
����������
�������

Citation: Piątkowski, D.; Walkowiak,

K. TinyML-Based Concept System

Used to Analyze Whether the Face

Mask Is Worn Properly in

Battery-Operated Conditions. Appl.

Sci. 2022, 12, 484. https://doi.org/

10.3390/app12010484

Academic Editor: Antonio

Fernández-Caballero

Received: 15 September 2021

Accepted: 21 December 2021

Published: 4 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

TinyML-Based Concept System Used to Analyze Whether the
Face Mask Is Worn Properly in Battery-Operated Conditions

Dominik Piątkowski and Krzysztof Walkowiak *

Faculty of Information and Communication Technology, Wrocław University of Science and Technology,
50-370 Wrocław, Poland; 248833@student.pwr.edu.pl
* Correspondence: krzysztof.walkowiak@pwr.edu.pl

Abstract: As the COVID-19 pandemic emerged, everyone’s attention was brought to the topic of the
health and safety of the entire human population. It has been proven that wearing a face mask can
help limit the spread of the virus. Despite the enormous efforts of people around the world, there still
exists a group of people that wear face masks incorrectly. In order to provide the best level of safety
for everyone, face masks must be worn correctly, especially indoors, for example, in shops, cinemas
and theaters. As security guards can only handle a limited area of the frequently visited objects,
intelligent sensors can be used. In order to mount them on the shelves in the shops or near the cinema
cash register queues, they need to be capable of battery operation. This restricts the sensor to be as
energy-efficient as possible, in order to prolong the battery life of such devices. The cost is also a factor,
as cheaper devices will result in higher accessibility. An interesting and quite novel approach that can
answer all these challenges is a TinyML system, that can be defined as a combination of two concepts:
Machine Learning (ML) and Internet of Things (IoT). The TinyML approach enables the usage of ML
algorithms on boards equipped with low-cost, low-power microcontrollers without sacrificing the
classifier quality. The main goal of this paper is to propose a battery-operated TinyML system that
can be used for verification whether the face mask is worn properly. To this end, we carefully analyze
several ML approaches to find the best method for the considered task. After detailed analysis of
computation and memory complexity as well as after some preliminary experiments, we propose
to apply the K-means algorithm with carefully designed filters and a sliding window technique,
since this method provides high accuracy with the required energy-efficiency for the considered
classification problem related to verification of using the face mask. The STM32F411 chip is selected
as the best microcontroller for the considered task. Next, we perform wide experiments to verify the
proposed ML framework implemented in the selected hardware platform. The obtained results show
that the developed ML-system offers satisfactory performance in terms of high accuracy and lower
power consumption. It should be underlined that the low-power aspect makes it possible to install
the proposed system in places without the access to power, as well as reducing the carbon footprint
of AI-focused industry which is not negligible. Our proposed TinyML system solution is able to
deliver very high-quality metric values with accuracy, True Positive Ratio (TPR), True Negative Ratio
(TNR), precision and recall being over 96% for masked face classification while being able to reach up
to 145 days of uptime using a typical 18650 battery with capacity of 2500 mAh and nominal voltage
of 3.7 V. The results are obtained using a STM32F411 microcontroller with 100 MHz ARM Cortex M4,
which proves that execution of complex computer vision tasks is possible on such low-power devices.
It should be noted that the STM32F411 microcontroller draws only 33 mW during operation.

Keywords: TinyML; Machine Learning; embedded systems; computer vision; COVID-19; face masks

1. Introduction

Machine Learning (ML) is one of the methods used in the field of Artificial Intelligence
(AI). In recent years, the computational complexity of widely used algorithms has been
growing exponentially [1]. This is caused by the combination of increasingly fast processor

Appl. Sci. 2022, 12, 484. https://doi.org/10.3390/app12010484 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12010484
https://doi.org/10.3390/app12010484
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-1686-3110
https://doi.org/10.3390/app12010484
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12010484?type=check_update&version=1

Appl. Sci. 2022, 12, 484 2 of 24

speeds, and the presence of Big Data and progressively powerful graphics processing units.
On one hand, allocating more resources enables training and using state-of-the-art models
capable of achieving results similar to humans, or even surpassing them. However, on
the other hand, training and using such models requires increasingly advanced hardware
and enormous amounts of electricity [1,2]. This poses a handful of problems, and one of
them is the carbon footprint of an AI-focused industry, which is not negligible [1]. The
popularization of cloud computing is not helping either, as it additionally strains the
network infrastructure. One of the solutions to these problems is TinyML—a combination
of ML and embedded Internet of Things (IoT) devices. This approach evades possible
concerns caused by cloud solutions, such as a potential lack of privacy, introduction of
latency, additional network strain, as well as non-negligible power consumption [3].

The latency happens because of the nature of cloud computing; a typical process
consists of gathering the data, sending it to the server, waiting for a response, and acting
accordingly. This is heavily dependent on network speed and load. In case of slow and/or
loaded network infrastructures, the device will be less responsive and less reliable than the
TinyML one that does all the computations by itself [3]. Another factor connected to that
topic is the network strain—an inherent part of cloud-computing—as the data acquired by
the sensors need to be sent to a server, and the response from that server also needs to be
sent back to the device, and this can generate unnecessary network traffic that could be
avoided by using the TinyML approach.

Power consumption is also important, as factor-data transmission requires more
energy than locally computing the results, even if the microcontroller is at the maximum
workload level for a significant amount of time [3,4]. As the WeMOS D1 Mini board
based on the ESP8266EX Wi-Fi chip requires 185 mA during operation [5], this is current
consumption that is an order of magnitude higher than any TinyML-capable microcontroller,
for example, STM32F411 [6].

The system reliability is also important—transmitting the data over the unpredictable,
lossy wireless channels from the device to the cloud poses a handful of problems, including
privacy breach/data loss, data compromise, as well as malicious data modification [3]. The
TinyML approach is free from these problems, as its working principles are very different
from cloud computing—the data are kept within the device and the communication is
reduced to minimum, effectively mitigating the stated problems.

TinyML provides a way to counter the mentioned problems. The proposed approach
makes it possible to create cheap, widely available, energy-efficient sensor devices with
long battery-operated lifespan [3]. To the best of our knowledge, there exists no research
papers nor any device consisting of such a tiny microcontroller used in this paper that is
capable of carrying out the task of analyzing whether the face mask is being worn properly.

The motivation of our work is associated with the COVID-19 pandemic. As it has been
proven that wearing a face mask can help limit the spread of the virus [7–12], the face mask
became mandatory in many public places, especially indoor ones, for example, in shops,
cinemas and theaters. For the face masks to be effective, they have to be worn correctly;
covering both the nose and the chin. Despite dissemination of these facts, there still exists a
group of people that wear face masks incorrectly. Due to the fact that the security guards
can only handle a limited area of the frequently visited objects, we propose the usage of
TinyML intelligent sensors. With the aim of mounting them on the shelves in shops or near
the cinema cash register queues, the battery operation capability is a must. This enforces
the power efficiency of such devices in order to prolong the battery life to a reasonable
extent. The other important factor is the device cost, as cheaper devices will result in higher
accessibility.

The main hypothesis of our research presented in this paper is formulated as follows:
it is possible to create a cheap TinyML system with a long uptime that can classify the
masked face with satisfactory quality. The key challenge in our research is the fact that
candidate hardware platforms are limited by the cost and power consumption, as they
are also inherently resource-limited—a small, power-efficient microcontroler will not have

Appl. Sci. 2022, 12, 484 3 of 24

much memory nor computational power. To answer the main question, a hardware
platform must be chosen and an effective classifier must be developed in order to conduct
the research and check if the resulting TinyML system meets the quality requirements.
The main contribution of this paper is the enablement of a severely resource-constrained
microcontroller to perform complex computer vision tasks, as well as training, testing
and implementing the model for the used algorithm that will fit in the Flash and RAM
memory of the chosen microcontroller and will work within a reasonable time and with
reasonable accuracy. The image preprocessing methods enhancing the system accuracy are
also worth mentioning.

This paper is organized as follows. In Section 2, we discuss the related works, empha-
sizing the discovered TinyML niche in the computer vision field. In Section 3, we describe
the used algorithms and datasets, and also propose the image preprocessing steps that
gave the best observed results. We propose the method of data extraction that made the
classification possible. As the TinyML is meant to run on a microcontroller, we evaluate
the chosen platform candidates and pick the most suitable one. We discuss the limitations
linked to the chosen platform and TinyML overall and describe the method the problem
was solved with, as well as the applied improvements. We measure the time required in
order to perform the complete face detection and classification and calculate the required
energy and estimated battery life. In Section 4, we present and discuss the results, includ-
ing the accuracy of the trained models and the overall system accuracy. The last section
concludes this work.

2. Related Works

TinyML is an edge computing crossover between the IoT devices and the ML. This
approach refines the low power aspect of the IoT devices and combines it with the algo-
rithms capable of performing complex tasks, for example decision-making, prediction or
classification. There are numerous established TinyML use cases [4], including: audio
wake words, context recognition, control words, keyword detection, visual wake words,
object detection, image classification, gesture recognition, object counting, text recognition,
segmentation, forecasting, activity detection, sensing environmental factors (e.g., light
or temperature), anomaly detection, motor control or predictive maintenance. Use cases
similar to this paper are in the image classification group—we will discuss them in this
section. One of the examples can be seen in the Ref. [13], where TinyML helps achieve
better results in autonomous driving. Another example comes from the Ref. [14], where a
person detector is built.

There are also other works that are linked with the topic of this paper. The problem
of face detection is solved in the Ref. [15]. The researchers use a state-of-the-art object
detection system called You Only Look Once (YOLO) v3 [16], capable of real-time object
detection. In the mentioned paper, researchers used a seventh-generation Intel i7 Central
Processing Unit (CPU) in combination with GTX 1080 Graphics Processing Unit (GPU) and
7.7 GB of RAM memory, achieving the results in less than 30 ms. The other work solving
the problem of face detection is the Ref. [17]. The researchers proposed a method based
on Faster Region-based Convolutional Neural Networks (R-CNN) [18] that is capable of
providing the results in 130 ms using Intel Xeon E5 8-core processor with GTX TITAN-
X GPU. The authors of the Ref. [19] solved the problem of face mask detection. The
researchers applied YOLOv2 [20] combined with ResNet-50 [21] to create the detector.
As the YOLOv2 uses a custom network based on Googlenet [22], it needs 8.52 billion
floating-point operations for a forward pass [20]. Another way of solving the problem
of face mask detection is presented in the Ref. [23]. This paper evaluates the approach
based on ResNet [21] and MobileNet [24] respectively. The ResNet requires billions of
floating-point operations for a forward pass [21], while MobileNet requires hundreds of
millions of floating-point operations [24] for a forward pass.

There are very few recent works covering the topic of embedded systems used for
face mask detection, for example, the Refs. [25–27]. The authors used powerful processors

Appl. Sci. 2022, 12, 484 4 of 24

in order to achieve impressive results. Our paper focuses on energy efficiency, taking the
energy-efficient battery-operated device concept into consideration, which requires the
usage of less powerful platforms. The chosen microcontroller is also cheaper than the ones
proposed by the researchers, bringing the device cost down and making it more accessible in
the process. Platform cost comparison is shown in Table 1. In the mentioned papers [25–27],
the researchers focus on the binary classification problem: whether the person wears a
face mask or not. Our paper focuses on the classification of the correctly masked face and
incorrectly masked face. It should be underlined that, taking the existing ML and TinyML
studies and devices into account, to the best of our knowledge, there are no TinyML research
papers nor devices with resources comparable to the used STM32F411 microcontroller
that were used to implement complex computer vision tasks. After discovering this field
research gap, we propose a power-efficient TinyML system that can be used to verify
whether the face mask is worn properly using strictly limited resources.

Table 1. Platform cost comparison.

Work Platform Used Price

[25] STM32H743VI $15.91
[26] Sipeed Maixduino $34.90
[27] STM32H74VI $15.91

Considering these approaches, despite splendid results, none of them can be trans-
ferred into the TinyML domain. This is due to the processing power and memory con-
straints, as well as immense energy consumption that is not acceptable on battery-operated
devices.

3. Materials and Methods

This section presents the methods used in the proposed concept system, as well as the
data used to train the classifier models. There are numerous ML classifiers, each with its
own benefits and drawbacks. For the task of classification of the masked face, a K-means
algorithm was chosen because it is computationally lightweight and requires a relatively
small amount of Flash memory for the model in comparison with Neural Networks (NN),
which are a popular method in image recognition tasks. The RAM requirement is also
remarkably small, as the only calculated intermediate values are the distances between the
classified object and the centroids compared to the activation values of every neuron in
the network.

For the task of detecting a face, a sliding window technique combined with a K-means
classifier was chosen, due to the fact that this approach is lightweight enough to fit into the
memory of the microcontroller unlike most of the sophisticated models, executes reasonably
fast, and can be further tuned in order to achieve either better results or higher speed.

3.1. K-Means

The K-means algorithm is a method capable of automatically clustering similar data
examples together using a training set {x(1), ..., x(m)}, where x(i) ∈ Rn [2,28]. The algorithm
is an iterative procedure that starts by randomly initializing the centroids, and then proceeds
to loop consisting of two parts. The first part is the example-centroid assignment procedure,
which means that every example gets assigned to the closest centroid using a certain
distance metric. The second part is recomputing the centroids, which is done by calculating
the mean value of all examples assigned to currently evaluated centroid and shifting the
centroid to the computed mean value. This procedure is applied to every centroid, which
ends the last step of the loop [2,28]. The algorithm can be represented by the pseudocode
shown on the Listing 1.

Appl. Sci. 2022, 12, 484 5 of 24

Listing 1. K-means algorithm.

centroids = initialize_random();
for (int i = 0; i < iterations; i++)
{
example_assignments = assign_closest_centroid();
centroids = compute_means();
}

The K-means algorithm will always converge to a certain set of centroid values, but
the solution may not be ideal, because it depends on the initial centroid values. Therefore,
the K-means algorithm should be run multiple times with different random initializations.
After running the algorithm several times, the best centroid set can be chosen from the
results [2,29]. The typical K-means algorithm implementation uses Euclidean distance as
the distance metric in the example-centroid assignment procedure.

The K-means algorithm was chosen for its overall lightness as it requires small amounts
of both energy and memory to execute. The drawbacks of the algorithm were mitigated by
careful design and testing of the preprocessing filters. Other methods that were considered
have not been used due to the computational complexity and memory constraints. Notable
methods other than the used K-means with O(n2) computational complexity are Support
Vector Machines (SVM) with a computational complexity of O(n3), and Neural Networks
with a computational complexity of O(n4). The algorithm we chose supported by carefully
designed filters gave the best tradeoff between complexity (both computational complexity
and memory complexity) and the given results. This is very important due to the strict
TinyML limitations regarding the power consumption and available device resources. This
approach gave us satisfactory results, and the other methods can be evaluated in future
work. For more details, please refer to Sections 3.2.2 and 3.3.

3.2. Data
3.2.1. Datasets

An image is considered a two-dimensional array of values in range [0, 255]. The
following datasets were used in this work:

• MaskedFace-Net [30,31]
• Natural images [32]

The MaskedFace-Net [30,31] dataset was used to train and test the K-means classifier
that is capable of detection if the face mask is worn correctly or incorrectly. This dataset
consists of 137,013 images (as of 5 November 2020) that is based on the Flickr-Faces-HQ
(FFHQ) dataset, that was originally created as a benchmark for the generative adversarial
networks (GAN) [33]. The dataset consists of two subsets:

• Correctly Masked Face Dataset (CMFD)-67192 images,
• Incorrectly Masked Face Dataset (IMFD)-69821 images.

The Incorrectly Masked Face Dataset contains three subclasses:

• Face masks worn only on chin, leaving the mouth and nose uncovered—6243 images;
• Face masks covering both chin and mouth, leaving the nose uncovered—57,224 im-

ages;
• Face masks covering both nose and mouth, leaving chin uncovered—6354 images.

The images are of high-quality, with a size of 1024 × 1024 px. They also incorporate
a large enough variation regarding age, ethnicity, and background, and also introduce
glasses and headgear.

Appl. Sci. 2022, 12, 484 6 of 24

The Natural images [32] dataset was used to train and test K-means classifiers sup-
ported by the sliding window technique that is capable of face detection. This dataset
consists of 6899 images composed of eight subsets:

• airplane,
• car,
• cat,
• dog,
• flower,
• fruit,
• motorbike,
• person.

The images of people are of good quality, with a size of 256 × 256 px. The images
incorporate similar variation as the MaskedFace-Net [30,31] dataset. In this paper, the other
classes are treated as one non-person class.

3.2.2. Data Preprocessing

Data for the algorithm consist of preprocessed images from the datasets. The first step
is filtering, which is shown on the Listing 2 for the MaskedFace-Net [30,31] dataset and on
the Listing 3 for the Natural images [32] dataset. The examples are shown in the Figures 1
and 2. The downscaling size of 32 × 32 px was chosen as it was the smallest size that did
not impact accuracy.

Listing 2. Filtering of the MaskedFace-Net [30,31] dataset.

• Downscaling the image containing a face to 32 × 32 px
• Calculating the intermediate color value using the procedure:

value = max(R, G, B)

• As most of the face masks are cyan, the intermediate color value is changed according
to the procedure:

if (B > G && G > R && R < 200) value += 50
else value = 0
if (value > 255) value = 255

• Applying the threshold filter to the intermediate values with the boundary value of
240 with the procedure:

if (value < 240) value = 0
else value = 255

Listing 3. Filtering of the Natural images [32] dataset.

• Downscaling the image to 32 × 32 px
• Conversion to grayscale by averaging the R, G and B values

Appl. Sci. 2022, 12, 484 7 of 24

Figure 1. Example of image filtering of the MaskedFace-Net [30,31] dataset.

Figure 2. Example of image filtering of the Natural images [32].

Due to the fact that the data for the K-means algorithm is meant to be a normalized
one-dimensional array, as ML algorithms typically work better on normalized data [2], the
next step is feature normalization—every pixel of the image becomes a floating point value
in range [0, 1] stored in a two-dimensional array. The resulting array is then unfolded to a
one-dimensional array using the procedure shown on the Listing 4. An example is shown
in Figure 3.

Listing 4. Unfolding procedure.

• Two-dimensional array is split into n one-dimensional rows
• One-dimensional rows are concatenated into one one-dimensional array

Figure 3. Example of the unfolding procedure.

3.3. Data Extraction
3.3.1. Sliding Window

The sliding window is a technique allowing for an easy detection of objects in computer
vision ML tasks [34] that can run on platforms with limited resources. The window is a
rectangle that moves horizontally and vertically through the image [2]. An example of the
sliding window output is shown in Figure 4.

In order to find the desired object, each fragment of the image limited by the window
is passed as an input to the classifier. To enable detection of objects of different sizes, scaling
is mandatory [2].

Appl. Sci. 2022, 12, 484 8 of 24

Figure 4. Example of the sliding window of size 2 × 2 with stride value of 1.

3.3.2. Face Detection

As the system was designed to work with a 640 × 480 px camera, there are many
possible face sizes that can be present on the image. The detection is achieved by applying
the sliding window technique supported by the K-means classifier with one of the window
parameters shown in the Table 2. The best result, which is a rectangle with the highest
probability of containing a face, is passed as the output of the detector.

Table 2. Face detection sliding window parameters.

Window Size Stride Window Size Stride Window Size Stride

64 × 64 16 224 × 224 48 384 × 384 48
96 × 96 24 256 × 256 48 416 × 416 48

128 × 128 32 288 × 288 48 448 × 448 48
160 × 160 40 320 × 320 48 480 × 480 48
192 × 192 48 352 × 352 48

3.4. TinyML Platform
3.4.1. Picking the Platform

An important factor impacting the whole system design is the choice of the TinyML
platform. Among the major features required for consideration are price, accessibility,
speed, power consumption and memory size. Three candidates were examined in order to
choose the best-fitting TinyML platform:

• STM32F103CB, representing the STM32 F1xx family,
• STM32F411CE, representing the STM32 F4xx family,
• STM32H743VI, representing the STM32 H7xx family.

First two microcontrollers are widely available in the form of small evaluation boards,
popular among tinkerers, called Bluepill for STM32F103 and Blackpill for STM32F411. The
boards are shown in Figures 5 and 6. The third microcontroller is not as popular as the two
previous ones, due to the lack of availability of small form-factor boards incorporating the
STM32H743 chip, although it can be found in expensive, full-sized development boards.

Figure 5. Bluepill board with STM32F103CB microcontroller.

Appl. Sci. 2022, 12, 484 9 of 24

Figure 6. Blackpill board with STM32F411CE microcontroller.

As seen in the Table 3, the microcontrollers vastly differ from each other. The STM32F103
chip is the cheapest, but it also incorporates the worst power-consumption-to-speed ra-
tio of 0.44 mA/MHz, compared to 0.1 mA/MHz for STM32F411 and 0.275 mA/MHz for
STM32H743. It is also the only candidating microcontroller without FPU and with only
20 KB of RAM, what renders the chip unsuitable for this task.

Table 3. Platform comparison.

Microcontroller Price Speed Power
Consumption

Memory
Size

STM32F103CB $7.17
72 MHz

ARM Cortex M3
without FPU

32 mA @ 72 MHz 128 KB Flash
20 KB RAM

STM32F411CE $7.83
100 MHz

ARM Cortex M4
with FPU

10 mA @ 100 MHz 512 KB Flash
128 KB RAM

STM32H743VI $15.91
480 MHz

ARM Cortex M7
with FPU

132 mA @ 480 MHz 2 MB Flash
1 MB RAM

The STM32H743 chip is the most expensive, being over double the STM32F103 price.
It contains more than enough memory and is also the fastest of the candidating micro-
controllers, containing the ARM Cortex M7 core capable of reaching a speed of 480 MHz.
However, in terms of TinyML, it is not suitable due to a worse power-consumption-to-
speed ratio than STM32F411, and not being as widely available as the STM32F103 and
STM32F411 chips.

3.4.2. Chosen Platform

Considering all the factors, the STM32F411 chip was chosen as the best suitable
microcontroller for this task. It is relatively cheap, widely available as a Blackpill evaluation
board, and fast enough for computational tasks due to the fast ARM Cortex M4 core, while
being the most energy-efficient option out of all candidates. It also contains sufficient
onboard memory to have a big enough DMA-driven buffer connected to the external RAM,
resulting in no impact on the computation time due to the fact that all needed data can be
present in the internal RAM on demand.

3.4.3. Limitations

TinyML is a great approach for creating energy-efficient battery-operated intelligent
sensors. Despite many advantages, it also comes with significant drawbacks. There are
many ML state-of-the-art algorithms and models, but they require an immense amount of
resources which are not present on any typical microcontroller. One of the limiting factors

Appl. Sci. 2022, 12, 484 10 of 24

is the amount of memory for both Flash and RAM [4]. The STM32F411 chip has 512 KB
of Flash memory, in which the code and trained models must fit. This makes the usage of
the high-precision complex models impossible. Even if this was possible, usage of such
models would be impractical, as intricate models would need a tremendous amount of
time to calculate the result.

As the STM32F411 microcontroller has 128 KB of RAM, the presence of an external
memory chip is required, due to the fact that the image of size 640 × 480 px encoded in the
RGB565 format requires 600 KB of storage.

3.5. Masked Face Classification
3.5.1. Solving the Masked Face Problem

The first step in solving the problem of classification of the masked face is the detection
of the face in an image. This is achieved by applying the sliding window technique to
the image, obtaining the image fragment in the process. The preprocessing filter is then
applied and the image fragment is unfolded. The unfolded array is passed to the K-means
face/non-face classifier, and the procedure is repeated until the sliding window positions
are exhausted. At this point, the image of a face is obtained. Then, the preprocessing filter
is applied and the image of a face is unfolded. The unfolded array is passed to the K-means
masked face classifier, which produces the system output. The system flow diagram is
shown in Figure 7.

Figure 7. System flow diagram.

3.5.2. Improving the Algorithm

The goal is to create a TinyML device that is capable of detecting whether the face
mask is being worn correctly or incorrectly. Due to the TinyML nature and the fact that this
device is meant to be powered by a battery, saving every possible bit of energy is a must.
This can be done by algorithm simplification that can either influence the results or not,
depending on the action. An example of algorithm simplification that does not influence
the results is distance metric replacement. The conventionally used Euclidean metric gives
precise distance values, but in order to classify a vector using K-means algorithm, precise
distance value is not required. The only information that is required in order to correctly
classify the given example to one particular centroid is the answer to the question: “Which
centroid is the closest to the given example?”

This can be done by replacing the Euclidean metric, described with the Formula (1)
with the squared Euclidean metric, described with the Formula (2).

ED(p, q) =
√
(p1 − q1)2 + (p2 − q2)2 + ... + (pn − qn)2 (1)

Appl. Sci. 2022, 12, 484 11 of 24

SED(p, q) = (p1 − q1)
2 + (p2 − q2)

2 + ... + (pn − qn)
2 (2)

It can also be proven mathematically. The square root function monotonically increases
in the entire domain, that is, x ∈ (0, ∞). As the distance is never negative, the square root
can be removed from the Euclidean metric, creating the squared Euclidean metric, as this
metric still allows for explicit comparison of the distance values. This means that replacing
the Euclidean metric with a squared Euclidean metric will distort distance values (due
to nonlinearity), but will not change the “greater than” and “smaller than” relationships
between them, which is the only information needed.

Square root removal is beneficial in the context of TinyML because it is a computation-
ally heavy mathematical operation, which results in an excessive amount of required time
and energy. As shown in the Figure 8, the time difference is non-negligible. The K-means
classification with a squared Euclidean metric is a baseline with 8.30 ms calculation time.
The K-means classification with a Euclidean metric and bisection algorithm for square root
calculation resulted in 8.90 ms of total computation time, which translates into 0.60 ms
calculation time for the bisection square root calculation. The K-means classification with
a Euclidean metric and Babylonian algorithm resulted in 8.52 ms total computation time,
which translates into 0.22 ms calculation time for the Babylonian square root calculation.
This translates into a 7.23% overall time increase for K-means classification with a Euclidean
metric with a bisection algorithm for square root calculation and 2.65% for K-means classi-
fication with a Euclidean metric with a Babylonian algorithm for square root calculation in
comparison with K-means classification with a squared Euclidean metric. The K-means
classification with a Euclidean metric and optimized sqrt() function for square root calcula-
tion resulted in 8.33 ms total computation time, which translates into 0.03 ms calculation
time for the optimized sqrt() function root calculation and a 0.36% overall time increase for
K-means classification with a Euclidean metric with an optimized sqrt() function for square
root calculation in comparison with K-means classification with the squared Euclidean metric.

(a) (b)

(c) (d)
Figure 8. Time difference between K-means classification time with Euclidean distance metric and
squared Euclidean distance metric. (a) K-means with Euclidean distances computation time using
bisection algorithm; (b) K-means with Euclidean distances computation time using Babylonian
algorithm; (c) K-means with Euclidean distances computation time using optimized sqrt() function;
(d) K-means with squared Euclidean distances computation.

Appl. Sci. 2022, 12, 484 12 of 24

3.6. Measurements
3.6.1. Face Detection

The sliding window was used in combination with the K-means classifier to detect
a face in the image. The image fragment limited by the window was downscaled to
32 × 32 px in order to pass it to the classifier after applying the grayscale filter. The most
computationally heavy task in this method is the downscaling, which must be measured
and taken into consideration. Another procedure to measure is the grayscale filter. The slid-
ing window technique measurement results are shown in Table 4. The Figures A1 and A2
from the Appendix A contain the oscillograms from the measurements. Due to the fact
that during measurements, the microcontroller was programmed to output a logical one
during the desired operation to measure and logical zero otherwise, the time measurement
of the operation is equivalent to measuring the pulse width. The grayscale conversion
measurement shown in the Figure 9 resulted in 1.45 ms of calculation time. The K-means
classification measurement shown in the Figure 10 resulted in a 8.30 ms calculation time.

Table 4. Sliding window measurements.

Window
Size Stride Window

Positions
Stride: Window

Size Ratio
Downscaling

Time

64 × 64 16 999 25% 6.920 ms
96 × 96 24 391 25% 12.95 ms

128 × 128 32 204 25% 21.30 ms
160 × 160 40 117 25% 32.00 ms
192 × 192 48 70 25% 44.96 ms
224 × 224 48 54 21.43% 60.24 ms
256 × 256 48 45 18.75% 77.90 ms
288 × 288 48 40 16.67% 97.80 ms
320 × 320 48 28 15% 120.0 ms
352 × 352 48 21 13.64% 144.6 ms
384 × 384 48 18 12.5% 171.6 ms
416 × 416 48 10 11.54% 200.8 ms
448 × 448 48 5 10.71% 232.4 ms
480 × 480 48 4 10% 266.2 ms

Figure 9. Measurement of time required for grayscale conversion.

Appl. Sci. 2022, 12, 484 13 of 24

Figure 10. Measurement of time required for K-means classifier.

3.6.2. Masked face Classification

The masked face classification consists of a thresholding part and K-means algorithm
part. The measurement of thresholding shown in the Figure 11 resulted in 2.40 ms of
calculation time, and the K-means measurement is shown in the Figure 10.

Figure 11. Measurement of time required for thresholding.

4. Results

This section presents a performance evaluation of each system component, including
the overall system accuracy and the face detection time calculation results. The tuning
of the masked face classifier and sliding window is discussed and presented. Using the
acquired data, the energy consumption of one full masked face classification operation is
calculated, and the device battery life is estimated.

All datasets used for training the models were split into three subsets:

• Training subset consisting of 60% randomly chosen images
• Cross-validation subset consisting of 20% randomly chosen images
• Testing subset consisting of 20% randomly chosen images

The models were trained using the training subsets and validated using cross-validation
subsets. The best-performing model in the validation stage was chosen for testing using
the testing subset. As the K-means classifier training is heavily dependent on the initial
values, the training was executed 1000 times [2].

4.1. Masked Face Classifier Tuning

The K-means masked face classifier was trained and tested with different parameters
and filtering methods in order to create a model with the best results possible. Tested

Appl. Sci. 2022, 12, 484 14 of 24

approaches are described in the Table 5. There were 14 tuning approaches with three
varying parameters: the number of centroids, filtering method and whether the subset of
the masked face set was used. The amount of centroids that was tested was in the range
2–4 due to the existence of two major dataset classes (correctly masked face and incorrectly
masked face) and four total dataset subclasses (correctly masked face, incorrectly masked
face-mouth and nose uncovered, incorrectly masked face-nose uncovered, incorrectly
masked face-chin uncovered) in order to check which value gave the best results. Four
types of filtering were tested. The first filtering method was composed of a downscaling
module that outputs a. 32× 32 px image, the calculation of an intermediate color value with
max(R, G, B), a color-enhancing module sensitive only to the face mask color range, and a
thresholding module with a threshold of 240. The second filtering method is composed
of downscaling module that outputs 32 × 32 px image, calculation of intermediate color
value with max(R, G, B), a color-enhancing module sensitive to the face mask color range
and less sensitive to other color ranges, and a thresholding module with threshold levels of
160, 192, and 240. The third filtering method was composed of a downscaling module that
outputs a 32 × 32 px image, calculation of an intermediate color value with max(R, G, B)
and thresholding module with a threshold levels of 160, 176, 192, 208, 224 and 240. The
fourth filtering method was composed of a downscaling module that outputs a 32 × 32 px
image. The first two described filters were designed to take advantage of the fact that
most of the face masks were cyan. The third filter did not have a color-enhancing module
sensitive to the face mask color range in order to discover the importance of this module in
results. The fourth filter only downscaled the image and was the only filter that resulted
in a non-grayscale image. It was also introduced in order to discover the performance of
other filtering operations (calculating intermediate value and thresholding).

The comparison of all proposed tuning approaches is shown in Figures 12–16 that
present the obtained results of the following metrics: accuracy, TPR, TNR, precision and
recall, respectively. As seen in the mentioned Figures, the metrics vary significantly between
the tested approaches. The obtained results for the chosen approach (number 4) are of very
high-quality.

The comparison of filtering methods is shown in the Figure 17. The approach numbers
1, 2, 3, 6 and 7 use a subset consisting only of the images where masks are worn on the chin
and a similar amount of randomly chosen images where masks are worn correctly. This
results in a subset of size 12,226 instead of the complete dataset of 137,013 images. The
subset was used to discover the difference in results between “easy data” consisting of only
two dataset subclasses (correctly masked face and incorrectly masked face-mouth and nose
uncovered; the subclasses are balanced in size) and the full dataset.

Table 5. Tested approaches for the masked face classifier.

Approach Filtering Method Centroid Amount Masked Face Subset

1 Proposed in this paper 2 Yes
2 Proposed in this paper 3 Yes
3 Proposed in this paper 4 Yes
4 Proposed in this paper 2 No
5 Proposed in this paper 3 No
6 Shown on the Listing 5 2 Yes
7 Shown on the Listing 5 3 Yes
8 Shown on the Listing 5 2 No
9 Shown on the Listing 5 3 No
10 Shown on the Listing 6 2 No
11 Shown on the Listing 6 3 No
12 Shown on the Listing 6 4 No
13 Downscaling to 32 × 32 px 2 No
14 Downscaling to 32 × 32 px 3 No

Appl. Sci. 2022, 12, 484 15 of 24

Listing 5. Alternative filtering of the MaskedFace-Net [30,31] dataset-method 1.

• Downscaling the image containing a face to 32 × 32 px
• Calculating the intermediate color value using the procedure:

value = max(R, G, B)

• As most of the face masks were cyan, the intermediate color value was changed
according to the procedure:

if (B > G && G > R) value += 50
else if (value > 200) value -= 50
if (value > 255) value = 255

• Applying the threshold filter to the intermediate values with the boundary values of
160, 192 and 240 with the procedure:

if (value < 160) value = 0
else if (value < 192) value = 85
else if (value < 240) value = 170
else value = 255

Listing 6. Alternative filtering of the MaskedFace-Net [30,31] dataset-method 2.

• Downscaling the image containing a face to 32 × 32 px
• Calculating the intermediate color value using the procedure:

value = max(R, G, B)

• Applying the threshold filter to the intermediate values with the boundary values of
160, 176, 192, 208, 224 and 240 with the procedure:

if (value < 160) value = 0
else if (value < 176) value = 42
else if (value < 192) value = 85
else if (value < 208) value = 127
else if (value < 224) value = 170
else if (value < 240) value = 212
else value = 255

Figure 12. Comparison of the accuracy of the K-means classifier vs. parameters and filtering methods.

Appl. Sci. 2022, 12, 484 16 of 24

Figure 13. Comparison of the TPR of the K-means classifier vs. parameters and filtering methods.

Figure 14. Comparison of the TNR of the K-means classifier vs. parameters and filtering methods.

Figure 15. Comparison of the precision of the K-means classifier vs. parameters and filtering methods.

Figure 16. Comparison of the recall of the K-means classifier vs. parameters and filtering methods.

Appl. Sci. 2022, 12, 484 17 of 24

(a)

(b)

(c)
Figure 17. Comparison of the filtering methods. (a) Proposed filtering; (b) Filtering from Listing 5;
(c) Filtering from Listing 6.

The results of all analyzed 14 approaches were validated using the Analysis of Variance
(ANOVA) test. For each analyzed approach, we applied the bootstrapping method to obtain
30 results of the accuracy metric. The ANOVA test of the obtained results is shown in
Table 6. According to the reported values, the null hypothesis is rejected, that is, there is
sufficient evidence to conclude that not all of the means of analyzed 14 approaches are
equal and that there are statistical differences between the tested approaches. Based on the
obtained results, the model from Approach 4 was chosen as the best masked face classifier
due to the fact that this model performed the best in the test results, accurately classifying
the correctly masked face, while being able to achieve almost the best results for accurately
classifying the incorrectly masked face, even if only the nose was uncovered. To verify
the performance of Approach 4, we made the t-test comparing Approach 4 against other
approaches. In all cases, the obtained p-value is <0.00001, which means that the differences
between the results of Approach 4 and results of other approaches are significant. Therefore,
in the remainder of the paper, we present results are obtained using Approach 4.

Table 6. The results of the ANOVA test of analyzed approaches for the masked face classifier

Source Degrees of
Freedom

Sum of
Squares

Mean
Square F-Stat p-Value

Between groups 13 68,823.4871 5294.1144 143,244.7783 0
Within groups 406 15.0052 0.037

Total 419 68,838.4922

4.2. Sliding Window Tuning

The sliding window technique can be tuned in two ways—either by maximizing speed,
or maximizing accuracy. By using more window sizes, the amount of passes through the
image rises, especially with smaller window sizes. With this approach, objects of more
sizes can be detected, increasing accuracy. By using less window sizes, the amount of
passes through the image falls, trading accuracy for speed. Similar observations can be
noticed by modifying the stride value, lowering the stride translates into more window

Appl. Sci. 2022, 12, 484 18 of 24

positions, increasing accuracy, and lowering speed, while increasing the stride translates
into less window positions, decreasing accuracy and increasing speed. The sliding window
parameters were chosen to achieve enough detection coverage while keeping the time
relatively low.

4.3. System Accuracy
4.3.1. Masked Face Classification

The masked face classification accuracy results are shown in Table 7. The results
presented here are results of Approach 4 chosen in the tuning section (refer to Section 4.1).
There are values present for correct detection of the correctly masked face, correct detection
of the incorrectly masked face, the True Positive Rate (TPR), True Negative Rate (TNR),
precision and recall. Considering the fact that all of these values are over 96% and that
the dataset classes are balanced in terms of sample amount, this translates into a high-
quality classifier.

Table 7. Masked face classification metrics.

Metric Value

Accuracy of the correct detection of the correctly masked face 96.86%
Accuracy of the correct detection of the incorrectly masked face 96.40%

TPR 96.58%
TNR 96.41%

Precision 96.40%
Recall 96.58%

4.3.2. Face Detection

The face detection metric values are shown in the Table 8. As with the masked face
classification, there are values present for correct detection of the face, correct detection of
the non-face, TPR, TNR, precision and recall. As all of these values are over 79%, this also
translates into a high-quality classifier, although not as high as the masked face classifier.

Table 8. Face detection metrics.

Metric Value

Accuracy of the correct detection of the face 82.09%
Accuracy of the correct detection of the non-face 79.85%

TPR 80.29%
TNR 81.68%

Precision 82.09%
Recall 80.29%

Using the acquired data, the time required to detect a face was calculated by multiply-
ing the amount of the window positions with appropriate downscaling time and adding the
amount of the window positions multiplied by the K-means processing time, consisting of
the grayscale conversion and K-means classification. The results for the proposed window
sizes are shown in the Table 9.

Depending on the device mounting position, one of the proposed window sizes can
be used. Smaller window size allows the detection of the face in the scenario where the
examined person is standing farther away from the camera, but at the cost of higher
computation time. A bgger window size can be used in situations where the examined
person is standing closer to the camera, resulting in a shorter computation time.

Appl. Sci. 2022, 12, 484 19 of 24

Table 9. Face detection time calculation results.

Window Size Total
Downscaling Time

Total
K-Means Time

Total
Detection Time

320 × 320 3360.00 ms 273.0 ms 3633.00 ms
352 × 352 3036.60 ms 204.8 ms 3241.35 ms
384 × 384 3088.80 ms 175.5 ms 3264.30 ms
416 × 416 2008.00 ms 97.5 ms 2105.50 ms
448 × 448 1162.00 ms 48.8 ms 1210.75 ms
480 × 480 1064.80 ms 39.0 ms 1103.80 ms

4.3.3. Total System Accuracy

Taking the results from the Tables 7 and 8, and also considering the fact that the
accuracy of the system composed of two systems connected in series is the product of
multiplication of the subsystem accuracies, the total system accuracy is shown in the
Table 10. Considering the fact that both accuracy values are over 79%, this system has
good-quality predictions.

Table 10. Overall system accuracy.

Scenario Accuracy

Correct detection of the correctly masked face 79.51%
Correct detection of the incorrectly masked face 79.13%

4.4. Energy Consumption

The amount of consumed energy can be calculated using the Formula (3).

E = P ∗ t, (3)

where E-energy, P-power and t-time. The power can be calculated using the Formula (4).

P = U ∗ I, (4)

where U-voltage and I-current. The Formulas (3) and (4) can be combined together, forming
the Formula (5).

E = U ∗ I ∗ t. (5)

As the time required to detect a face in image depends on the chosen window size, the
results are shown in the Table 11. The STM32F411 microcontroller is powered by 3.3 V DC
voltage and consumes around 10 mA of current. The time required to classify a masked
face is equal to 9.75 ms.

Table 11. System time and energy consumption measurements.

Window Size Face Detection Time Total Time Energy Consumption

320 × 320 3633.00 ms 3642.75 ms 0.120 J
352 × 352 3241.35 ms 3251.10 ms 0.107 J
384 × 384 3264.30 ms 3274.05 ms 0.108 J
416 × 416 2105.50 ms 2115.25 ms 0.070 J
448 × 448 1210.75 ms 1220.50 ms 0.040 J
480 × 480 1103.80 ms 1113.55 ms 0.037 J

4.5. TinyML Battery Life

Considering the calculated amount of energy required for one face mask operation,
the battery life can be estimated. The 18650 battery with a typical capacity of 2500 mAh
and nominal voltage of 3.7 V will be used for calculations. As there are high-efficiency

Appl. Sci. 2022, 12, 484 20 of 24

power supply chips available with several µA of quiescent current and over 90% efficiency,
for example, for TPS63806, the energy loss can be pessimistically modeled as 10%. The
singular face mask operation energy consumption results are shown in Table 12.

Table 12. System time and energy consumption results.

Window Size Energy Consumption
(90% Efficiency)

Possible Operations
on One Battery Charge

320 × 320 0.011 mAh 222,359
352 × 352 0.010 mAh 249,146
384 × 384 0.010 mAh 247,400
416 × 416 0.007 mAh 382,933
448 × 448 0.004 mAh 663,662
480 × 480 0.003 mAh 727,403

Considering the power consumption of the microcontroller, the system could continu-
ously operate for 225 h. With the example of shops visited by 5000 customers every day,
the proposed system uptime without recharging the battery is shown in Table 13. This is
especially important, as our low-power design makes the mounting of the proposed system
possible wherever it is needed, regardless of the presence of mains power. In the example
with a shop, it would be inconvenient to install the mains power cables on market shelves,
where the proposed system could be mounted.

Table 13. System uptime results.

Window Size System Uptime

320 × 320 44.47 days
352 × 352 49.83 days
384 × 384 49.48 days
416 × 416 76.59 days
448 × 448 132.73 days
480 × 480 145.48 days

5. Conclusions

According to the measurements and results shown in this paper, we have shown that
it is possible to create an energy-efficient battery-operated system capable of executing com-
plex computer vision tasks in a reasonable time with a low amount of available resources
by using carefully selected methods and algorithms. This approach can help to reduce the
energy usage of the intelligent sensor grids, as well as to decrease the network traffic by
replacing cloud computing where it is worthwhile.

It should be underlined that taking the existing ML and TinyML studies and devices
into account, to the best of our knowledge, there are no TinyML research papers nor
devices with the resources comparable to the STM32F411 microcontroller that was used
to implement complex computer vision tasks. Meanwhile, there exist research papers
handling the topic of such tasks, yet with the use of overly powerful processors with more
than enough resource memory and computational capabilities, resulting in higher cost and
excessive power consumption of such devices in comparison to the proposed solution.

The main conclusion of this paper is that it is possible to create a cost-effective and
battery-operated TinyML system with a long uptime and that provides satisfactory results
of masked face classification. In more detail, we created the TinyML system consisting of
K-means supported by a sliding window face detection module, a carefully designated
preprocessing filter that is responsible for feature extraction, and a K-means masked
face classifier. The preprocessing filter transforms the detected face into a downscaled
32 × 32 px image that is converted to intermediate values and passed to the thresholding
stage. After unfolding, this results in a feature vector with 1024 dimensions. Our proposed

Appl. Sci. 2022, 12, 484 21 of 24

TinyML system solution managed to deliver very high-quality metric values, with accuracy,
TPR, TNR, precision and recall being over 96% for masked face classification, while being
able to reach up to 145 days of uptime using a typical 18650 battery with a capacity of
2500 mAh and nominal voltage of 3.7 V. The results were achieved using a STM32F411
microcontroller with 100 MHz ARM Cortex M4, which proves that execution of complex
computer vision tasks is possible on such low-power devices. It should be noted that the
STM32F411 microcontroller draws only 33 mW during the operation. The accuracy of the
whole system is over 79%.

There is still room for improvement—future work may include face detection accuracy
enhancement and face detection speedup. Further work can also cover other classification
algorithms and methods in combination with different preprocessing methods, as well as
the research of other hardware platforms that are capable of fulfilling the strict limitations
of TinyML.

Author Contributions: Conceptualization, D.P. and K.W.; methodology, D.P.; software, D.P.; val-
idation, D.P. and K.W.; formal analysis, D.P. and K.W.; resources, D.P.; data curation, D.P.; writ-
ing—original draft preparation, D.P.; writing—review and editing, D.P. and K.W.; visualization, D.P.;
supervision, K.W.; project administration, K.W.; funding acquisition, K.W. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by Ministry of Education and Science, grant number POWR.03.01.00-
00-P015/18.

Data Availability Statement: The data that support the findings of this study are available within
this article.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial Intelligence
ANOVA Analysis of Variance
CPU Central Processing Unit
FPU Float Processing Unit
GAN Generative Adversarial Networks
GPU Graphics Processing Unit
IoT Internet of Things
ML Machine Learning
NN Neural Network
R-CNN Region-based Convolutional Neural Networks
TinyML Tiny Machine Learning
TNR True Negative Rate
TPR True Positive Rate
YOLO You Only Look Once

Appl. Sci. 2022, 12, 484 22 of 24

Appendix A. Downscaling Time Measurements

(a) (b)

(c) (d)

(e) (f)

(g) (h)
Figure A1. Measurements of time required to downscale the image of given size to 32 × 32 px (1).
(a) 64 × 64 px; (b) 96 × 96 px; (c) 128 × 128 px; (d) 160 × 160 px; (e) 192 × 192 px; (f) 224 × 224 px;
(g) 256 × 256 px; (h) 288 × 288 px.

Appl. Sci. 2022, 12, 484 23 of 24

(a) (b)

(c) (d)

(e) (f)
Figure A2. Measurements of time required to downscale the image of given size to 32 × 32 px (2).
(a) 320× 320 px; (b) 352× 352 px; (c) 384× 384 px; (d) 416× 416 px; (e) 448× 448 px; (f) 480 × 480 px.

References
1. Patterson, D.; Gonzalez, J.; Le, Q.; Liang, C.; Munguia, L.M.; Rothchild, D.; So, D.; Texier, M.; Dean, J. Carbon emissions and large

neural network training. arXiv 2021, arXiv:2104.10350.
2. Ng, A. Machine Learning Course. Coursera [Online]. 2017. Available online: https://www.coursera.org/learn/machine-learning

(accessed on 29 August 2021).
3. Sanchez-Iborra, R.; Skarmeta, A.F. Tinyml-enabled frugal smart objects: Challenges and opportunities. IEEE Circuits Syst. Mag.

2020, 20, 4–18. [CrossRef]
4. Banbury, C.R.; Reddi, V.J.; Lam, M.; Fu, W.; Fazel, A.; Holleman, J.; Huang, X.; Hurtado, R.; Kanter, D.; Lokhmotov, A.; et al.

Benchmarking TinyML systems: Challenges and direction. arXiv 2020, arXiv:2003.04821.
5. Gowda, M.; Gowda, J.; Iyer, S.; Pawar, M.; Gaikwad, V. Power Consumption Optimization in IoT based Wireless Sensor Node

Using ESP8266. In ITM Web of Conferences; EDP Sciences: Ulis, France, 2020; Volume 32.
6. Bertuletti, S.; Cereatti, A.; Comotti, D.; Caldara, M.; Della Croce, U. Static and dynamic accuracy of an innovative miniaturized

wearable platform for short range distance measurements for human movement applications. Sensors 2017, 17, 1492. [CrossRef]
7. National Academies of Sciences, Engineering and Medicine. Rapid expert consultation on the effectiveness of fabric masks for

the COVID-19 Pandemic (8 April 2020). In Rapid Expert Consultations on the COVID-19 Pandemic: 14 March–8 April 2020; National
Academies Press (US): Washington, DC, USA, 2020.

8. Ueki, H.; Furusawa, Y.; Iwatsuki-Horimoto, K.; Imai, M.; Kabata, H.; Nishimura, H.; Kawaoka, Y. Effectiveness of face masks in
preventing airborne transmission of SARS-CoV-2. MSphere 2020, 5, e00637-20. [CrossRef] [PubMed]

9. Li, Y.; Liang, M.; Gao, L.; Ahmed, M.A.; Uy, J.P.; Cheng, C.; Zhou, Q.; Sun, C. Face masks to prevent transmission of COVID-19: A
systematic review and meta-analysis. Am. J. Infect. Control 2020, 49, 900–906. [CrossRef]

https://www.coursera.org/learn/machine-learning
http://doi.org/10.1109/MCAS.2020.3005467
http://dx.doi.org/10.3390/s17071492
http://dx.doi.org/10.1128/mSphere.00637-20
http://www.ncbi.nlm.nih.gov/pubmed/33087517
http://dx.doi.org/10.1016/j.ajic.2020.12.007

Appl. Sci. 2022, 12, 484 24 of 24

10. Verma, S.; Dhanak, M.; Frankenfield, J. Visualizing the effectiveness of face masks in obstructing respiratory jets. Phys. Fluids
2020, 32, 061708. [CrossRef]

11. Swain, I.D. Why the mask? The effectiveness of face masks in preventing the spread of respiratory infections such as COVID-19–a
home testing protocol. J. Med. Eng. Technol. 2020, 44, 334–337. [CrossRef] [PubMed]

12. Eikenberry, S.E.; Mancuso, M.; Iboi, E.; Phan, T.; Eikenberry, K.; Kuang, Y.; Kostelich, E.; Gumel, A.B. To mask or not to mask:
Modeling the potential for face mask use by the general public to curtail the COVID-19 pandemic. Infect. Dis. Model. 2020,
5, 293–308. [CrossRef]

13. de Prado, M.; Rusci, M.; Capotondi, A.; Donze, R.; Benini, L.; Pazos, N. Robustifying the Deployment of tinyML Models for
Autonomous mini-vehicles. Sensors 2021, 21, 1339. [CrossRef]

14. Warden, P.; Situnayake, D. Tinyml: Machine Learning with Tensorflow Lite on Arduino and Ultra-Low-Power Microcontrollers; O’Reilly
Media: Newton, MA, USA, 2019.

15. Yang, W.; Jiachun, Z. Real-time face detection based on YOLO. In Proceedings of the 2018 1st IEEE international conference on
knowledge innovation and invention (ICKII), Jeju Island, Korea, 23–27 July 2018; pp. 221–224.

16. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
17. Wu, W.; Yin, Y.; Wang, X.; Xu, D. Face detection with different scales based on faster R-CNN. IEEE Trans. Cybern. 2018,

49, 4017–4028. [CrossRef]
18. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. Adv. Neural

Inf. Process. Syst. 2015, 28, 91–99. [CrossRef] [PubMed]
19. Loey, M.; Manogaran, G.; Taha, M.H.N.; Khalifa, N.E.M. Fighting against COVID-19: A novel deep learning model based on

YOLO-v2 with ResNet-50 for medical face mask detection. Sustain. Cities Soc. 2021, 65, 102600. [CrossRef] [PubMed]
20. Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271.
21. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
22. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with

convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 July
2015; pp. 1–9.

23. Jiang, M.; Fan, X.; Yan, H. Retinamask: A face mask detector. arXiv 2020, arXiv:2005.03950.
24. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient

convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861.
25. Mohan, P.; Paul, A.J.; Chirania, A. A tiny CNN architecture for medical face mask detection for resource-constrained endpoints.

In Innovations in Electrical and Electronic Engineering; Springer: Berlin, Germany, 2021; pp. 657–670.
26. Lim, H.; Ryoo, S.; Jung, H. Face-Mask Detection with Micro processor. J. Korea Inst. Inf. Commun. Eng. 2021, 25, 490–493.
27. Raza, W.; Osman, A.; Ferrini, F.; Natale, F.D. Energy-Efficient Inference on the Edge Exploiting TinyML Capabilities for UAVs.

Drones 2021, 5, 127. [CrossRef]
28. Ng, A. Clustering with the k-means algorithm. Mach. Learn. 2012, 36, 451–461.
29. Ng, A. Advice for applying machine learning. In Machine Learning; 2011. Available online: https://see.stanford.edu/materials/

aimlcs229/ml-advice.pdf (accessed on 29 August 2021).
30. Cabani, A.; Hammoudi, K.; Benhabiles, H.; Melkemi, M. MaskedFace-Net—A Dataset of Correctly/Incorrectly Masked Face

Images in the Context of COVID-19. Smart Health 2020, 19, 100144. [CrossRef]
31. Hammoudi, K.; Cabani, A.; Benhabiles, H.; Melkemi, M. Validating the Correct Wearing of Protection Mask by Taking a

Selfie: Design of a Mobile Application “CheckYourMask” to Limit the Spread of COVID-19. Comput. Model. Eng. Sci. 2020,
124, 1049–1059. [CrossRef]

32. Roy, P.; Ghosh, S.; Bhattacharya, S.; Pal, U. Effects of Degradations on Deep Neural Network Architectures. arXiv 2018,
arXiv:1807.10108.

33. Karras, T.; Laine, S.; Aila, T. A style-based generator architecture for generative adversarial networks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 4401–4410.

34. Chen, R.C. Automatic License Plate Recognition via sliding-window darknet-YOLO deep learning. Image Vis. Comput. 2019,
87, 47–56.

http://dx.doi.org/10.1063/5.0016018
http://dx.doi.org/10.1080/03091902.2020.1797198
http://www.ncbi.nlm.nih.gov/pubmed/32716230
http://dx.doi.org/10.1016/j.idm.2020.04.001
http://dx.doi.org/10.3390/s21041339
http://dx.doi.org/10.1109/TCYB.2018.2859482
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650
http://dx.doi.org/10.1016/j.scs.2020.102600
http://www.ncbi.nlm.nih.gov/pubmed/33200063
http://dx.doi.org/10.3390/drones5040127
https://see.stanford.edu/materials/aimlcs229/ml-advice.pdf
https://see.stanford.edu/materials/aimlcs229/ml-advice.pdf
http://dx.doi.org/10.1016/j.smhl.2020.100144
http://dx.doi.org/10.32604/cmes.2020.011663

	Introduction
	Related Works
	Materials and Methods
	K-Means
	Data
	Datasets
	Data Preprocessing

	Data Extraction
	Sliding Window
	Face Detection

	TinyML Platform
	Picking the Platform
	Chosen Platform
	Limitations

	Masked Face Classification
	Solving the Masked Face Problem
	Improving the Algorithm

	Measurements
	Face Detection
	Masked face Classification

	Results
	Masked Face Classifier Tuning
	Sliding Window Tuning
	System Accuracy
	Masked Face Classification
	Face Detection
	Total System Accuracy

	Energy Consumption
	TinyML Battery Life

	Conclusions
	Downscaling Time Measurements
	References

