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Abstract: Wind farm operators are overwhelmed by a large amount of supervisory control and data
acquisition (SCADA) alarms when faults occur. This paper presents an online root fault identification
method for SCADA alarms to assist operators in wind turbine fault diagnosis. The proposed method
is based on the similarity analysis between an unknown alarm vector and the feature vectors of
known faults. The alarm vector is obtained from segmented alarm lists, which are filtered and
simplified. The feature vector, which is a unique signature representing the occurrence of a fault,
is extracted from the alarm lists belonging to the same fault. To mine the coupling correspondence
between alarms and faults, we define the weights of the alarms in each fault. The similarities is
measured by the weighted Euclidean distance and the weighted Hamming distance, respectively.
One year of SCADA alarms and maintenance records are used to verify the proposed method. The
results show that the performance of the weighted Hamming distance is better than that of the
weighted Euclidean distance; 84.1% of alarm lists are labeled with the right root fault.

Keywords: wind turbine; SCADA alarms; fault diagnosis; root fault identification; similarity analysis

1. Introduction

As wind power installations continue worldwide, wind power is in a rapid transition
toward becoming a fully commercialized, unsubsidized technology. It is thus vital to reduce
the levelized wind power energy cost for enhancing the competitiveness of wind farms
during the transition to fully commercial, market-based operations. Due to the remote and
harsh operational environment, the operation and maintenance (O&M) costs of wind farms
are high. Statistics show that the O&M costs account for 10–15% of total wind farm project
costs [1]. For an offshore wind farm, the O&M costs account for up to 14–30% [2]. To reduce
O&M costs, it is necessary to improve the reliability of wind turbines. Therefore, condition
monitoring and fault diagnosis methods are commonly developed and employed [3].

Supervisory control and data acquisition (SCADA) systems are a standard installation
for large wind turbines, and provide a wide range of operational information for almost all
the subcomponents. As a potentially low-cost and wide-coverage solution, plentiful studies
using SCADA data for condition monitoring and fault diagnosis were developed [4,5].
Moreover, the SCADA system also provides alarms to operators when a process key
variable crosses a pre-fixed threshold, or a fault of a subcomponent occurs. These alarms
can be used as emergency event indicators that assist operators in mitigating risk. However,
these SCADA alarms are often overlooked in industrial applications for the following
reasons: (1) The occurrence of a fault usually raises alarm floods. An alarm flood refers to a
situation during which tens or hundreds of alarms appear in a short time [6]. The operator is
overwhelmed by these alarm floods because it exceeds his response capability. (2) Because
of the bad alarm configuration and the causal relationships among the measured variables,
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a large proportion of alarms are nuisance alarms, such as chattering alarms [7] and other
related alarms [8]. It is difficult for the operator to respond to the critical alarms promptly
due to the presence of these nuisance alarms. (3) Alarms typically contain descriptive
information about an abnormal situation. The operator cannot find the root cause of a fault
directly through SCADA alarms. When overwhelmed by alarms, the operator needs to rely
on extra expert consultation. This paper aims to solve the above problems existing in wind
turbine SCADA alarms and assist the operator in wind-turbine fault diagnosis.

Some researchers focused on the use of SCADA alarms for the fault diagnosis of wind
turbines. A time sequence method and probability-based method were proposed in [9] for
analyzing SCADA alarms. The fault cases on the wind turbine converter and pitch system
were used to verify the proposed methods. The results showed that both methods had
the potential to rationalize alarm data and identify fault locations. However, the issue of
time consumption must be solved when the methods are applied to larger data. A study
of wind turbine alarm processing and diagnosis using an artificial neural network was
proposed in [10]. The alarm behaviors were transformed into an alarm matrix, which was
obtained by inputting the data for each fault into an alarm vector. Each vector represented
the alarm pattern of one pitch system fault. The repetitive occurrence of alarm patterns
was not studied in depth. Reference [11] used an improved Apriori algorithm to analyze
the alarms, which occurred during blade angle asymmetry faulta. The results showed
that the related alarms could be integrated into one critical alarm to reduce the number of
alarms. The accuracy of the method is limited due to its dependence on sufficient sample
data. A method for identifying relevant alarms and grouping similar alarm sequences
was presented in [12]. Similar alarm sequences were grouped using clustering techniques.
However, the used cluster algorithms did not perform as well as hoped.

The issue of a large number of alarms not only exists in the wind power domain
but in many other domains, such as network management [13], IT security [14], and
process control in manufacturing systems [15]. Researchers and vendors proposed many
approaches to alarm reduction and correlation [16]. A similarity analysis is one of the most
common methods used in analyzing alarms. It aims to reduce the total number of alarms
by aggregating them using their similarities. This strategy is based on the assumption that
similar alarms tend to have the same root causes. The key step in a similarity analysis is to
define appropriate similarity measures.

An analysis method was proposed in [17] to investigate similar alarm floods from
historic alarms. The dissimilarity score between each pair of alarm floods was calculated
using the Jaccard distance. The similar floods were clustered into groups using the Ag-
glomerative Hierarchical Clustering algorithm. The results showed that the grouping of
alarm floods could be used to eliminate sequential alarms and ascertain rationalization
suggestions. An online algorithm was proposed in [18] to provide an early prediction of an
incoming alarm flood. The alarm sequences were clustered into similar groups based on
their similarity scores. A pattern database of the common patterns was formed for each
cluster. The online alarm sequence was matched with these patterns. A method to extract
a fault template from a set of alarm lists, raised on the occurrence of several faults, was
proposed in [19,20]. The fault template could be used to extract relevant information on
the alarm system and by operators as a guideline for fault diagnosis. The proposed fault
isolation method was based on a weighted sequential similarity measure.

Motivated by the shortcomings of the existing methods in the wind power domain, this
paper proposes an online fault diagnosis method for SCADA alarms based on a similarity
analysis. The proposed method does not require a time-consuming training procedure
and is accessed via an easy online application. Moreover, it is not over-reliant on the
available data. As the data increase, the performance of the proposed method becomes
self-optimizing. Our main contributions are as follows:

1. We segment alarms into alarm lists by an information alarm and represent alarm lists
by vectors to simplify alarms;
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2. We extract the feature vector from alarm vectors as a unique signature representing
an occurring fault;

3. We define the weights of alarms to establish the coupling correspondence between
alarms and faults.

The remainder of this paper is organized as follows: Section 2 introduces SCADA
alarms and maintenance logs; Section 3 presents the online root fault identification method;
Section 4 presents the results and the discussion; and Section 5 presents the conclusions.

2. Background
2.1. SCADA Alarms

Alarm systems [21] play an important role in process monitoring. Due to advanced
technologies, modern wind turbines use hundreds of sensors and actuators as parts of their
many control loops. This situation can result in a large number of measured variables and
their corresponding configured alarms. Thus, alarms can be generated at a high rate. A
wind turbine SCADA system is integrated with an alarm function, which monitors the
condition of wind turbines and their subcomponents.

Alarms are stored in the SCADA database. A list of the alarms used in this paper is
shown in Table 1. They are recorded in chronological order. There are three types of alarms:
information alarms, warning alarms, and fault alarms. Information alarms are generally
used to communicate changes in certain operating conditions, e.g., wind turbine is reset, or
a manual switch is engaged. Warning alarms are generated when the monitored variables
come close to exceeding thresholds. Fault alarms are generated when these thresholds are
exceeded. The attribute ‘code’ is the unique code of an alarm. The attribute ‘flag’ represents
the start and the end of each alarm. Hence, each alarm has two records.

Table 1. A list of SCADA alarms.

Turbine Number Time Type Code Flag Description

P01 2017/5/22 16:30:05 information I2 start The wind turbine is started

P01 2017/5/22 17:38:18 warning A264 start The first measuring point temperature of the
generator stator is high

P01 2017/5/22 17:38:37 warning A264 end The first measuring point temperature of the
generator stator is high

P01 2017/5/22 17:38:51 fault T21 start The communication of the pitch system is an error
P01 2017/5/22 17:38:52 information I2 end The wind turbine is started
P01 2017/5/23 00:15:20 fault T21 end The communication of the pitch system is an error

2.2. Maintenance Log

The maintenance log collects the repair activities carried out by the maintenance
engineers. A record of this is shown in Table 2. The attribute ‘type of faults’ reveals the
actual fault of this repair activity. It is the root fault of the corresponding alarms.

Table 2. An example of a record in maintenance log.

Turbine
Number Start Time End Time Subcomponents Types of Faults Solutions Downtime/h

1 2016/12/21
17:34:00

2016/12/25
12:45:00

Pitch
system

Slip ring is
damaged

Replace the slip
ring 91.18

3. Online Root Fault Identification Method

This study proposes an online root fault identification method based on a similarity
analysis. The idea of the method is based on the assumption that similar alarms tend to
have the same root faults. The flowchart of the proposed method is shown in Figure 1.
There are two processes: feature vector extraction and online root fault identification.
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Briefly, in the process of feature vector extraction, alarms are firstly segmented into alarm
lists, and the information and chattering alarms are removed. Subsequently, the alarm lists
and their root faults are matched. Finally, the feature vectors of faults are extracted and
the fault-template database is built. To establish the coupling correspondence between
an alarm and a fault, the weight of an alarm in a fault is defined. In the process of online
fault identification, firstly, the online alarms are preprocessed and represented by vectors.
Afterward, the weighted distance between an online alarm vector and the feature vectors is
calculated. The root fault of the online alarm vector is deduced by the value of similarity.
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3.1. Feature Vector Extraction
3.1.1. Segmenting Alarm Lists

The alarms are recorded continuously in chronological order. First of all, we need to
segment continuous alarms into alarm lists. The information alarm, ‘I2’ is used to segment
alarm lists in this paper.

A SCADA system not only monitors process variables and triggers alarms, but also
changes the operating condition of a wind turbine to deal with alarms. The actions in
response to alarms are different according to the alarm levels. When the alarm level is low,
no operation is performed, or the wind turbine is restarted to try to eliminate alarms. On
the contrary, when the alarm level is high, the wind turbine is shut down, awaiting manual
maintenance. Therefore, every time one wind turbine is shut down due to a fault, it needs
manual maintenance.

The information alarm ‘I2’ indicates that the wind turbine is started. When the flag
of I2 is ‘start’, the wind turbine is started from a shutdown. When the flag of I2 is ‘end’,
the wind turbine is shut down from running; that is to say, the start of I2 indicates that the
wind turbine has returned to normal operation, and the end of I2 indicates that the wind
turbine is shut down due to faults. All the alarms generated between the start of I2 and the
end of I2 are related to the following shutdown. Therefore, we segment alarms into alarm
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lists using I2. The alarms generated between the start of I2 and the end of I2 make an alarm
list. The total number of alarm lists is expressed as M.

3.1.2. Matching Alarm Lists and Their Root Faults

Every time one wind turbine is shut down due to a fault, manual maintenance is
needed. Therefore, the root fault of each alarm list is recorded in the maintenance log. The
total number of records is Q. In theory, Q should be equal to the total number of alarm
lists M. However, Q is smaller than M. This is due to the irregular work of operators in the
industry. Some maintenance activities are missing.

The end time of alarm lists and the start time of maintenance activities is used to match
alarm lists and their root faults. The schematic diagram of the match criterion is shown in
Figure 2. The end time of an alarm list should be earlier than the start time of maintenance
activity. The alarm list corresponding to the maintenance activity is the last list. Ultimately,
we obtain Q pairs of data, which are made up of alarm lists and their root faults.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 5 of 15 
 

A SCADA system not only monitors process variables and triggers alarms, but also 
changes the operating condition of a wind turbine to deal with alarms. The actions in re-
sponse to alarms are different according to the alarm levels. When the alarm level is low, 
no operation is performed, or the wind turbine is restarted to try to eliminate alarms. On 
the contrary, when the alarm level is high, the wind turbine is shut down, awaiting man-
ual maintenance. Therefore, every time one wind turbine is shut down due to a fault, it 
needs manual maintenance. 

The information alarm ‘I2’ indicates that the wind turbine is started. When the flag 
of I2 is ‘start’, the wind turbine is started from a shutdown. When the flag of I2 is ‘end’, 
the wind turbine is shut down from running; that is to say, the start of I2 indicates that the 
wind turbine has returned to normal operation, and the end of I2 indicates that the wind 
turbine is shut down due to faults. All the alarms generated between the start of I2 and 
the end of I2 are related to the following shutdown. Therefore, we segment alarms into 
alarm lists using I2. The alarms generated between the start of I2 and the end of I2 make 
an alarm list. The total number of alarm lists is expressed as M. 

3.1.2. Matching Alarm Lists and Their Root Faults 
Every time one wind turbine is shut down due to a fault, manual maintenance is 

needed. Therefore, the root fault of each alarm list is recorded in the maintenance log. The 
total number of records is Q. In theory, Q should be equal to the total number of alarm 
lists M. However, Q is smaller than M. This is due to the irregular work of operators in 
the industry. Some maintenance activities are missing. 

The end time of alarm lists and the start time of maintenance activities is used to 
match alarm lists and their root faults. The schematic diagram of the match criterion is 
shown in Figure 2. The end time of an alarm list should be earlier than the start time of 
maintenance activity. The alarm list corresponding to the maintenance activity is the last 
list. Ultimately, we obtain Q pairs of data, which are made up of alarm lists and their root 
faults. 

Alarm list i Alarm list i+1… … … … Alarm list i+2

Maintenace activity j… … … … 

start
it

end
it 1

start
it + 1

end
it + 2

start
it + 2

end
it + time

time
start
jt

end
jt  

Figure 2. The match criterion of alarm lists and maintenance records. 

3.1.3. Removing Information and Chattering Alarms 
The information alarms generally communicate changes in the operating conditions 

of wind turbines. We are not interested in such alarms. We focus on the warning alarms 
and fault alarms that indicate the abnormalities of the wind turbine. Thus, the information 
alarms are removed. 

A chattering alarm [22] is an alarm that appears repeatedly during a short time. The 
reasons for a chattering alarm are that the monitored process variable is close to the alarm 
threshold and a noise is present. In this paper, we keep the first alarm of the chattering 
alarms in one alarm list and remove the following repeated alarms. 

3.1.4. Representing Data by Vectors 
The occurrence of an alarm can be recorded as a binary value. If the alarm is present, 

the value is equal to one; if the alarm is not present, the value is equal to zero. The binary 
value is expressed as: 

Figure 2. The match criterion of alarm lists and maintenance records.

3.1.3. Removing Information and Chattering Alarms

The information alarms generally communicate changes in the operating conditions
of wind turbines. We are not interested in such alarms. We focus on the warning alarms
and fault alarms that indicate the abnormalities of the wind turbine. Thus, the information
alarms are removed.

A chattering alarm [22] is an alarm that appears repeatedly during a short time. The
reasons for a chattering alarm are that the monitored process variable is close to the alarm
threshold and a noise is present. In this paper, we keep the first alarm of the chattering
alarms in one alarm list and remove the following repeated alarms.

3.1.4. Representing Data by Vectors

The occurrence of an alarm can be recorded as a binary value. If the alarm is present,
the value is equal to one; if the alarm is not present, the value is equal to zero. The binary
value is expressed as:

vi =

{
1, if alarm i is present
0, if alarm i is not present

, (1)

where i = 1, 2, . . . , N and N is the total number of alarm types configured in the SCADA
system.

A list of alarms may be represented either by a sequence of alarms or by a vector of
alarms. In a sequence, the alarms are ordered by their time of appearance. In a vector, their
time of appearance is not considered. Only the fact that the alarms are present is considered.
In this paper, an alarm list is represented by a vector. The j-th alarm vector is expressed as:

V j = [vj
1, vj

2, . . . , vj
i , . . . , vj

N ]
T

, (2)

where vj
i is the binary value of alarm i in the j-th alarm vector; j = 1, 2, . . . , M; M is the

total number of alarm vectors. It should be noted that each alarm has two records: one
record represents the start of the alarm; another record represents the end of the alarm. In
an alarm vector, as long as one alarm occurs, the binary value of the alarm is set to one.
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Fault k in the r-th maintenance record is expressed as:

f r
k (r = 1, 2, . . . , Q, k = 1, 2, . . . , P), (3)

where Q is the total number of maintenance records and P is the number of fault types.
Because the same fault can happen multiple times, P is smaller than Q. All the faults in
records are expressed as:

F =
{

f 1
1 , f 2

1 , . . . , f l1
1 , . . . , f 1

k , f 2
k . . . , f lk

k , . . . , f lP
P

}
, (4)

where f lk
k is fault k in the lk−th maintenance record; lk is the number of records belonging

to fault k; and lP is the number of records belonging to fault P. Thus, the set of records
belonging to fault k is expressed as:

Fk =
{

f 1
k , f 2

k , . . . , f lk
k

}
, (5)

where f lk
k is fault k in the lk−th maintenance record; lk is the number of records belonging

to fault k; k = 1, 2, . . . , P. Thus,
P
∑

k=1
lk = Q.

After the match process, the alarm vectors are labeled with their root faults. The pairs
of alarm vectors and their root faults are expressed as:{

(V1
k , f 1

k ), (V
2
k , f 2

k ), . . . , (V lk
k , f lk

k )
}

, (6)

where V lk
k is the lk−th alarm vector of fault k; f lk

k is fault k in the lk−th maintenance record;
k = 1, 2, . . . , P.

3.1.5. Feature Vector Extraction

The same fault of the wind turbine can happen multiple times. However, the alarm
lists generated during the same fault are not always the same, since the physical processes
are not deterministic, and the environmental conditions may differ when a fault occurs.
This section aims to extract the feature vector of alarm vectors belonging to the same fault.
The feature vector is used as a unique signature representing the occurrence of a fault.

There are lk alarm lists generated when fault k occurs. The alarm vector belonging to
fault k is expressed as:

V j
k = [vj

k1, vj
k2, . . . , vj

ki, . . . , vj
kN ]

T
, (7)

where vj
ki is the binary value of alarm i in the j-th alarm vector of fault k; j = 1, 2, . . . , lk. The

feature vector of fault k is expressed as:

Ck = [ck1, ck2, . . . , cki, . . . , ckN ]
T, (8)

where cki is the binary value of alarm i in fault k; k = 1, 2, . . . , P; and P is the number of
fault types. The feature vector Ck is built using the lk alarm vectors belonging to fault k.
The binary value of alarm i in the alarm vector of fault k is calculated as follows:

cki =


1, if

lk
∑

j=1
vj

ki

lk
≥ f r

0, if

lk
∑

j=1
vj

ki

lk
< f r

, (9)

where vj
ki is the binary value of alarm i in the j-th alarm vector of fault k; and f r ∈ [0, 1] is

a frequency. If alarm i is frequently triggered by fault k, the corresponding alarm in the
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feature vector is set to one; otherwise, it is set to zero. The value of fr is set to 0.5 in this
paper. It is determined according to the final performance.

A pair of a fault and its feature vector is expressed as:

( fk, Ck), (10)

where fk is fault k; Ck is the feature vector of fault k; and k = 1, 2, . . . , P. The fault-template
database is composed of faults and their feature vectors. It is expressed as:

T =
{
( f1, C1), ( f2, C2), . . . , ( fk, Ck), . . . , ( fp, Cp)

}
, (11)

where fk is fault k; Ck is the feature vector of fault k; and k = 1, 2, . . . , P.

3.1.6. Weights of Alarms

When a fault occurs, the responses from alarms are different. To explore the coupling
correspondence between alarms and faults, we define the weights of alarms in each fault.
The weight of alarm i in fault k is expressed as:

wki = λ1iλ2kiλ3ki, (k = 1, 2, . . . , P; i = 1, 2, . . . , N), (12)

where λ1i is the weight defined according to the alarm type; λ2ki is the weight defined
according to the significance of alarm i in fault k; λ3ki is the weight defined according to the
specificity of alarm i in fault k; P is the number of fault types; and N is the number of alarm
types configured in the SCADA system.

1. Alarm type

Warning alarms and fault alarms play different roles in the SCADA system. Warning
alarms are triggered when the monitored variables come close to exceeding thresholds.
Fault alarms are triggered when these thresholds are exceeded. Thus, fault alarms are more
important than warning alarms. We define that the weights of fault alarms are bigger than
those of warning alarms. The value of λ1i is determined as follows:

λ1i =

{
0.5, if alarm i is a warning alarm
1.0, if alarm i is a fault alarm

. (13)

2. The significance of an alarm

When fault k occurs, some alarms are always triggered or never triggered. The
indicative effect of these alarms in fault k is strong. Thus, the significance of these alarms
is great. On the contrary, when fault k occurs, other alarms are not always triggered. The
indicative effectiveness of these alarms in fault k is weak. Thus, these alarms have little
significance. The weight λ2ki is used to enhance the alarms which are significant to one
fault and discards the nonsignificant ones; λ2ki is calculated as follows:

λ2ki = 2αki − 1, (14)

αki =
1
lk

lk

∑
j=1

δ(vj
ki − cki), (15)

δ(x) =
{

1, if x = 0
0, if x 6= 0

, (16)

where vj
ki is the binary value of alarm i in the j-th alarm vector of fault k; cki is the binary

value of alarm i in the alarm vector of fault k; k = 1, 2, . . . , P; i = 1, 2, . . . , N; P is the number
of fault types; and N is the number of alarm types configured in the SCADA system.

When alarm i is always triggered or never triggered by fault k, αki = 1. When alarm i
is triggered randomly, αki = 0.5. Therefore, λ2ki ∈ [0, 1].
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3. The specificity of an alarm

When an alarm is only significant to fault k and nonsignificant to other faults, we
consider that the alarm is unique to fault k. The weight λ3ki is used to enhance the alarms
which are unique to fault k; λ3ki is calculated as follows:

λ3ki = 1− 1
P− 1 ∑

g∈Fk

(
1
lg

lg

∑
j=1

δ(vj
gi − cki)), (17)

δ(x) =
{

1, if x = 0
0, if x 6= 0

, (18)

where P is the number of faults, Fk is a finite set of faults except fault k, vj
gi is the binary

value of alarm i in the j-th alarm vector of fault g; cki is the binary value of alarm i in the
alarm vector of fault k; lg is the number of alarm lists belonging to fault g.

The weight λ3ki decreases in the following situations: (1) Alarm i is frequently triggered
by fault k and frequently triggered by the other faults. (2) Alarm i is seldom triggered by
fault k or by the other faults. Therefore, λ3ki decreases when alarm i is shared by several
faults, but increases when alarm i is more specific to fault k than to the other faults. The
value range of λ3ki is between zero and one.

3.2. Online Root Fault Diagnosis

The first three steps in the process of online root fault identification are the same as
those in the process of feature vector extraction.

3.2.1. Weighted Distance Calculation

1. Distance measure

This similarity is typically measured by computing certain metrics. When compared
with thresholds, the resulting score determines if one alarm vector belongs to a root fault.
Choosing a suitable distance measure increases the overall performance of the online
diagnosis. An online unknown alarm vector V′ is expressed as:

V′ = [v′1, v′2, . . . v′ i, . . . , v′N ]
T. (19)

where v′ i is the binary value of alarm i. The distance between the alarm vector and the
feature vector of fault k is expressed as:

D(V′, Ck), (20)

where Ck is the feature vector of fault k and k = 1, 2, . . . , P.
The Euclidean distance [23] and the Hamming distance [24] are often used as metrics.

The Euclidean distance between the unknown alarm vector and the feature vector of fault k
is calculated as:

DE(V′, Ck) =

√√√√ N

∑
i=1

(v′ i − cki)
2. (21)

where v′ i is the binary value of alarm I and cki is the binary value of alarm i in the alarm
vector of fault k. The Hamming distance is defined to be the number of positions where
they differ. The Hamming distance between an unknown alarm vector and the feature
vector of fault k is calculated as:

DH(V′, Ck) =

N
∑

i=1
|v′ i − cki|

N
. (22)
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where v′ i is the binary value of alarm I and cki is the binary value of alarm i in the alarm
vector of fault k. We used both distances to measure the similarity. The performance of the
distances is compared and analyzed in the next sections.

2. Weighted distance

The above similarity measures treat alarms in feature vectors equally without any
identification. The coupling correspondence between alarms and faults is not considered.
We define a weighted distance based on the weights of alarms to measure the similarity. A
weight vector is associated with each alarm. The weight vector is expressed as:

Wk = [wk1, wk2, . . . , wki, . . . wkN ], (23)

where wki is the weight assigned to alarm i in fault k.
The weighted distance is expressed as DW(V′, Ck), where k = 1, 2, . . . , P. The weighted

Euclidean distance is defined as follows:

DWE(V′, Ck) =

√√√√ N

∑
i=1

wki(v′ i − cki)
2, (24)

where wki is the weight assigned to alarm i in fault k; v′ i is the binary value of alarm i;cki is
the binary value of alarm i in the alarm vector of fault k.

The weighted Hamming distance is defined as follows:

DWH(V′, Ck) =

N
∑

i=1
wki|(v′ i − cki)|

N
∑

i=1
wki

. (25)

where wki is the weight assigned to alarm i in fault k; v′ i is the binary value of alarm i; cki is
the binary value of alarm i in the alarm vector of fault k.

3.2.2. Root Fault Label

To identify the root fault of an alarm list, the weighted distances between the alarm
vector and the feature vectors of every fault should be calculated. Thus, we can obtain
P-weighted distances DW(V′, Ck), where k = 1, 2, . . . , P. The smaller the weighted distance
is, the higher the similarity is. Thus, the minimum weighted distance is selected and
expressed as:

DW(V′, Cµ) = min
{

DW(V′, C1), DW(V′, C2), . . . , DW(V′, CP)
}

, (26)

where DW(V′, Cµ) is the weighted distance between an unknown alarm vector and the
feature vector of fault µ. The detection threshold is expressed as Tµ. If DW(V′, Cµ) ≤ Tµ,
and the root fault of the alarm list is labeled as a fault µ. If DW(V′, Cµ) > Tµ, the root fault
of the alarm list does not belong to the known P faults.

The detection threshold Tµ is determined using the available fault cases of fault µ in
the fault-template database; Tµ is the maximum weighted distance between the fault cases
of the fault µ and the feature vector of the fault µ.

4. Results and Discussion
4.1. Data Description

The data used in this study are from a wind farm located in southern China. There are
24 wind turbines on the wind farm, installed with direct-drive, variable-speed, variable-
pitch generators. One year of alarm data and maintenance records are available. The
SCADA system in wind turbines is configured with 102 warning alarms and 266 fault
alarms. There are a total of 240 maintenance records. After matching alarm lists and their
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root faults, we obtain 240 pairs of data. Each pair of data consists of an alarm list and its
root faults.

For the sake of verification, we select the faults that have more than five records
in order to extract the feature vectors. Ultimately, six faults are selected. They are the
pitch–motor driver fault, pitch–system communication fault, hub speed encoder fault, high
temperature of generator stator, wind vane fault, and vibration sensor fault. The number
of alarm lists belonging to each fault is shown in Table 3. Forty-six alarm lists are used to
extract the feature vectors of faults. Forty-four alarm lists are used to test the proposed
method. These alarm lists are named as the test set one. The other 150 alarm lists, the root
faults of which are not among the selected six faults, are also used in the test phase. These
alarm lists are named as the test set two.

Table 3. Faults and the number of their alarm lists.

Faults The Total Number of Alarm Lists
(Feature Vector Extraction/Test)

1 Pitch–motor driver fault 10(5/5)
2 Pitch–system communication fault 7(4/3)
3 Hub speed encoder fault 8(4/4)
4 High temperature of generator stator 10(5/5)
5 Wind vane fault 46(23/23)
6 Vibration sensor fault 9(5/4)

4.2. Case Study: Pitch–Motor Driver Fault

Ten alarm lists belong to the pitch–motor drive fault. Five alarm lists are used to extract
the feature vector. The obtained feature vector is C1 = [c1,1, c1,2, . . . , c1,T309, c1,T724, . . . c1,368] =
[0, 0, . . . , 1, 1, . . . 0]. The binary values of two alarms in the feature vector are one. These
alarms are for the blade driver fault and the fault of the pitch–driver speed. The codes
of the alarms are T309 and T724, respectively. The occurrence numbers of T309 and T724,
referred to when a fault occurs, are shown in Table 4.

Table 4. The occurrence numbers of T309 and T724 when a fault occurs.

Faults The Total Number
of Alarm Lists The Occurrence Number

T309 T724

1 Pitch–motor driver fault 5 4 5
2 Pitch–system communication fault 4 1 2
3 Hub speed encoder fault 4 0 0
4 High temperature of generator stator 5 0 0
5 Wind vane fault 23 2 3
6 Vibration sensor fault 5 0 0

The weight of an alarm for a pitch—motor driver fault is expressed as w1,i, where
i = 1, 2, . . . , 368. The weights of alarms T309 and T724 are w1,T309 and w1,T724, respectively.
The calculation processes of w1,T309 and w1,T724 are provided as examples:

1. T309 is a fault alarm, thus λT309 = 1;
2. α1,T309 = 1

5 (4 ∗ δ(1− 1) + δ(0− 1)) = 0.80;
3. β̄ı,T309 = 1

5 (β2,T309 + β3,T309 + β4,T309 + β5,T309 + β6,T309) =
1
5 (

1
4 + 0 + 0 + 2

23 + 0) = 0.07;
4. w1,T309 = λ1,T309(2α1,T309 − 1)(1− β1,T309) = 0.56.
5. The same process of steps 1–4 is repeated to achieve: λT724 = 1; α1,T724 = 1.0;

βı̄,T309 = 0.13; w1,T724 = λ1,T724(2α1,T724 − 1)(1− β1,T724) = 0.87.

The other weights for pitch–motor driver fault are calculated in the same way. After we
obtain the feature vector of pitch–motor driver fault and the weights of each alarm for the
fault, the weighted distance can be calculated according to Formula (24) and Formula (25).
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4.3. Performance Evaluation

Three indicators are defined to evaluate the performance of the proposed method.

• True detections (TD): the labeled root fault of an alarm list is the same as the actual fault;
• False detections (FD): the labeled root fault of an alarm list is different from the

actual fault;
• Misdetection (MD): an alarm list is not assigned with a fault.

The performance–evaluation results are shown in Table 5. The similarity between an
alarm list and a feature vector is measured by the weighted Euclidean distance and the
weighted Hamming distance, respectively. Test set one consists of 44 alarm lists. The root
faults of these lists are among the selected six faults. Test set two consists of 150 alarm lists.
The root faults of these lists are not among the selected six faults. Thus, the indicator TD
for test set two does not exist. The overall performance of the weighted Hamming distance
is better than that of weighted Euclidean distance. For test set one, the percentage of TD of
weighted Hamming distance is higher, and the percentage of FD and MD is lower. For test
set two, the percentage of FD and MD of weighted Hamming distance is lower.

Table 5. The performance of the proposed method.

Test Set One Test Set Two

DWE DWH DWE DWH

The percentage of TD 77.3% 84.1% - -
The percentage of FD 6.8% 4.5% 12.0% 9.3%
The percentage of MD 15.9% 11.4% 88.0% 90.7%

A multidimensional information processing method proposed in reference [25] is also
applied in this paper. The Dempster–Shafer evidence theory is applied to the selected six
faults. Each alarm list is labeled with the most possible fault. True detection and false
detection can be used to evaluate the performance. The results are shown in Table 6. The
percentage of TD is 81.8%. The percentage of FD is 18.2%. The number of the data set has a
great influence on the method, which is based on probability analysis. The percentage of
TD is a little lower than that of the proposed method.

Table 6. The performance of multidimensional information processing method.

Test Set One

The percentage of TD 81.8%
The percentage of FD 18.2%

The more detailed analysis of test cases set one, with the weighted Hamming dis-
tance applied, is given as follows: Two alarm lists are labeled with a wrong fault. One
alarm list, the actual root fault of which is pitch–motor driver fault, is wrongly labeled
with pitch–system communication fault. The pitch–motor driver fault and pitch–system
communication fault both belong to the faults of the pitch system. They are sensitive to the
same alarms. Another alarm list, the actual root fault of which is hub speed encoder fault,
is wrongly labeled with wind vane fault. This is because wind speed has a great influence
on the hub speed. The coupling of alarms is responsible for both cases. Five root faults are
not detected. All of them are wind vane faults. This is because the description of the wind
vane fault in maintenance records is not detailed and accurate. The alarm lists generated
when the fault occurs are more dispersive. The extracted feature vector cannot represent
the occurrence of the fault well.

The value of fr is crucial for extracting the feature vector of faults; fr is set to 0.5 in
this paper. It is determined according to the percentage of TD. Figure 3 describes the
percentage of TD for DWH and DWE with different fr. When fr is 0.5, the percentage of TD
is the greatest.
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4.4. Discussion

The proposed method in this paper is based on a similarity analysis. The key steps are
feature vector extraction and the selection of weighted distance. The number of fault cases
and the quality of maintenance records influences the feature vector extraction greatly. One
year of maintenance records are used in this paper, and the number of repeated faults is
relatively few. The method performs better with more fault cases; it can be self-optimizing
with more fault cases in the fault-template database.

If the similarity between an online alarm list and each feature vector is small, we
think that the root fault of this online alarm list is unknown. There are two reasons for this
situation. First, the root fault is not in the fault-template database. Second, the available
fault cases of this fault are relatively small. The coupling correspondence between the fault
and its alarm lists is not well established. However, the identification process is not over.
In this case, manual maintenance is needed, and the fault-template database is updated
according to the maintenance results. In the later identification process, the identification
accuracy is improved with new and more fault cases. This self-optimizing process is shown
in Figure 4.
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Choosing a suitable distance measure also increases the overall performance of the
proposed method. Other distances, aside from Euclidean distance and Hamming distance,
can also be used in the similarity measure.

5. Conclusions

This study proposes an online method to simplify the alarm lists generated during
the occurrence of wind turbine faults, explore the alarm patterns, and identify the root
faults. It does not require a time-consuming training procedure and is easy to apply. The
proposed method is based on the similarity analysis between an unknown alarm vector and
the feature vectors of known faults. This similarity is measured by the weighted Euclidean
distance and weighted Hamming distance. The weights are determined by the alarm
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types and the specificity of alarms to the known faults. One year of SCADA alarms and
maintenance records are used to verify the method. The results show that the performance
of the weighted Hamming distance is better than that of the weighted Euclidean distance.
The percentage of TD when the weighted Hamming distance is used is 84.1%, which means
37 out of 44 alarm lists are labeled with the right root fault. The proposed method can
effectively assist the operator in identifying the root faults when confronted with a large
number of alarms. With more fault cases, the method can be self-optimizing, and the
detection accuracy can be improved in the future.
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