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Abstract: Following the paradigm shift in the pharmaceutical industry from batch to continuous
production, additional instrumentation and revision of control strategies to optimize material flow
throughout the downstream processes are required. Tableting manufacturing is one of the most
productive in terms of turnover and investment into new sensor technologies is an important
decision-making step. This paper proposes a continuous solution to detect changes in material
properties, and a control algorithm to aid in minimizing risk at the end-product line. Some of
the sub-processes involved in tableting manufacturing perform changes in powder and liquid
mixtures, granulation, density, therefore changing flow conditions of the raw material. Using
impedance spectroscopy in a continuous sensing and monitoring context, it is possible to perform
online identification of generalized (fractional) order parametric models where the coefficients are
correlated to changes in material properties. The model parameters are then included in a self-tuning
control gain used in ratio control as part of the local process control loop. The solution proposed here
is easy to implement and poses a significant added value to the current state of art in pharmaceutical
manufacturing technologies.

Keywords: anomalous diffusion; material memory; porous materials; pharmaceutical industry;
tableting; continuous manufacturing; process control; flexible manufacturing; ratio control

1. Introduction

A core challenge of Industry 4.0 is the demand for versatile manufacturing that can
cope with material availability and variability, which is relevant to the field of personalized
medicine goals [1]. Recent advances in technology and instrumentation have pushed
forward the transition from batch to continuous process control in the pharmaceutical
industry [2,3]. One of the main advantages of continuous manufacturing is that it enables
demand-driven scaling of production volume and product specifications. As a sensing
technology, impedance spectroscopy is a powerful instrument with significant added value
in optimizing control of manufacturing industries [4,5].

The tableting industry has the highest production volume and thus changes in the
manufacturing process have a significant impact on the overall production costs. The gold
standard in pharmaceutical manufacturing of oral solid dosage forms is still batch-wise
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production [6]. In the fields of automotive, food, and petrochemical industries contin-
uous manufacturing has been successfully implemented and has resulted in improved
productivity and reduced costs in comparison to batch production [6].

However, the appearance of changes in raw material properties, equipment status with
respect to physical wear and varying material properties along the production lines con-
tribute to time-varying disturbances which in turn demand continuous corrective actions
during production [7]. Delayed corrective measures (i.e., end of the batch line) and sub-
optimal controller settings lead to sub-standard quality of end-product and consequently
cost-related economic losses.

Some of the commonly encountered sub-unit processes in tablet manufacturing are:
direct compaction, dry granulation, wet granulation, extrusion, granule lubrication, tablet
pressing, coating, splitting, etc. [8]. The material mixtures are essentially non-Newtonian
in terms of fluid properties and classical characterization through modeling no longer
captures the essential properties [9]. Moreover, the models tend to be computationally
demanding and not suitable for real-time parametric estimations. Fast and slow anomalous
transport phenomena can be described by time-fractional diffusion equations of fractional
order. These are commonly encountered in media with fractal, porous, or combined
properties. The material used for making a tablet varies in its density and geometry as it
transits a set of physical states: liquid, powder, granules, etc. When describing nonlinear
transport phenomena such as anomalous diffusion of mixed materials, one must also
account for memory effects, which are typically arising as a non-Brownian random walk
motion Equation [10,11]. These are linked to density variations of non-Newtonian fluids,
an initial state of material incipient properties in the pharmaceutical industry. Lumped
parameter models of generalized (fractional) orders have been shown to be excellent tools in
detecting and quantifying changes in material flow density from impedance spectroscopy
data [9,12].

Furthermore, anomalous diffusion in porous media, e.g., granulated materials, is
important as it enables to increase the effectiveness of various processes, such as ab-
sorption, catalysis, etc, by controlling the regime of mass flow transport. The diffusion
coefficient representing the speed of molecule transitions has a strong dependence on
porosity [13–15]. Surface area and pore volume are key properties and the direct result of
the controlled environment of pharmaceutical products and one of the main sub-processes
in tablet manufacturing.

A tablet comprises a mixture of active substances and excipients, usually in powder
form, pressed or compacted from a powder, through mixed liquid into a solid dose. The
excipients can include diluents, binders or granulating agents, flow aids and lubricants to
ensure efficient tableting. A polymer coating is often applied to make the tablet smoother
and easier to swallow, to control the release rate of the active ingredient, to make it more
resistant to the environment (extending its shelf life), or to enhance its appearance. In short,
the production thereof is a complex multivariable process and (intermediate) material
properties variability can have important implications on the efficiency of the production
process (e.g., changes in powder stickiness or mixture viscosity). Hence optimal control of
production efficiency and product properties are essential to guarantee a manufacturing
process that is adaptive while maintaining (semi-)finite product quality at all times [16,17].

In this paper, we propose a theoretical framework to characterize material properties
in non-Newtonian fluids and anomalous diffusion in porous materials. This original and
innovative approach allows using lumped fractional order parametric models for online
estimations of material properties which in turn enable a self-tuning function for ratio
control of material flows. While the concepts are generically applicable to other domains
such as food and chemical industries, the particular application discussed in this work is
the wet/dry granulation tableting process in the pharmaceutical industry.

The paper is structured as follows. A theoretical background is given in the next
section on the anomalous diffusion of species. This is followed by a summary of the use of
impedance spectroscopy as a sensing tool. Next, afferent generalized parametric models
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are proposed capturing variations in material properties related to anomalous diffusion.
The third section refers to the potential application to ratio control and a conclusion section
summarizes the main outcome of this work.

2. Materials and Methods
2.1. Anomalous Diffusion

Diffusion kinetics in porous media is described by the second Fick’s law:

∂C
∂t

= D · ∂2C
∂x2 (1)

where C is the linear concentration of diffusion species in mole/m; D is the diffusion
coefficient in porous media in m2/s, t is time in seconds and x is the spatial coordinate
in metres. For time-fractional diffusion, a temporal derivative becomes a time-fractional
derivative of order 0 < α < 2, accounting for sub-diffusion (0 < α < 1) and for supra-
diffusion (1 < α < 2) dynamics:

∂αC
∂tα

= K · ∂2C
∂x2 (2)

where K denotes fractional diffusion coefficient in units m2/sα. A direct consequence of
these time-fractional units in media is the intrinsic characterization of memory effects
such as in non-Newtonian fluids [9] and viscoelastic materials, polymers and biological
tissues [10]. The analytical solution can be obtained applying the Caputo definition of the
time-fractional derivative:

DαC(x, t) =
∂α(x, t)

∂tα
=

1
Γ(m− α)

·
∫ t

0
(t− τ)m−α−1 · ∂mC

∂τm dτ (3)

with m = 1 for sub-diffusion and m = 2 for supra-diffusion, and Γ(x) is the Euler
gamma function.

Applying spatial Fourier and temporal Laplace transform to (2) provides the space-
time fractional diffusion Equation [18]:

C(k, s) =
sα−1

sα − K · (−i · k)2 (4)

with i =
√
−1. Using the Mittag–Leffler function

Eα(z) =
∞

∑
n=0

zn

Γ(α · n + 1)
(5)

and inverse Laplace transform gives

C(k, t) = Eα(−K · k2 · tα) (6)

which enables to characterize short and long time diffusion patterns separately through
approximations:

exp
[
− K · k2 · t2

Γ(m + α)

]
and

1
K · k2 · t2 · Γ(m− α)

,

respectively.
If mass transfer in the diffusion molecule is described using (1), we can impose initial

condition C(x, 0) = C0(x) = cte and boundary condition ∂C
∂x ‖x=0 = 0. The flow of diffusing

species leaving the porous grain is defined as the difference between the concentration
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in the grain Cg in mole/m3 and the linear concentration C at the longitudinal size of the
grain L. Notice that extrapolation to granular flow mass becomes the concentration at the
sensing site. The boundary condition at site is given by:

D · ∂C
∂x
‖x=L = γ · (Cg(t) · A− C(L, t)) (7)

as a function of A the transversal area of the grain in m2, and linear diffusion velocity
coefficient γ in m/s. Mass balance relation is:

dCg
dt

=
γ · (Cg(t) · A− C(L, t))− v · Cg(t)

V
(8)

with V grain volume in m3 and v is volumetric flow of species diffusion in m3/s.
The asymptotic solution using Green function for normal diffusion is given by:

C(L, t) =
C0√

π
· L√

D · t
(9)

and is linearized in logarithmic coordinates for short time as (ln C
C0
)-ln t and for long time

as ln( C
C0
)-t. The relation between normal to time-fractional diffusion analytical solution is

derived in [13–15]. The time-fractional diffusion equation for short times is

ln
C(L, t)

C0
= ln

L√
πK

Γ(m+α)

− α

2
· ln t (10)

and for long times is

ln
C(L, t)

C0
= ln

L2

K · Γ(m− α)
− α · ln t (11)

Diffusion transport phenomena can be thus fitted using these equations on experimen-
tal data as time varying property of the material.

Consider a material transiting as a granular flow. The diffusion of species will depend
on material properties and follow the Stokes–Einstein relation [19]:

D =
KB · T

6π · η · r (12)

where KB is the Boltzman constant in kgm2/Ks2, η is viscosity in kg/ms, T is the absolute
temperature in Kelvin and r the radius in m of the granular sphere or its approximation
as a sphere. Diffusion depends on size and geometry (shape) of the grain as well as the
viscosity of the material in flow conditions. For a sphere, its surface is given by S = 4πr2

and its volume by V = 4
3 πr3. Under the conditions of a variable r, the efficacy of diffusion

is given by the ratio:
S
V

=
4πr2

4
3 πr3

=
3
r

(13)

This relation suggests that the diffusion efficacy decreases with the increase of sphere size.

2.2. Measuring Impedance in Non–Newtonian Materials

From seminal [20] to more recent developments [21,22], emerging concepts of frac-
tional calculus enabled modeling non-Newtonian flow dynamic properties in a compu-
tationally attractive framework [23]. Electrochemical properties of materials have been
successfully characterized with impedance spectroscopy and frequency response mod-
els [12,24]. Impedance spectroscopy was also used to capture time-varying non-Newtonian
fluid properties by means of frequency-domain fractional order models [9].
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A comprehensive summary of classes of non-Newtonian fluid properties is given in [9].
From the time-dependent properties, the most important one when closed-loop control
is envisaged is the fluid (mixture) density variability. This is of particular importance in
mixtures based on feedforward and ratio control structures [25,26].

2.2.1. Impedance Spectroscopy

When non–Newtonian fluids are treated as electrochemical systems, they can be stud-
ied from impedance measurement data [4,5,12]. The measurement involves the application
of a small perturbation, alternatively to classical identification methods based on linear
sweep or potential step which perturbs the nonlinear dynamics far from a piecewise linear
equilibrium. A small imposed perturbation can be of applied potential, of applied current
or, with hydrodynamic electrodes of convection rate. The fact that the perturbation is small
brings advantages in terms of the solution of the relevant mathematical equations, i.e.,
the systems behave piecewise linear time-invariant systems with the relative simplifying
assumptions when applying frequency domain analysis [12]. The response to the applied
perturbation, which is generally sinusoidal, can differ in phase and amplitude from the
applied signal. Measurement of the phase difference and the amplitude, i.e., the impedance,
permits analysis of the electrode process in relation to contributions from diffusion, kinetics,
Debye effects, coupled homogeneous reactions, etc. [27,28].

The main flowchart of the procedure used in this work, called Phase-sensitive detectors
and transfer function analysers, is showed in Figure 1. The detector compares the signal
applied to the system and its response, giving the phase difference and the ratio of the
amplitudes. In our case the reference signal is applied by means of a potentiostat (PSTAT)
and then through the frequency response analyser (FRA) the actual measurement of the
impedance can be carried out, processed and cleaned. When used in online estimation
mode, the high frequency sampling raw data recordings are downloaded on a computer
where a spectral analysis algorithm estimates time and frequency domain response for
further use such as parametric modeling. The user-defined range of test frequencies is
relatively wide, i.e., from µHz to MHz.

Generator NN fluid

ResponsePhase-sensitive
detector

Difference in phase
and amplitude

reference

signal

re
fe

re
nc

e

si
gn

al

Figure 1. Generic principle of a phase-sensitive detector functionality.

2.2.2. An Example: Randle’s Circuit

Any electrochemical cell can be represented in terms of an equivalent electrical circuit
that comprises a combination of resistances and capacitances (inductances only for very
high frequencies) [4,5]. This circuit should contain at the very least components to represent:

1. The double material layer: a pure capacitor of capacity Cd,
2. The impedance of the faradaic process Z f ,
3. The uncompensated resistance, RΩ, which is usually the solution resistance between

working and reference electrodes.
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The textbook combination of these elements is shown in Figure 2 and known as
Randle’s circuit, with Z f and Cd in parallel arrangement. The impedance Z f can be further
subdivided in two equivalent ways:

1. Subdivision into a resistance, Rs, in series with a pseudo-capacitance Cs,
2. Subdivision into a resistance, accounting for the resistance to charge transfer, Rct,

and an impedance that measures the difficulty of mass transport of the electroactive
species, called the Warburg impedance, Zw.

Figure 2. Randle’s circuit: equivalent electrical circuit of an electrochemical cell for a simple electrode
process. Z f can be substituted with the series of Rct and Zw.

The last equivalence is often used because of its physical meaning: for kinetically-
favoured reactions Rct → 0 and Zw predominates, while for difficult reactions Rct → ∞
and predominates. More detail about mathematical formulations, based on electrochemical
reaction, of the Warburg impedance and thus of the faradaic impedance can be found in [4,5].

The impedance for Randle’s circuit will be a complex number which can be represented
in its polar plot formalism for all tested frequencies. The explicit real and imaginary parts
are given by:

Z′ = Rω + Rct+σω−0.5

(σω0.5Cd+1)2+ω2C2
d(Rct+σω−0.5)2

Z′′ = − ωCd(Rct+σω−0.5)2+σ2Cd+σω−0.5

(σω0.5Cd+1)2+ω2C2
d(Rct+σω−0.5)2

(14)

where σ is a coefficient depending on a combination of different material constants, and ω
is the frequency in rad/s. Notice the presence of a fractional-order exponent in the model
which allows a frequency-dependent real part of impedance (as opposed to classical integer-
order impedance whose linear components have a real part constant with frequency).

It is further useful to look at the polar plot of the functions in (14), also known in
chemistry as Cole–Cole plot, as shown in Figure 3. From this figure is possible to appreciate
the division in two regions: one represents the behaviour of a kinetically favoured reaction,
while the other one shows the predominance of the mass transfer effect.

It is also interesting to discuss the polar plot in Figure 3, bearing in mind the (14) and
studying their limiting forms:

1. ω → 0
Z′ = Rω + Rct + σω−0.5

Z′′ = −σω−0.5 − σ2Cd
(15)

The low-frequency behaviour is represented by the straight line of the unit slope and
corresponds to a reaction controlled by sole diffusion, the impedance though assumes
the form of the Warburg impedance, which dominates.

2. ω → ∞
Z′ = Rω + Rct

1+ω2C2
d R2

ct

Z′′ = − ωCdR2
ct

1+ω2C2
d R2

ct

(16)

For higher frequencies, the control of the reaction is purely kinetic and it traduces in
the fact that Rct � Zw. Hence the electrical circuit in Figure 2 can be simplified in a
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simple RC parallel. Moreover, by rearranging (16) it is possible to obtain the equation
of the circle as: (

Z′ − RΩ −
Rct

2

)2
+ (Z′′)2 =

(
Rct

2

)2
(17)

ω

Kinetic control Mass transfer
control

R R + Rct
R + Rct

2 Z′

−Z′′

Figure 3. Illustration of a polar plot for the Randle’s circuit impedance.

As observed in Figure 3 this semi-circle has a radius of Rct/2 and the ideal intercepts
on the real axis are Rω (ω → ∞) and Rω + Rct (ω → 0). Its success as a sensory instrument
is that one can directly extract from a graphical inspection of the polar plot these values. It
is also important to understand the physical meaning of the semi-circle, directly linked with
the system’s characteristic. For very high frequency the imaginary part in (16), which can
be approximated as Z′′ ' −1/ωCd, becomes very small, behaving like a short-circuit. The
peak value of the semi-circle is instead reached for the maximum of −Z′′ in the frequency
responsible for the time response (and this results in pole locations of the transfer function
of the linear approximated system). For very low frequency it behaves like an open circuit
and the current flows through RΩ and Rct.

2.2.3. Spectroscopy Analysis Device

Impedance measurements have been performed with a state-of-the-art infrastructure,
i.e., a Solatron modulabXm impedance analyzer (Solatron Analytical, UK), see Figure 4.
Through the Solatron analyzer a 100 mV r.m.s. sinusoidal voltage has been applied to the
outer couple of electrodes of the measurement probe which was immersed into the glass
tube containing the analyzed sample. The impedance of the samples has been analyzed in
the 1 Hz–1 MHz frequency range. The electrochemical cell consisted of a plastic cylindrical
tank with an inner diameter of 20 mm and a length of 30 mm. The electrodes used to
perform the experiments were screen-printed electrodes from Dropsens. These electrodes
are chosen since they exhibit high electrochemical activity and good repeatability [29]. The
counter and working electrodes are platinum (4 mm diameter) and the reference electrode
is silver.

The Modulab XM is a highly versatile electrochemical test system that measures the
characteristics of a wide range of electrochemical systems including organic/inorganic,
specialized corrosion, electroplating and energy cells. Reference grade system components
(potentiostat/ galvanostat, frequency response analyser and optional high voltage ampli-
fier) are combined in a single unit, avoiding the need for stacking and wiring separate units.
The device communicates via an Ethernet link to an external PC, running XM-STUDIO ECS
software for control and monitoring purposes. A very high sampling rate is available for
recording the data samples and stored in real-time in situ buffer memory slots. The system
can export data in real-time (in stack data format) for raw data processing or can deliver
at end-experiment the estimated impedance. For a broader scope of utility of raw data
samples, a time- and frequency domain analysis can be performed, hence providing both
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time-based signals (impedance) as well as image-based data formats (spectrograms). This
mixed time-and-image information is of particular interest for applying deep learning tools,
as we recently did in a medical application [30].

Figure 4. ModuLab Xm measuring device, by Solartron Analytics.

2.3. Lumped Fractional Order Parametric Models

Our previous work and original contributions in modeling biological tissues have
already long shown the success story of using lumped general order parametric models
to capture complex phenomena [9]. Recent works have introduced such models into the
control and system theory for use in control applications [31].

When describing time-varying properties of these static characteristics of stress–strain
relationships [10], it is very practical to use generalized order models with electrical equiv-
alent notations for material dynamic properties:

Ze(s) = Re + Le(s)α +
De

sβ
(18)

where Re is the electrical resistance related to material resistance, Le the inductance related
to inertance or molecular accelerations and De = 1/Ce the compliance value as the inverse
of the electrical capacitance. The units depend on the physical units used to derive the
impedance from their time-domain measured signals. For electrical circuits, these time
signals are in Volts, while for air/liquid measurements the time signals are in pressure
(Pa) and flow in liters/s. The elements in this model have been in detail derived from
mechanical and electrical equivalent properties analogy in [32]. When interpreting the
model at a micro-scale level, the model refers to the diffusion process of glucose molecules
in the simulated environment [12]:

Z(s) =
D
sβ

(19)

Hence, the complex representation in frequency domain of this generic fractional order
model is:

Ze(jω) = Re + L(jω)α +
De

(jω)β
, −2 < α, β < 2 (20)

When identifying real data samples, the real and imaginary parts can be evaluated in
the cost function of a regressor estimator:

Ze(jω) = Re + Leωα cos
(

απ
2
)
+ De

ωβ cos
(

βπ
2

)
Ze(jω) = −

[
Leωα sin

(
απ
2
)
+ De

ωβ sin
(

βπ
2

)] (21)
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In [12], this model was successfully employed to fit the impedance of non-Newtonian so-
lutions like water mixed with glucose and its parameters correlated to different concentrations.

When the material properties behave as an electrical circuit that has one resistor and
two fractional order capacitors, also known as constant phase elements, the number of
model parameters can be significantly reduced:

Ze(s) = Re +
De

sα
(22)

This was shown to be the case in non-Newtonian fluids with thixotropic properties [9].
In this model, α can be fixed per tablet geometrical properties, while Re and De are related
to dynamic changes in viscosity and density of the material mixture. The drawback of this
model structure is that its accuracy is limited over a rather small frequency interval (i.e.,
1–2 decade interval).

An alternative solution for a much broader (i.e., several decades) frequency interval
dependence of the polar plot representation is the model:

Z(s) =
Kp

sβ(s + p)α (23)

which is a four parameters model, a lumped version of that proposed in [33]. Several
comparisons of estimators on various non-Newtonian fluids have been reported in our
prior work in [9]. In this model, all parameters were sensitive to changes in material
properties, and the results suggested that in order to increase the detectability of material
properties, correlation matrices can be used to calibrate it for particular applications at
hand. When parameters Kp, α, β are fixed to the material specifications, the parameter p
has an excellent sensitivity to capture changes in viscosity.

3. Results and Discussion

In this paper, the application to ratio control has been investigated for the specific
pharmaceutical process units (i.e., feeder and blender). A benchmark simulator has been
proposed in [8] describing tableting production using wet/dry granulation for simulation,
analysis and control design and validation purposes. The continuous manufacturing using
the wet and dry granulation flowcharts is depicted in Figure 5. In our open-source MAT-
LAB/Simulink simulation platform the wet and dry granulation route is implemented [34],
however, a model library is available for simulating the user-specified sub-processes pro-
duction line. The entire manufacturing process is described in [8]. Of particular interest is
the blender unit, where the powder and excipient are mixed to produce a material that is
granular in form.

A population balance modeling approach has been used to model the blending
process [8]:

∂mij
∂t = Ff [mi−1,j −mi,j] + Fb[mi+1,j −mi,j]+

Fr[mi,j+1 + mi,j−1 −mi,j]
(24)

which represents the powder distribution of both the active pharmaceutical ingredient
(API) and the excipient in each compartment. The corresponding flows are obtained from:

Ff = avb + b
Fb = cvb + d
Fr = e

(25)
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where vb represents the speed of the blender in rpm and the a, b, c, d, e coefficients are
parameters estimated from experimental data to calibrate the model. The combined flow is
given by:

Fblender =
Nr

∑
j=1

Ff ,APImAPI,i=Na ,j +
Nr

∑
j=1

Ff ,ExcmExc,i=Na ,j (26)

Consequently, the outlet concentration (CAPI) is given by:

CAPI =
∑Nr

j=1 Ff ,APImAPI,i=Na ,j

Fblender
(27)

and the relative standard deviation (RSDAPI):

RSDAPI =

√
1

Nr−1 ∑Nr
j=1

( Ff ,API mAPI,i=Na ,j
Ff ,API mAPI,i=Na ,j+Ff ,ExcmExc,i=Na ,j

− CAPI

)2

CAPI
(28)

Figure 5. Continuous pharmaceutical tablet manufacturing processes: wet granulation (left) and
direct compaction (right) routes.

Essentially, this process requires ratio control as a natural solution for mixing flows. A
proposed solution is given in Figure 6.

Figure 6. A ratio control structure solution for the blender unit.

All transfer functions implemented in the benchmark pharma simulator are based
on literature models. Every process unit is characterized by a specific transfer function
representing the process dynamics. For the feeder unit, a simplified semi-empirical first-
order model (FOPDT) is utilized for modeling the feeder unit [35]. The relationship between
the screw speed and the mass flow rate of the feeder is accurately predicted. It requires
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extra parameters, such as the vertical stress (σv), the density constant (β), the mass and
radius of the blade (Mblade and Rblade), etc. The paper [36] presents a FOPDT model as
well, like in [37]. The difference is that the mass flow rate is calculated via a physics-based
approach from the bulk density of the powder, the screw speed, the volumetric efficiency
and the twin screws geometry. It would be more interesting to use this model since it points
out where the time constant and delay are coming from. Unfortunately, no parameter
data is available. These models are relatively new since no significant work has been done
before. Because of that, they used a FOPDT model where the parameters were purely
determined experimentally like in [38]. The work in [39] even uses the same loss-in-weight
(LIW) model as in [40]. All models described in these papers are very similar, making them
more or less even accurate. The availability of parameter data was the decisive factor for
choosing the model in [40].

For the blender unit, transfer function models have been derived from the population
balance models given in Equations (24)–(28). This process is rather complex and due to the
lack of numeral parameters and the complexity of the process, a simpler transfer function
model has been implemented in the simulator platform [41]. In the simulator library, the
wet granulator contains sub-modules where the particle size specifications are explicitly
used, as depicted in Figure 7.

Figure 7. Example of simulator library modules for specifying the grain size in granulator unit. These
are part of the process start-up settings given by the operator.

All process parameters are detailed in Table 1.

Table 1. Parameters for the blending process unit.

Parameter Symbol Value Unit

Number of axial
compartments Na 10 -

Number of radial
compartments Nr 7 -

API forward flux
parameter aAPI 5 × 103 kg/(s rpm)

API forward flux
parameter bAPI 1 × 10−1 kg/s

API backward flux
parameter cAPI 6 × 10−4 kg/(s rpm)

API backward flux
parameter dAPI 0 kg/s

API radial flux
parameter eAPI 1.1 × 10−2 kg/(s rpm)

MCC forward flux
parameter aExc 2.5 × 103 kg/(s rpm)

MCC forward flux
parameter bExc 9.8 × 10−2 kg/s

MCC backward flux
parameter cExc 1.3 × 10−3 kg/(s rpm)

MCC backward flux
parameter dExc 0 kg/s

MCC radial flux
parameter eExc 6.4 × 10−3 kg/(s rpm)

API—Active pharmaceutical ingredient; MCC—Microcrystalline cellulose.
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For two different species, the following impedance have been obtained, as illustrated
in Figure 8 bottom. We compare the frequency response estimation against the parametric
model estimation with one pole or two poles in the transfer function from (23). It turned
out the result with one pole was sufficiently accurate. The methods for identification have
been described in detail in [9]. The identified optimal parameters are listed in Table 2.

Figure 8. (Top) Case 1 : performance of the empirical model (23) in polar and Bode plots.
(Bottom) Case 2: performance of the empirical model (23) in polar and Bode plots.

Table 2. Reduced order model parameters (23) for two species of different viscosity.

K p α β NMSE

Species 1 1.11 × 108 1.46 × 103 0.70 0.015 4.32 × 10−5

Species 2 1.33 × 108 1.95 × 103 0.75 0.019 9.61 × 10−5

NMSE—Normalized mean square error.

If the grain particle size is decreasing, the number of particles per volume unit is
increasing and viscosity is increasing to decrease flow. To maintain a constant flow of
species in the blender, we need to adapt the ratio controller gains. An example of the
relationship between the particle size and flow of species is given in Figure 9.

Using mapping as that given in Figure 9, adaptation to context variations in terms
of material properties can be done. Context-aware control is a major trend in current
engineering applications, and the pharmaceutical industry offers a great opportunity to
pick up emerging solutions from more established fields of control applications [16].

This very complex process of tablet manufacturing is described by several sub-
processes (e.g., dispensing, blending, granulation, drying, tableting) as depicted in Figure 5.
To ensure optimal production each unit needs to operate such that to assure the critical qual-
ity attributes. The development of advanced inline monitoring techniques (e.g., the sensing
spectroscopy) tracks the product at each individual stage of manufacturing and eventually
saves additional analysis time, thereby enabling the direct release of the continuously
manufactured batch into the market without delay.

The production thereof is a complex multivariable process and modifications to any
of the mentioned components can have important implications on the efficiency of the
production process (e.g., changes in powder stickiness or mixture viscosity). Therefore,
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optimal control of production efficiency and product properties is essential to guarantee a
manufacturing process that is adaptive while maintaining quality at all times. This implies
that every unit in the production line has to be controlled such that the manufactured
tablets are within the very strict performance criteria. However, the focus of this paper
is not on the control of the continuous manufacturing line, but to show the potential of
sensing spectroscopy for the self-tuning ratio control.

Figure 9. An example of how the particle size of species influences the flow as part of the ratio
control algorithm.

4. Conclusions

In this paper, we have investigated a new approach for material properties analysis in
the pharmaceutical industry using impedance spectroscopy sensing. It aimed to enable
the use of material properties in varying conditions to self-tune control algorithms. The
solution proposed here exploits the capability of generalized order lumped parametric
models to capture material properties and their suitability for online estimations. The
results indicate the potential of the proposed methodology for self-tuning ratio control,
where the model parameters obtained using impedance spectroscopy will be then used for
the self-tuning control gain. This constitutes a step forward in the paradigm shift from batch
to continuous manufacturing in the pharma industry as the end-to-end process consists
of different control loops. Moreover, the algorithm is a versatile theoretical framework
and can be extended to other industries, e.g., food, oil, petrochemical. The particular
application presented in this paper is to show the feasibility of the proposed theoretical
framework to a real-life industrial process, enhancing the advantage of modeling and
control techniques in the field of pharmaceutical applications to facilitate the transition
from batch-wise production to continuous manufacturing.
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Nomenclature

Symbol Name Units
C linear concentration mole/m
t time s
tα fractional time (memory) sα

D diffusion coefficient m2/s
α, β fractional orders
m delimits sub-/supra-diffusion
Γ(x) Gamma function
x space m
τ projection plane variable
s Laplace Operator
K diffusion coefficient in space-time m2/sα

k local space operator m
n sample number
Cg concentration in grain mole/m3

L grain size m
A transversal area of grain m2

V grain volume m3

S surface area of grain m2

v volumetric flow of diffused species m3/s
γ linear diffusion velocity m/s
C0 initial concentration mole/m
T temperature K
KB Boltzman constant (m2·kg)/(K·s2)
r radius of sphere m
η viscosity kg/(m·s)
σ specific material coefficient
ω angular frequency rad/s
Re resistance Ω
Le inertance Pa·m−3·s2

Ce capacitance F
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