavation of the tunnel with radius r0. The tunnel excavation surface is subject to
a uniform distribution of support structure pressure pi, and σθ and σr are the tangential
stress and the radial stress in the elastic–plastic zone, respectively.
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2.2. D–P Criterion Yield Function

The D–P criterion is the conical yield surface tangent to the hexagonal pyramid
of the M–C criterion proposed by Drucker and Prager and based on the generalized
Mises criterion. Meanwhile, considering the effect of intermediate principal stress and the
hydrostatic pressure stress field on the rock surrounding, the yield function is given as:

f
(

I1,
√

J2

)
=
√

J2 − αI1 − k = 0 (1)

In Equation (1), I1 and
√

J2 represent the first invariant of the stress tensor and the
invariant of the stress tensor, respectively. I1 and

√
J2 can then be written as:{

I1 = σ1 + σ2 + σ3

J2 = 1
6

[
(σ1 − σ2)

2 + (σ1 − σ3)
2 + (σ2 − σ3)

2
] (2)
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In Equation (2), α and k are the strength parameters of surrounding rock defined by
friction angle ϕ and cohesion c, respectively.

α =
sinϕ√

3
√

3 + sin2(ϕ)
(3)

k =

√
3c cosϕ√

3 + sin2(ϕ)
(4)

In engineering practice, the ratio-specific value b is generally applied to express the
relationship between the intermediate principal stress σ2, the major principal stress σ1, and
the minor principal stress σ3:

b =
σ2 − σ3

σ1 − σ3
(5)

In Equation (5), 0 ≤ b ≤ 1 and increases with increasing intermediate principal stress.
Equation (5) can then be combined with Equation (2):

I1 =
3
2
(σ1 + σ3) +

(
b− 1

2

)
(σ1 − σ3) (6)

J2 =
1
3

(
b2 − b + 1

)
(σ1 − σ3)

2 = M2(σ1 − σ3)
2 (7)

where:

M =

(
1
3

(
b2 − b + 1

))0.5
(8)

The D–P criterion expression can be modified by combining the above equations:

σ1 = Nσ3 + Y (9)

where:

N =
(M− bα + 2α)

(M− bα− α)
, Y =

k
(M− bα− α)

,

3D stress analysis of a circular tunnel rock mass can be regarded as a plane strain
problem in polar coordinates. The stress state of surrounding rock satisfies the following
relationship:

σ1 = σθ , σ2 = σz, σ3 = σr (10)

In Equation (10), σθ , σz, and σr represent the circumferential stress, axial stress, and
radial stress of the rock surrounding the tunnel, respectively.

2.3. Strain-Softening Model

The elastoplastic deformation of surrounding rock can be deduced in accordance with
the theory of plastic mechanics by calculating the weakening behavior of the strength
parameters [28]. If the D–P criterion satisfies the yield function in the strain-softening zone,
the expression of the yield function has the following form:

F(σθ , σr, ηp) = σθ − σr − H(σr, ηp) (11)

In Equation (11), H(σr, ηp) = (N(η)− 1)σr + Y(η), whereas the most extensively
accepted deviatoric plastic strain ηp, regarded as the strain-softening parameter, can be
determined by the difference between the circumferential plastic strain ε

p
θ and radial plastic

strain ε
p
r . The expression can be defined as [24]:

ηp = ε
p
θ − ε

p
r (12)
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In Equation (12), ε
p
θ and ε

p
r represent the major principal plastic strain and minor

principal plastic strain of the surrounding rock, respectively.
In accordance with the theory of plastic mechanics, the widely used Mohr–Coulomb

plastic potential function G could be written as:

G = σθ − Kψσr (13)

A correlation exists between the plastic strain of surrounding rock and the plastic
potential function G. Following the theory of plastic potential function, the following
relationship can be deduced: {

dε
p
r = dλ ∂G

∂σr
= −Kψdλ

dε
p
θ = dλ ∂G

∂σθ
= dλ

(14)

In Equation (14), Kψ is the dilatancy coefficient and ψ is the angle of expansion of the
rock mass, which varies with the surrounding pressure and type of rock mass.

The dilatancy behavior of rock surrounding a deep circular tunnel is affected by plastic
shear deformation and confining pressure of the rock mass [9,10,13]. Detournay et al. [3]
proposed that the dilatancy coefficient Kψ and the deviatoric plastic strain η show an
exponential decay relationship. Subsequently, Medhurst [29] analyzed the variation in the
dilatancy coefficient with deviatoric plastic strain η under different confining pressures
through triaxial experiments and obtained the following fitting formula:

Kψ = 1 +
(
Kψp − 1

)
e−

η
η∗ (15)

where:

Kψp =
1 + sinψpeak

1− sinψpeak

Through an analysis of previous studies and triaxial tests, Alejano [10] identified the
relationship between the peak dilatancy angle ψp, the confining pressures σr, and the peak
internal friction angle ϕp by fitting the test data as:

ψp =
ϕp

1 + lgσc
lg

σc

σr + 0.1
(16)

In Equation (16), σc is uniaxial compressive strength and σr is the confining stress.
The results of previous studies [23,30,31] indicated that the tunnel excavation proce-

dure results in a progressive decline in confining stress from σ0 to pi. In Figure 2, point A
indicates that the rock mass falls within the initial hydrostatic pressure field. The radial
stress σr of surrounding rock decreases progressively from point A to point B during the
tunnel excavation process. The critical radial stress pir of surrounding rock at point B of
the elastic–plastic boundary can be obtained by theoretical calculation. The surrounding
rock enters the plastic yield stage beyond the elasto-plastic boundary point B and the
surrounding rock parameters experience approximately linear attenuation with increasing
strain-softening parameter η. The distance between point C and point D demonstrates that
the surrounding rock enters the residual stage. In other words, point C signifies that the
surrounding rock transitions from the softening stage to residual stage.
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Therefore, the change in the strength parameter ω in the plastic softening zone, along
with the softening parameter, satisfies the following formula [24,32,33]:

ω(η) =

{
ωp − (ωp −ωr)

η
η∗ , 0 < η ≤ η∗

ωr, η > η∗
(17)

In Equation (17), η∗ is the transition point from the plastic softening zone to residual
zone and the superscripts “p” and “r” denote the maximum peak and minimum remaining
value of the strength parameters of surrounding rock, respectively.

3. Calculation of Stress and Displacement in the Elastic–Plastic Zone
3.1. Basic Equation

According to plane strain and the assumption of axisymmetry, the equilibrium equa-
tion of a circular tunnel can be simplified as:

dσr

dr
+

σr − σθ

r
= 0 (18)

dεθ

dr
+

εθ − εr

r
= 0 (19)

For a small strain problem, the tangential strain εθ and radial strain εr of the surround-
ing rock satisfy the geometric equation:

εr =
dur

dr
,εθ =

ur

r
(20)

In Equation (20), ur represents the radial migration of the surrounding rock.

3.2. Calculation of Rock Mass Deformation in the Elastic Region

According to elastic–plastic mechanics, tangential stress σθ , radial stress σr, and radial
displacement can be expressed as:

σr = σ0 − (σ0 − pic)
(

RP
r

)2

σθ = σ0 + (σ0 − pic)
(

RP
r

)2

ur =
1+v

E (σ0 − pic)
R2

p
r

(21)

In Equation (21), E is Young’s modulus and v is Poisson’s ratio.
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Using Equations (9) and (21), the peak value of critical radial stress pic can be obtained as:

pic =
2σ0 −Y
N + 1

(22)

From Hooke’s law, the stress and strain components at the critical points of the elastic
and plastic region are calculated as:(

σr(1)
σθ(1)

)
=

(
pic

2σ0 − pic

)
(23)

(
εr(1)
εθ(1)

)
=

1 + v
E

(
pic − σ0
σ0 − pic

)
(24)

3.3. Calculation of Yield Deformation of the Rock Mass in the Plastic Zone

The strength parameters of the surrounding rock vary with the softening coefficient
in the plastic region. For this reason, previous studies have provided widely divergent
solutions for the softening behavior of rock mass. Brown [5] used the finite difference
method to obtain the yield deformation of the soft rock mass surrounding a tunnel. Lee and
Pietruszczak [24] subsequently improved Brown’s calculation method and proposed a nu-
merical method with the increment of radial stress in the strain-softening zone represented
as a series of concentric rings.

As shown in Figure 3, the present study adopted the method by Lee and Pietruszczak
to uniformly divide the radial stress in the plastic zone into n concentric rings. The
normalized radius of the inner and outer boundaries of the ith annulus are ρ(i−1) =

r(i−1)
Rp

and ρ(i) =
r(i)
Rp

. The increment in radial stress of each ring can be obtained as:

∆σr =
pi− σR

n
(25)

Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 19 
 

Using Equations (9) and (21), the peak value of critical radial stress 𝑝௜௖  can be 
obtained as: 𝑝௜௖  =  2𝜎଴ − 𝑌𝑁 + 1  (22)

From Hooke’s law, the stress and strain components at the critical points of the elastic 
and plastic region are calculated as: ቆ𝜎௥(ଵ)𝜎ఏ(ଵ)ቇ  =  ൬ 𝑝௜௖2𝜎଴ − 𝑝௜௖൰ (23)

ቆ𝜀௥(ଵ)𝜀ఏ(ଵ)ቇ  =  1 + 𝑣𝐸 ൬𝑝௜௖ − 𝜎଴𝜎଴ − 𝑝௜௖൰ (24)

3.3. Calculation of Yield Deformation of the Rock Mass in the Plastic Zone 
The strength parameters of the surrounding rock vary with the softening coefficient 

in the plastic region. For this reason, previous studies have provided widely divergent 
solutions for the softening behavior of rock mass. Brown [5] used the finite difference 
method to obtain the yield deformation of the soft rock mass surrounding a tunnel. Lee 
and Pietruszczak [24] subsequently improved Brown’s calculation method and proposed 
a numerical method with the increment of radial stress in the strain-softening zone 
represented as a series of concentric rings.  

As shown in Figure 3, the present study adopted the method by Lee and Pietruszczak 
to uniformly divide the radial stress in the plastic zone into n concentric rings. The 
normalized radius of the inner and outer boundaries of the ith annulus are 𝜌(௜ିଵ)  =  ௥(೔షభ)ோ೛  

and 𝜌(௜)  =  ௥(೔)ோ೛ . The increment in radial stress of each ring can be obtained as: 

Δ𝜎௥  =  𝑝𝑖 − 𝜎ோ𝑛  (25)

Therefore, the radial stress of the ith radius can be expressed as: 𝜎௥(௜)  =  𝜎௥(௜ିଵ) + Δ𝜎௥ (26)

Substituting Equation (26) into Equation (11), the following is obtained: 𝜎ఏ(௜)  =  𝜎௥(௜) + 𝐻൫𝜎௥(௜), 𝜂(௜ିଵ)௣ ൯  (27)

therefore: Δ𝜎ఏ(௜)  =  𝜎ఏ(௜) − 𝜎ఏ(௜ିଵ) 
ρ（1）=1

ρ（i-1）

ρ（i）

ρ（n）=r0/Rp

 
Figure 3. Spatial distribution of the normalized radius division of the plastic zone.

Therefore, the radial stress of the ith radius can be expressed as:

σr(i) = σr(i−1) + ∆σr (26)

Substituting Equation (26) into Equation (11), the following is obtained:

σθ(i) = σr(i) + H
(

σr(i), η
p
(i−1)

)
(27)
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therefore:
∆σθ(i) = σθ(i) − σθ(i−1)

The elastic strain of the rock mass in the plastic zone in terms of stress with considera-
tion of the initial hydrostatic stress σ0 can be expressed as:(

εe
r(i)

εe
θ(i)

)
=

1 + v
E

[
1− v −v
−v 1− v

](
σr(i) − σ0
σθ(i) − σ0

)
(28)

According to Hooke’s Law, the increase in elastic strain can be calculated as:(
∆εe

r(i)
∆εe

θ(i)

)
=

1 + v
E

[
1− v −v
−v 1− v

](
∆σr(i)
∆σθ(i)

)
(29)

By substituting Equation (29) into the equilibrium equation [Equation (18)], the fol-
lowing is obtained:

σr(i) − σr(i−1)

ρ(i) − ρ(i−1)
+

σr(i) − σθ(i) + σr(i−1) − σθ(i−1)

ρ(i) + ρ(i−1)
= 0 (30)

The ith normalized radius is obtained as:

ρ(i) =
σθ(i) + σθ(i−1) − 2σr(i−1)

σθ(i) + σθ(i−1) − 2σr(i)
ρ(i−1) (31)

During the yield stage of the surrounding rock, total strain of each concentric ring can
be decomposed into elastic strain and plastic strain components as:(

εr
εθ

)
=

(
εe

r
εe

θ

)
+

(
ε

p
r

ε
p
θ

)
(32)

By substituting Equation (32) into the Strain Coordination equation [Equation (19)],
the following can be obtained:

dε
p
θ

dρ
+

ε
p
θ − ε

p
r

ρ
= −

dεe
θ

dρ
−

εe
θ − εe

r
ρ

(33)

or:

ε
p
θ(i) − ε

p
θ(i−1)

ρ(i) − ρ(i−1)
+

ε
p
θ(i) − ε

p
r(i) + ε

p
θ(i−1) − ε

p
r(i−1)

ρ(i) + ρ(i)
= −

∆εe
θ(i)

∆ρ(i)
−
(

1 + v
E(i)

)
2H
(

σr(i), η
p
(i−1)

)
ρ(i) + ρ(i−1)

(34)

Setting:

A(i) = −
∆εe

θ(i)

∆ρ(i)
−
(

1 + v
E(i)

)
2H
(

σr(i), η
p
(i−1)

)
ρ(i) + ρ(i−1)

By substituting Equation (34) into Equation (33), the following can be obtained: ε
p
r(i) = ε

p
r(i−1) − Kφ(i−1)

(
ε

p
θ(i) − ε

p
θ(i−1)

)
ε

p
θ(i) =

(
ε

p
r(i) − ε

p
r(i−1)

)
/− Kφ(i−1) + ε

p
θ(i−1)

(35)

By combining Equations (34) and (35), the following equation can be obtained:

ε
p
r(i) =

−2Kφ(i−1)A(i)∆ρ(i)ρ(i) + ε
p
θ(i−1)

(
2K2

φ(i−1)ρ(i−1) + 2Kφ(i−1)∆ρ(i)

)
+ ε

p
r(i−1)

(
∆ρ(i) − 2Kφ(i−1)∆ρ(i) − 2ρ(i−1)Kφ(i−1)

)
− 2K2

φ(i−1)ρ(i−1)

∆ρ(i) − 2Kφ(i−1)ρ(i−1)
(36)
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ε
p
θ(i) =

2A(i)∆ρ(i)ρ(i) − ε
p
θ(i−1)

(
2Kφ(i−1)ρ(i−1) − ∆ρ(i)

)
+ 2ε

p
r(i−1)∆ρ(i)

∆ρ(i) − 2Kφ(i−1)ρ(i−1)
(37)

where ∆ρ(i) = ρ(i) − ρ(i−1); ρ(i) =
ρ(i)+ρ(i−1)

2 ; Kφ(i−1) =
(M−mβ(i−1)+2β(i−1))
(M−mβ(i−1)−β(i−1))

; β(i−1) =
sinφ(i−1)√

9+3sin2φ(i−1)

.

Therefore, the plastic softening parameter can be written as:

η(i) = ε
p
θ(i) − ε

p
r(i) (38)

The total strain of the ith ring can be obtained as:{
εr(i) = ε

p
r(i) + εe

r(i)
εθ(i) = ε

p
θ(i) + εe

θ(i)
(39)

The above process is repeated n times when σr(n) = pi, ρ(n) =
r0
Rp

. The plastic radius
can be obtained by the calculation:

Rp =
r0

ρ(n)
(40)

r(i) = Rpρ(i) (41)

The radial displacement can then be calculated from the following relationship:

u(i) = εθ(i)r(i) (42)

4. Verification of the Proposed Algorithm

The present study investigated the effectiveness of the proposed algorithm by com-
paring the results of the proposed algorithm with those of Lee [24] and Wang [32]. The
proposed algorithm was applied to a circular tunnel with an excavation radius r0 = 3 m.
The input data were E = 10 GPa, v = 0.25, σ0 = 20 MPa, ϕp = 30, ϕr = 22, cp = 1 MPa,
cr = 0.7 MPa, φp = 3.75

◦
, φr = 3.75

◦
, and η∗ = 0.008.

(1) Figure 4 shows the results of the three approaches, including the stress components,
the strain components, and displacements.
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Figure 4. Distributions of stress, strain, and radial displacement under different algorithms: (a) distri-
bution of stress; (b) distribution of strain; (c) distribution of radial displacement.

As shown in Figure 4a, the tangential stress curve first gradually increased and then
decreased with the increase of r

r0
, and the tangential stress reached a maximum at the

elasto-plastic boundary. Figure 4b,c show that the maximum strain and displacement
occurred at the surface of the excavated tunnel. The three criteria could be ranked by strain
and displacement as D–P criterion > M–C Coulomb criterion > unified strength criterion.

(2) An analysis of the distribution of stress, strain, and displacement curves showed
that the results obtained by the D–P and M–C criteria were similar. The D–P criterion
obtained the largest range of the plastic zone, followed by the M–C Coulomb criterion,
with the unified strength criterion obtaining the smallest range. The stress, strain, and
displacement calculated by the unified strength criterion were obviously more conservative
than those by the D–P criterion. The analysis showed that the Unified Strength Theory
may underestimate the plastic radius and the radial displacement, resulting in the calcu-
lated support strength underestimating the pressure experienced in a real-world tunnel
engineering project.
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5. Discussion

The present study set the intermediate principal stress coefficient b of the surrounding
rock to 0, 0.25, 0.5, 0.75, and 1 to explore the influence of intermediate principal stress on
the redistribution of stress, strain, plastic zone development, the ground response curve,
and the shear dilatant.

5.1. The Effect of Intermediate Principal Stress on the Distribution of Stress and Strain of
Surrounding Rock

The prediction of the range of variation of stress and strain is an important basis for
studying the stability of surrounding rock after tunnel excavation.

Figure 5 shows the variation in the stress and strain curves with r in the plastic zone
for different intermediate principal stress coefficients b. The stress curves showed a rising
tendency with increasing depth of surrounding rock under different b, whereas strain
showed an opposite pattern.
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The position of the dotted line in the stress and strain curve gradually shifted to the
left as b increased from 0 to 0.75 and the peak stress gradually increased. This observation
indicated that the plastic radius of the surrounding rock decreased, whereas the rate of
change of stress increased. As b increased from 0.75 to 1, the position of the dotted line
in the stress and strain curve shifted to the right and the peak stress showed a slight
decreasing trend. The plastic radius Rp first decreased and then increased with increasing
intermediate principal stress coefficient b from 0 to 1. Furthermore, the spacing between the
dashed lines gradually decreased and then increased with increasing intermediate principal
stress coefficient b from 0 to 1, indicating that intermediate principal stress inhibited the
development of the plastic zone, although this effect showed an interval property.

Within increasing b from 0 to 0.75, the intermediate principal stress inhibited the plastic
radius, although this inhibitory effect weakened with increasing intermediate principal
stress. Intermediate principal stress promoted the development of the plastic region as b
increased from 0.75 to 1. This result could be attributed to the increase in confining pressure
improving the bearing capacity of the rock mass. However, damage of the rock occurred
when the confining pressure exceeded a certain threshold (b = 0.75).

Intermediate principal stress generally showed a strong interval effect. Within a certain
range, intermediate principal stress can effectively regulate the deformation of surrounding
rock and restrain the expansion of the plastic zone.

5.2. The Effect of Intermediate Principal Stress on the Development of the Plastic Range

Figure 6 shows the distributions of the post-peak failure radius Rp and residual radius
Rd to allow the study of the change in the plastic radius under different intermediate
principal stress and support resistance.

Figure 6 shows the relationships of Rp and Rd with pi. The results show distinct differ-
ences in the evolution of the plastic radius under different intermediate principal stress.

The density of points on the curve gradually decreased with the uniform decrease
in support pressure. This result indicated increasing rates of change in the plastic radius
and residual radius and that support pressure is inversely related to the strength of the
restraining effect on the plastic radius of the surrounding rock. Figure 6b shows that the
point of intersection between the curve and the Y-axis represented the critical support
pressure σrd/σ0 of surrounding rock. In addition, with complete release of the support
pressure, the plastic radii Rp and residual radii Rd both reached their maximum values
(shown in Table 1). The plastic radius Rp and the residual Rd first decreased and then
increased with changing intermediate principal stress coefficient b from 0 to 1, with the
minimum appearing at b = 0.75. However, the proportion of residual radius in the plastic
zone first increased, reaching a maximum at b = 0.75, and then decreased.

Table 1. The plastic radii and residual radii when pi = 0.

Intermediate Principal Stress
Coefficient b pi Rp Rd Rd/Rp

0 0 29.49273 17.51012 0.5937
0.25 0 16.57937 10.64699 0.6422
0.5 0 11.71721 7.95609 0.6790

0.75 0 10.64056 7.36186 0.6919
1 0 12.08821 8.22679 0.6806

In conclusion, the rates of change in the plastic radius and residual radius gradually
increased with decreasing support pressure. The intermediate principal stress showed
an interval effect on the plastic radius and residual radius. However, this interval effect
decreased with increasing supporting pressure. Therefore, the consideration of the in-
fluence of intermediate principal stress on the self-supporting capacity of rock mass is
necessary when evaluating the disturbance of the stability of rock mass by excavation and
the reliability of the adopted support structure design.
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Figure 6. The change in the plastic radius and residual radius under different intermediate principal
stress: (a) plastic radius; (b) residual radius.

5.3. Influence of Support Pressure pi on Dilatancy Coefficient Kψ

During tunnel excavation engineering, excavation unloading is an important factor
affecting the instability of a tunnel. Therefore, adopting a reasonable support structure is
beneficial to improving the stability of surrounding rock. Figure 7 demonstrates relation-
ships between supporting pressure and the dilatancy coefficient Kψ at the tunnel opening
under different intermediate principal stress. Under a pi = 0, the same dilatancy coefficient
Kψ was calculated under different intermediate principal stress coefficients b. The dilatancy
coefficient Kψ increased non-linearly with increasing support pressure pi. The increase in
support pressure inhibited the development of the plastic zone and increased the dilatancy
coefficient of surrounding rock. The dilatancy effect of the surrounding rock tended to
stabilize when the support pressure pi ≥ Pir (elastic–plastic critical pressure). This is
because under the constant supporting pressure, the plastic zone of the surrounding rock is
restrained to a certain extent, thereby inhibiting plastic deformation.
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5.4. Influence of Intermediate Principal Stress on the Dilatancy of Surrounding Rock

As previously mentioned, the plastic radius Rp decreased whereas the dilatancy
coefficient Kψ increased with increasing support pressure pi. Figure 8 shows the changes in
the dilatancy coefficient Kψ with changing surrounding rock depth r in the plastic region.
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The point of intersection between the curve and the Y-axis represented the value
of Kψ = 1, indicating that plastic deformation of the rock mass was fully developed
at the boundary of the tunnel opening. As shown in Figure 8, the dilatancy coefficient
Kψ gradually decreased from the elastic–plastic boundary to the tunnel opening wall
under different intermediate principal stress. The peak dilatancy occurred in the elastic
region and elasto-plastic critical region, along with the peaks in the strength parameters of
surrounding rock. In addition, the dilatancy confident Kψ under the intermediate principal
stress coefficient b (0.5, 0.75, and 1) tended to be close in the plastic region. In contrast, the
distribution of the dilatancy coefficient Kψ in the plastic zone revealed obvious differences
among three conditions (b = 0, 0.25 and 0.5), especially under the conditions of principal
stress coefficient b = 0. Table 2 shows the influences of intermediate principal stress b on the
dilatancy coefficient Kφp. The dilatancy coefficient Kψ initially increased and then decreased
in the strain-softening zone with increasing intermediate principal stress coefficient b. In
particular, the plastic zone of surrounding rock calculated under different intermediate
principal stress showed considerable differences, which resulted in the clearly different
curve trajectories of the dilatancy coefficient. However, the differences in Kψ were due to
the increase and decrease in the intermediate principal stress coefficient b and plastic radius
Rp, respectively, which resulted in an increase in the slope of the dilatancy coefficient Kψ.
As indicated in Equation (15) to Equation (16), there was exponential variation in σr Kψ

with σr.

Table 2. Peak dilatancy coefficient Kφp under different parameter b stresses for pi = 2.

b 0 0.25 0.5 0.75 1.0

Kφp 1.1805 1.2061 1.2312 1.2404 1.2330

In summary, the dilatancy coefficient Kψ curves showed differences in the plastic
region when the intermediate principal stress coefficient b < 0.5 and the dilatancy coefficient
Kψ curve presents a similar trend for b ≥ 0.5.

5.5. The Effect of Intermediate Principal Stress on the Ground Response Curve (GRC)

The present study applied the ground response curve (GRC) to reflect the relationship
between radial displacement around the cavern and tunnel support pressure, thereby
allowing analysis of the stability of surrounding rock. Figure 9 shows the ground response
curves under different intermediate principal stress. The radial displacement, which is
inversely proportional to the supporting pressure, gradually decreased with increasing
supporting pressure. Furthermore, there were evident effects of intermediate principal
stress on the GRC, particularly under b = 0, as shown in Figure 9. As the intermediate
principal stress coefficient b increased from 0 to 0.75, the dimensionless (u/r0)2G/(σ0 − σr)
at the tunnel opening gradually decreased by 63.43%, 51.52%, and 16.30%, respectively.
Nevertheless, with an increase in b from 0.75 to 1, the dimensionless (u/r0)2G/(σ0 − σr)
increased by 37.33%. In addition, the maximum radial displacement occurred for b = 0
when pi = 0, which could be attributed to a minimum restraining effect of the intermediate
principal stress on the displacement in the plastic zone.

In summary, suppression of tunnel deformation by intermediate principal stress
showed an interval effect and gradually decreased with increasing b. After b exceeded
a certain threshold, it promoted deformation of the surrounding rock. Similarly, the
restraining effect of supporting pressure pi on tunnel deformation gradually weakened
with increasing pi.
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6. Conclusions

Considering that confining pressure can improve the bearing capacity of surrounding
rock, the present study proposed a numerical solution for determining the distribution of
stress and displacement of a circular tunnel under uniform pressure. This solution was
based on the strain-softening model and the uncorrelated flow rule following on the D–P
criterion. The proposed algorithm was verified by comparing the obtained results with
those of the yield criteria by Lee (M–C) and Wang (Unified Strength Theory). The current
study also discussed the effect of intermediate principal stress on mechanical properties of
surrounding rock. The main conclusions of the present study are summarized below.

The results of the algorithm proposed in the present study indicated that the unified
strength yield criterion is too conservative and that the results under the D–P criterion are
similar to that under the M–C criterion.

The plastic radius Rp, the residual Rd, and the deformation of surrounding rock first
decreased and then increased as the intermediate principal stress coefficient b changed
from 0 to 1, with the minimum appearing at b = 0.75. This result indicated that intermediate
principal stress generally showed a strong interval effect.

The dilatancy coefficient Kψ increased nonlinearly from the tunnel opening wall
to the elastic–plastic boundary (b < 0.25), while the dilatancy coefficient Kψ increases
approximately linearly (b > 0.25).

Under a rigorous consideration of the influence of rock confining pressure, the reason-
able estimation of the self-bearing capacity of surrounding rock is beneficial. A considera-
tion of the interaction between surrounding rock bearing capacity and supporting pressure
pi provides an important theoretical basis for the design and analysis of the stability of a
circular tunnel excavation.
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