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Abstract: Light Detection and Ranging (LiDAR), which applies light in the formation of a pulsed
laser to estimate the distance between the LiDAR sensor and objects, is an effective remote sensing
technology. Many applications use LiDAR including autonomous vehicles, robotics, and virtual and
augmented reality (VR/AR). The 3D point cloud classification is now a hot research topic with the
evolution of LiDAR technology. This research aims to provide a high performance and compatible
real-world data method for 3D point cloud classification. More specifically, we introduce a novel
framework for 3D point cloud classification, namely, GSV-NET, which uses Gaussian Supervector
and enhancing region representation. GSV-NET extracts and combines both global and regional
features of the 3D point cloud to further enhance the information of the point cloud features for
the 3D point cloud classification. Firstly, we input the Gaussian Supervector description into a 3D
wide-inception convolution neural network (CNN) structure to define the global feature. Secondly,
we convert the regions of the 3D point cloud into color representation and capture region features
with a 2D wide-inception network. These extracted features are inputs of a 1D CNN architecture.
We evaluate the proposed framework on the point cloud dataset: ModelNet and the LiDAR dataset:
Sydney. The ModelNet dataset was developed by Princeton University (New Jersey, United States),
while the Sydney dataset was created by the University of Sydney (Sydney, Australia). Based on our
numerical results, our framework achieves more accuracy than the state-of-the-art approaches.

Keywords: Gaussian Supervector representation; enhancing region representation; 3D point cloud
classification; deep learning-based approaches; multi-modality-based image processing; computer vi-
sion

1. Introduction

3D sensors, including various LiDAR types, 3D scanners, and RGB-D cameras, such as
RealSense, Kinect, and Apple depth cameras, have become more affordable and available
with the fast evolution of 3D acquisition technologies [1]. The 3D data collected by these
sensors can give various types of scaling geometric shape information [2–4]. The 3D
data have more information than 2D images and allow machines to understand their
surrounding environment better. Therefore, they have various applications in many fields,
including robotics, self-driving cars, medical treatment, and remote sensing [5]. Different
formats, including point cloud, depth images, volumetric grids, and meshes, can represent
3D data. Point cloud representation is a popular format that keeps the native geometric
description in 3D space.

Point clouds are not only obtained by LiDAR sensors, depth cameras, stereo cameras,
etc., but are also enhanced by additional sensors, such as multispectral, thermal, or color
information [6–8]. The 3D point cloud stores 3D coordinates (x, y, z) and adds properties
such as intensity and reflection. Furthermore, RGB-D images can construct the point cloud,
and every (x, y) coordinate will match with four properties (R, G, B, and depth).
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Point cloud classification can be applied to scene understanding such as robotics and
autonomous driving [9–11]. In addition, point cloud classification is an essential task for
the autonomous driving car because it helps the self-driving car identify objects on the
roads. Some studies introduce several machine learning-based methods for point cloud
classification [12–14]. Deep learning approaches have dominated various recent research
fields, such as speech recognition or computer vision. Deep learning cannot apply directly
to point cloud due to their irregular structure. Several researchers propose various deep
learning-based solutions for point cloud classification, based on the view, the voxel, the
raw-point cloud, and the graph. However, these approaches suffer from one or both of the
following weaknesses: (1) missing test results with the real-world data that take from the
LiDAR sensor, (2) having insufficiently good performance. In this work, we introduce a
novel approach to overcome these above limitations.

Most classification techniques in the 3D point cloud cannot catch both visual and
structural data because they employ a singular modal (see reference [15]). As a result, the
classification rate is not high. We can obtain the advantage of each feature description
from various modal information to improve classification accuracy. Multi-modals have
potential development in point cloud classification. However, creating effective multi-
modal is a challenging task. In this paper, we propose a novel framework GSV-NET,
that employs both the point cloud and view-based model. GSV-NET captures both the
global and the regional point cloud features with Gaussian Supervector (GSV) and the
enhancing region representation (ERR). The complement of these features enriches the
point cloud description and boosts the classification rate. Furthermore, combining Gaussian
Supervector and enhancing region representation helps create an effective multi-modal.
Figure 1 shows the structures of the proposed framework.

Figure 1. The GSV-NET architecture.

In this paper, our contributions are as follows:

• We present a novel approach to extract the global point cloud feature using GSV
representation and the 3D wide-inception architecture.

• After converting 3D point cloud regions into color representation, a 2D wide-inception
network is employed to extract the regional feature of the 3D point cloud. In addition,
we present the 1D convolution neural network (CNN) structure that fuses the extracted
global and regional features. The GSV and ERR are novel to the best knowledge of
the authors.

• Based on our numerical outcomes on challenging databases, the proposed approach is
more accurate and efficient than the well-known methods.

The paper structure is as follows. We analyze the related works in Section 2, then define
the proposed approach in Section 3. Section 4 shows the appropriate numerical environ-
ments, numerical outcomes, and analysis. Lastly, Section 5 represents achieving remarks.
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2. Related Work

Recently, deep learning approaches have been the hotspot in 3D classification. CNN
is designed for 2D images, and it cannot work directly with point cloud input due to its
unordered and unstructured properties. The point cloud classification is based on four
main approaches: voxel, multi-view, graph, and raw point cloud (see references [2,6,16]).

• Volumetric-based methods: These methods transform a point cloud into voxel and
then use a 3D CNN to solve the shape-classification problem with the volumetric rep-
resentation. Wu et al. [17] introduce a method: the deep belief network 3D ShapeNets,
described by the distribution of the binary values on voxel grids for learning the dis-
tribution of points from different 3D objects. Maturana et al. [18] propose a volumetric
occupation network (VoxNet) to obtain robust 3D shape classification. Although
having promising results, these methods can not apply to big 3D data because the
memory and the computation time increase cubically with voxel size. To handle the
drawbacks, several authors propose a compact and hierarchical structure to reduce the
memory and computational costs. Reference [19] introduces a 3D object recognition
method, so-called OctNet, which implements 3D-CNN on the octants obtained by
the 3D object surface. OctNet consumes less runtime and memory at higher points
than a standard network based on dense input grids. OctNet divides a point cloud
hierarchically using an octree structure, which describes the scenery with some octrees
on a grid. Every voxel feature vector, cataloged by the uncomplicated arithmetic octree
structure, is encoded efficiently utilizing a bit string description. Authors in [20] use
3D grids to describe the point cloud, represented by the 3D modified Fisher Vector,
an input of CNN structure to produce the global description. Reference [21] offers
a hybrid network PointGrid, which uses the grid description. PointGrid samples
the points within each embedding volumetric grid-cell and uses 3D CNN to extract
geometric details.

• Multiview-based methods: These approaches generate various 2D projections from
the original 3D object, then obtain and fuse view-wise features for object recognition.
The challenge is to integrate various view-wise features toward an overall description.
Researchers in [22] firstly exploit the inter-relationships (view–view or region–region)
across views by a leverage connection system, then integrate those views to obtain a
discriminative 3D shape description. MHBN [23] adopts bilinear pooling to integrate
local convolutional descriptors, then creates dense global features. MVCNN [24], only
max-pooling multi-view descriptors toward global features, leads to information loss
because max-pooling only holds the highest elements of a particular view.

• Raw point cloud-based methods: The initial point cloud is converted into voxel and
views, respectively, in the two approaches mentioned above. Several researchers
propose various methods to use the raw point cloud as input data without any trans-
formation. Unlike the two approaches above, PointNet [25] employs a multilayer
perceptron (MLP). This pioneering method leads a set of approaches that perform
classification directly on the point cloud. PointNet converts the coordinates of the 3D
point cloud to higher-dimensional descriptor space with the MLP. It also resolves the
disorder obstacle and reduces the high-dimensional data by using max-pooling. Lastly,
it employs the MLP to perform the recognition problem. PointNet++ [26] splits the
point cloud toward various overlapping regions and uses PointNet to obtain the local
descriptors in these regions. Local descriptors are continuously converted into global
descriptors by repeated iterations to obtain the final descriptors. Motivated by the 2D
SIFT [27], ref. [28] creates a PointSIFT module to describe data in many directions, and
adjusts to the object proportion. An orientation-coding element is formed to represent
eight essential orientations, and a multi-scale description is achieved by accumulating
the multiple orientation coding elements. The PointSIFT network enhances presenta-
tion capacity by blending PointSIFT modules into several PointNet-based structures.
PointCNN [29] first applies χ-transformation to resolve the obstacle of unordered and
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irregular structure in the point cloud, then uses the convolution approach for point
cloud input.

• Graph-based methods: Graph Signal Processing (GSP) can handle unstructured or
unordered data. GSP for preparing a 3D point cloud has been a popular field at
current times, with many applications such as compression, painting, and data visual-
ization [30–33]. GSP becomes essential because most data obtained can convert into
a widespread graph. CNN introduces an effective architecture to exploit important
patterns in regular structural data such as 2D images. Some approaches attempt to
extend the concept of CNNs into widespread graphs, which are not straight because of
the abnormal structure of these graphs. Defferrard et al. [34] define a recursive kernel
of Chebyshev polynomials to introduce a quick localized convolution process, making
it quickly learn while keeping sufficient complexity of deep learning. Bruna et al. [35]
apply a graph convolution described in the graph spectral field. Graph-based methods
implement a graph with an individual vertex for every point and edges within nearby
points instead of converting point cloud toward voxels. A Graph-CNN structure
in [36] uses the local architecture of the 3D point cloud data encoded in graphs to
analyze 3D point cloud data. Graph-CNN requires neighbor data of every point at the
best level for building a solid graph. In contrast, ref. [16] dismisses the uselessness by
extracting a higher compact graph and making GSP on the Reeb graph.

In this work, the methods selected for comparison are based on data representation,
including network structure. Those methods were fully representative of their subgroups.
Table 1 summarizes the principal methods for the point cloud classification based on input
data format, dataset type, network architecture, and model type. A total of fifteen methods
in the four main approaches, except Multimodal Information Fusion Network (MIFN) in
reference [15] and GSV-NET, use a single model, leading to low performance in the point
cloud classification. MIFN fuses three different models: the point cloud model, view model,
and PANORAMA-view model, to obtain more-accurate classification results than those
fifteen methods. However, there are two main drawbacks in MIFN: missing real-world
datasets, and both the view model and PANORAMA-view model depend on the camera
settings. Camera settings make MIFN hard to apply in real-life applications due to missing-
view problems. Besides, 4 among 17 methods have testing results with real-world datasets,
while the others use computer datasets. Computer data are different from the real-life
data taken from the LiDAR sensor. Ignoring real-world data is a big drawback because
real-world data ensure that the method works correctly with practical applications such as
real-life self-driving systems.

GSV-NET performs best among 17 methods in the table due to some reasons. GSV-NET
employs multi-modal to boost classification performance. Our framework fills the gap in
the multi-modal approach. Unlike the first multi-modal, MIFN, GSV-NET effectively fuses
model information and reduces the number of multi-modals. Specifically, GSV-NET has
two models: point cloud model, and view model, compared with three models in MIFN:
point cloud model, view model, and the PANORAMA-view model. In addition, GSV-NET
handles two main drawbacks of MIFN: missing real-world datasets and camera-settings
problems. In our proposed method, we first created three 2D point clouds from the original
3D point cloud based on the point locations and then convert them into three images,
respectively. Hence, GSV-NET does not depend on camera settings. In contrast, MIFN and
other view-based approaches place the camera surrounding the objects and capture the
images. Moreover, the MIFN uses a total of 24 images for each 3D object (12 for the view
model and 12 for the PANORAMA-view model), while GSV-NET uses only three.
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Table 1. Principal approaches for point cloud classification.
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3. Methodology

The GSV-NET was inspired by visual and structural complementary techniques (see
reference [15]). We developed a new framework to handle the drawback of MIFN and
MVCNN methods mentioned in the related work section. First of all, we choose the GSV
representation and a novel 3D wide CNN instead of using a raw point cloud and MLP
structure. The 3D CNN performs better than MLP in classification tasks (see reference [20]).
Next, we replace the 2D view and panorama view in MIFN with the 2D color image
containing region information. The region image provides more visual information than
view and panorama view. As a result, GSV-NET reduces the number of images in MIFN
from 24 to 3. Furthermore, we change the two-stage 2D CNN to a new 2D wide CNN.
Lastly, we use 1D CNN to fuse the 1D vectors of the extracted features while MIFN employs
features concatenation. The 1D CNN gives better performance compared to 2D CNN in the
classification of the 1D signals (see reference [37]). GSV-NET employs two models, while
MIFN uses three models. The numerical result verifies that our framework has the highest
performance among methods.

Figure 1 shows the structure of the proposed framework. Firstly, we describe a point
cloud as the input using the Gaussian Supervector representation, then put the GSV result
in a 3D CNN architecture to extract the global point cloud feature. We employ a mixture
of Gaussians with Gaussian centers on a uniform 3D m × m × m grid with optimal value
m = 8 for the underlying density design, as mentioned in reference [20]. Secondly, we
divide the original 3D point cloud into different regions based on the point locations. Next,
we create three 2D point clouds (x-y, x-z, and y-z) and use 2D wide CNN to extract the
enhancing region features of these 2D point clouds. Finally, a 1D CNN fuses the extracted
features and creates the final point cloud feature. The following section will fully describe
our framework: Gaussian Supervector representation in Section 3.1, enhancing region
representation in Section 3.2, and 1D CNN feature fusion in Section 3.3.
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3.1. Global Point Cloud Feature Extraction with Gaussian Supervector Representation and 3D
Wide Inception
3.1.1. Gaussian Supervector Representation

First, we define the point cloud by the GSV representation. Let X = {ps ∈ R3, s = 1,
. . . , S} be the set of 3D points (the point cloud), where S indicates the point number in the
set. A D-dimensional Gaussian mixture for a single 3D point (or vector) ps is represented
by the following form.

v(ps) =
K

∑
k=1

wkvk(ps; µk, Σk), (1)

where every vk, k = 1, 2, . . . , K is the D-dimensional Gaussian density with the mean
vector µk, covariance matrix Σk, and weights wk > 0. Therefore, for every k,

vk(ps; µk, Σk) =
1

(2π)
D
2
(√

detΣk
) e−

1
2 (ps−µk)

TΣk
−1(ps−µk). (2)

In the case of a 3D point cloud (D = 3), Equation (2) can be re-written as:

vk(ps; µk, Σk) =
1

(2π)
3
2
(√

detΣk
) e−

1
2 (ps−µk)

TΣk
−1(ps−µk) (3)

Bayes’ law is used to estimate the posterior probability distribution for every k
value [38]. The soft assignment of point ps to the k-th Gaussian density is defined by:

γk(ps) =
wkvk(ps; µk, Σk)

∑K
j=1 wjvj

(
ps; µj, Σj

) . (4)

For every k = 1, 2, . . . , K, we define:

nk =
S

∑
s=1

γk(ps). (5)

Gaussian Supervectors in [39] are used to handle the issue of natural view categoriza-
tion. Using Equations (1)–(5), first determine the vector:

Zk =
∑S

s=1 γk(ps)(ps − µk)

nk
. (6)

Then, for every k, calculate:

Z′k =
(

Σk
nk

)− 1
2

Zk. (7)

Finally, concatenate the vectors Z′k to obtain the vector Z′KGSV . The resulting ZKGSV is
normalized by the specimen size S [20]:

Z′KGSVN =
1
S

Z′KGSV . (8)

Descriptions (particularly those concentrating on the maximum and minimum func-
tion) may improve the precision (see reference [38]). Hence, we apply the max and min
functions on the Z′KGSVN vector to create Gaussian Supervector representation ZGSV with
the size at six by K. We have K = m3 = 83 due to the optimal choice of m = 8, as explained
in the Section 3.
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3.1.2. 3D Wide-Inception Architecture

We reshape the GSV representation Z to the 4D matrix with the size of 8 × 8 × 8 × 6
and use it as the input for the 3D wide-inception CNN.

In the proposed 3D CNN network, we still adopt two kinds of 3D inception modules
in reference [40]. The first applies the 3× 3× 3, and 1× 1× 1 kernel sizes, while the second
splits the n × n × n filter into three filters with kernel sizes of n × 1 × 1, 1 × n × 1, and
1 × 1 × n, where n = 5 or 3. Besides, applying several convolution filters at the 1 × 1 × 1
size reduces the number of network parameters significantly due to a decrease in the
dimension of the descriptor space.

We use a multi-scale block to choose the suitable kernel size. The kernel size holds
a significant role in the training procedure and the model design because of valuable
information extraction [41]. The bigger size of the kernel is suitable for global information,
and the smaller size is better for catching the local data. The original inception network
(see reference [42]) applies this concept and combines multiple convolutions with various
kernel sizes.

The width, the depth, and the filter size are three significant factors in building a
network structure (experimentally reported by He et al. [43]). Moreover, research on wide-
residual networks [44] shows that a wide network design outperforms ResNets while
keeping the ResNets shortcut connection [45]. Hence, this work offers a 3D wide-inception
architecture to extract the global point cloud feature. In the proposed 3D CNN network,
we stack two types of 3D inception modules together to expand the width of the network,
thereby increasing the network performance and improving the flexibility of the network
to features in various scales. Figure 2 shows the final architecture of the proposed 3D wide-
inception network. The first four branches form the type-one module, while the type-two
module consists of the last four branches, and each convolution layer has 64 filters.

Figure 2. The 3D wide-inception network.
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3.2. Region Point Cloud Feature Extraction with 2D Wide Inception
3.2.1. Enhancing Region Representation

We divide the original 3D point cloud into different regions depending on points’
locations and convert it into the region’s representation. Each point has three coordinates
(x, y, z), and each coordinate has a positive or negative sign, so we have a total of 2 ˆ 3 = 8
different regions for the original 3D point cloud.

We have eight regions R1, R2, . . . , R8, as follows:

R1 =
{

ps ∈ R3 such that xs > 0, ys > 0, zs ≤ 0
}

.
R2 =

{
ps ∈ R3 such that xs > 0, ys ≤ 0, zs ≤ 0

}
.

R3 =
{

ps ∈ R3 such that xs ≤ 0, ys > 0, zs ≤ 0
}

.
R4 =

{
ps ∈ R3 such that xs ≤ 0, ys ≤ 0, zs ≤ 0

}
.

R5 =
{

ps ∈ R3 such that xs > 0, ys > 0, zs > 0
}

.
R6 =

{
ps ∈ R3 such that xs > 0, ys ≤ 0, zs > 0

}
.

R7 =
{

ps ∈ R3 such that xs ≤ 0, ys > 0, zs > 0
}

.
R8 =

{
ps ∈ R3 such that xs ≤ 0, ys ≤ 0, zs > 0

}
.

(9)

We create a colormap in Figure 3 based on eights regions, and the color values are
chosen randomly. Figure 4 expresses the original 3D point cloud in eight different regions
with eight corresponding colors. We use the color property because it helps 2D CNN to
learn the region features easily. Next, we create three different 2D point clouds from three
coordinates values of a 3D point cloud to better exploit the enhancing region features.
The first 2D point cloud contains 2D points with the x–y coordinates of the original 3D
point cloud. We can determine the regions R1, R2, . . . , R8 where the 2D points belong after
removing the z coordinate. An enhancing region structure of the first 2D point cloud is
encoded into a 2D color image with sizes 224 by 224 by 3 (see Figure 5). The encoding
process is implemented by plotting the 2D point cloud with eight colors then exporting the
result to an image. The color for each point in the 2D point cloud is decided by its region.
For example, one point will have yellow if it belongs to the fifth region (see colormap
in Figure 3). The process is the same for the other two 2D point clouds with the x–z
coordinates, and the y–z coordinates, respectively. The 2D color image outputs are shown
in Figures 6 and 7.

Figure 3. Mapping eight regions into eight colors.



Appl. Sci. 2022, 12, 483 9 of 20

Figure 4. The original 3D point cloud with eight different regions.

Figure 5. A 2D point cloud in the x-y plane.

Figure 6. A 2D point cloud in the x-z plane.

Figure 7. A 2D point cloud in the y-z plane.
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3.2.2. 2D Wide-Inception Architecture

After creating the 2D color image of three 2D point clouds, we use three parallel 2D
CNN to extract the region features. The three CNN branches have the same structure as
one adopted from GoogLeNet architecture [46], also identified as IncpetionV1 design. The
authors propose different variants such as InceptionV3 and InceptionV2 after the victory
of InceptionV1. GoogLeNet structure applies various convolution layers within the same
modules. Furthermore, it increases the network widely and deeply to take various images
features. The most common GoogLeNet designs are the InceptionV3 and InceptionV1
structures. The InceptionV3 modules apply seven convolution layers, while six convolution
layers are used in the InceptionV1 modules [47]. The InceptionV1 modules are used in this
paper, as shown in Figure 8.

Figure 8. The InceptionV1 modules.

We use the long variant of the residual connection to increase the width of the original
GoogLeNet structure. A network with a long-skip connection performs better overall and
converges quicker (see reference [48]). The designs with a long-skip connection outperform
the original network as it improves the reused features throughout the network.

In addition, long-skip connections support the network to learn both general features
and detailed features of objects. The first feature comes from layers near the output, and
the second feature is from layers close to input. Two different-sized layers are equally
reshaped to perform a long-skip connection between them. Figure 9 displays the final 2D
wide-inception architecture. We apply three skip convolution layers at the same kernel size
of 1 × 1 to connect the input layers of inception modules: 3a, 4a, 5a, and an output layer of
the inception module: 5b. Skip convolution layers one, two, and three have 64, 128, and
256 filters, respectively.
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Figure 9. The 2D wide-inception network.
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3.3. Feature Fusion with 1D CNN

We extract features from 2D CNN and 3D CNN at the fully connected layers, and
each descriptor extracted is a 1D vector with the size at 1 × T (T is the number of the
classes). The 1D CNN performs better compared to 2D CNN in dealing with 1D signals
(see reference [37]). Therefore, we use a 1D CNN structure to fuse the extracted features, as
shown in Figure 2. Given two inputs F1 and F2, each feature vector has the size at 1 × T.
We apply the following addition and subtraction.

Fadd =
F1 + F2

2
. (10)

Fsub =
F1 − F2

2
. (11)

Finally, we concatenate the vectors Fadd and Fsub to form the final input vector F with a
size of 1 × 2T. Figure 10 presents the structure of the fusion block. Both 1D convolution
layers: one and two have the same kernel size at 1 × 3 with 16 and 32 filters, respectively.

Figure 10. The feature fusion network. F1 and F2 are the input feature vectors, while Fadd and Fsub are
addition feature and subtraction feature vectors, respectively. F is the final input vector.

4. Experiment

In this section, we evaluate the proposed framework GSV-NET on both computer
datasets and real-world datasets. For each point cloud in the training dataset, our frame-
work extracts its final feature, then assigns the corresponding “true” label from training
labels. After finishing training, the framework obtains the final point cloud feature to
predict the label for each point cloud in the testing dataset. We obtain the predicted labels
and compare them with “true” labels of the testing dataset, then calculate the following
metrics: the precision, the recall, the F1 score, and the accuracy. Based on the numerical
result, we compare the performance of GSV-NET with other state-of-the-art methods. The
following section will fully describe our experiment: datasets in Section 4.1, evaluation
metrics in Section 4.2, implementation details in Section 4.3, the comparison on ModelNet40
dataset in Section 4.4, and the comparison on Sydney datasets in Section 4.5.

4.1. Datasets

The proposed method is estimated on the point cloud dataset: ModelNet40 [17] and
LiDAR dataset: Sydney Urban Objects [49].

ModelNet40: ModelNet40 has 12,311 objects from 40 categories. The datasets are
split into two parts: one with 2468 testing objects and one with 9841 training objects (see
reference [17]).

Sydney Urban Objects: Deuge et al. (2013) [50] applied their segmentation methods
on some sequences of Velodyne scans to create this dataset. It is split into four folds, and it
includes 588 labeled point clouds in 14 classes such as pedestrians, vehicles, trees, signs,
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etc. This dataset is modeled by the sparse point clouds. This dataset shows variability
in viewpoint, and it is not an ideal sensing situation with occlusions [51]. It would be a
difficult task to identify models from this dataset.

4.2. Evaluation Metrics

We use an accuracy metric to evaluate the ModelNet dataset and the weighted F1 (see
reference [52]) for the Sydney dataset. We measure the precision, the recall, and the F1 score
for each class u in the dataset for the calculations of the weighted F1.

Precisionu =
TPu

TPu + FPu
, (12)

Recallu =
TPu

TPu + FNu
, (13)

F1u = 2× Precisionu × Recallu
Precisionu + Recallu

, (14)

Wu =
Nu

∑T
v=0 Nv

, (15)

The weighted F1 =
T

∑
u=0

Wu × F1u, (16)

where Nu is the number of models of class u; T is the number of categories; TNu is the true
negative of category u; TPu is the true positive of category u; FNu is the false negative of
category u; FPu is the false positive of category u.

4.3. Implementation Details

The original Sydney and ModelNet datasets can be obtained from the website in the
Data Availability Statement. All experiments were performed on the i7 7700 PC, with
memory of 32 GB, 1080TI GPU (11 GB memory), MATLAB (9.9 (R2020b), Natick, MA, USA).
We employ the initial learning rate at 0.001 for 2D and 3D CNN while applying 0.0002 for
1D CNN. We divide the learning rate by half after every 20 epochs, the mini-batch at 32 for
SGD, and the momentum at 0.9 for network training.

4.4. The Comparison on ModelNet40 Dataset

We test GSV-NET on the ModelNet40 dataset with different approaches on four main
data representations (voxel, point, graph, and image). Table 2 shows the recognition outputs
of all methods, and our proposed framework obtains the most excellent performance, with
a classification rate of 92.7% for ModelNet40.

GSV-NET outperforms a pioneering approach, PointNet, using the natural point cloud.
The symmetric max-pooling function is applied to obtain a global descriptor. However,
PointNet does not capture the local structure because it does not examine the local de-
pendency between points, leading to an accuracy rate of 89.2%. To handle the drawback
of PointNet, PointNet++ splits the point cloud into different regions to obtain the local
descriptor and increases the accuracy rate to 90.7%. Another method, PointGCN, obtains
local descriptors by the kNN graph but neglects global connections among these local
descriptors. It has classification results of 89.5%. The best performance method in the point
cloud group is the 3DmFV method, having a precision of 91.6% (3DmFV-Net).

Although performing well, voxel-based methods consume high memory due to voxels’
sparsity, resulting in wasted calculations for convolution across the non-occupied areas.
The memory usage also restricts the voxel presentation, commonly in the range of 32 to
64 cubes. Therefore, VoxNet, 3D-A-Nets, and 3DShapeNets produce low accuracy of 83%,
90.5%, and 77.32%, respectively. Multiview-based approaches (MVCNN) achieve a better
result than voxel-based methods because they apply a well-known 2D CNN, resulting in
high accuracy of 90.1%. Unlike the multi-view or voxel-based approach, the graph-based
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method fits the irregular data processing like 3D shape classification. The graph-based
method takes advantage of the sparsity of the point cloud. However, a challenging and
further study is to design efficient convolution, pooling modules for graph-based networks.
There is still a gap between the Reeb graph and the multiview-based approach such as
MVCNN. Hence, the Reeb graph gives a precision of 89.9%.

Table 2. Comparison with various approaches on the point cloud dataset: ModelNet40.

Method Data Format ACC

VoxNet [18] Voxelization 83%
3D ShapeNets [17] Voxelization 77.32%

3D-A-Nets [53] Voxelization 90.5%
EEM [54] Point Cloud 90.5%

PointGCN [36] Point Cloud 89.5
PointNet [25] Point Cloud 89.2%

PointNet++ [26] Point Cloud 90.7%
3DmFV+VoxNet [20] Point Cloud 88.5%

3DmFV-Net [20] Point Cloud 91.6%
MVCNN, metric,12× [24] 12 views 89.5%

MVCNN, 12× [24] 12 views 89.9%
MVCNN, metric,80× [24] 80 views 90.1%

MVCNN, 80× [24] 80 views 90.1%
TCN-MVCNN [55] 12 views 90.5%

Reeb graph convolution [16] graph 89.9%
MIFN, PC+MV [15] Point Cloud + 12 views 90.83%

MIFN, PC+MV+PV [15] Point Cloud + 12 views + panorama-views 91.86%

GSV-NET Point Cloud + 3 views 92.7%

The 3D point cloud provides objects’ information suitable for classifying shapes
with diverse scales, while the 2D image gives much texture data better for specifying
shapes with indistinguishable appearances [56,57]. The merging of these two types of
information is useful to improve the representation of the extracted features for classi-
fication purposes. MIFN merges the 3D information that comes from PointNet archi-
tecture and the 2D data that come from MVCNN. However, the MVCNN takes only
the projection of the 3D models without the regional information. In contrast, GSV-
NET captures not only global representation, but also regional representation. More-
over, GSV-NET uses 2D point locations and does not depend on a camera setting, while
MVCNN requires the camera setting. As a result, GSV-NET has an accuracy of 92.7% (point
cloud + three views) while MIFN reaches 90.83% (point cloud + 12 views) and 91.86%
(point cloud + 12 views + panorama-views). GSV-NET effectively fuses both 3D global and
2D region features, and therefore shows superior performance compared with
other approaches.

We describe the statistical outcomes of every class for the classification task in detail.
Figure 11 presents the ratio between correctly classified models and the total number of
models for each class. The flower pot is misclassified as plants at 55% and as vases at 25%,
making it the most misclassified category at 80% in total.

None of the methods in Table 2 provides the full confusion matrix. We use the
confusion matrix of the PointNet++ obtained from reference [58] to calculate the precision,
the recall, and the F1 score. Reference [58] follows all steps in the PointNet++ approach and
uses the same parameters given by the authors of the PointNet++ method. The detailed
comparison for each category is given in Table 3.

Overall, GSV-NET has more classes with higher performance than the PointNet++ ap-
proach. For example, our framework gives F1 scores higher than PointNet++ in 23 categories
and lower than PointNet++ in only 11 categories. In detail, F1 scores from GSV-NET are at
least 10% higher than PointNet++ in five classes and at least 10% lower than PointNet++ in
only one.
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Figure 11. The confusion matrix for point cloud dataset: ModelNet40 (in percentage).

Table 3. Individual category precision, recall, and F1 score in the point cloud dataset: ModelNet40.
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Pr
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n

airplane 1.00 1.00 cup 0.75 0.75 laptop 1.00 1.00 sofa 0.96 0.98
bathtub 0.92 0.84 curtain 0.85 0.95 mantel 0.96 0.97 stairs 0.95 0.80

bed 0.96 0.99 desk 0.92 0.93 monitor 0.99 1.00 stool 0.80 0.95
bench 0.80 0.90 door 0.80 0.85 night_stand 0.71 0.79 table 0.72 0.94

bookshelf 0.97 0.97 dresser 0.73 0.87 person 0.90 0.90 tent 0.95 0.95
bottle 0.93 0.96 flower_pot 0.35 0.20 piano 0.95 0.95 toilet 1.00 0.98
bowl 0.95 1.00 glass_box 0.93 0.96 plant 0.79 0.83 tv_stand 0.70 0.88
car 0.98 1.00 guitar 1.00 1.00 radio 0.85 0.85 vase 0.79 0.81

chair 0.96 0.96 keyboard 1.00 1.00 range_hood 0.94 0.94 wardrobe 0.75 0.75
cone 1.00 1.00 lamp 0.85 0.95 sink 0.85 0.80 xbox 0.80 0.90

R
ec

al
l

airplane 1.00 0.98 cup 0.60 0.65 laptop 0.91 1.00 sofa 0.98 1.00
bathtub 0.96 1.00 curtain 0.81 0.86 mantel 0.98 0.95 stairs 1.00 0.76

bed 0.98 0.95 desk 0.75 0.89 monitor 0.96 0.98 stool 0.89 0.70
bench 0.64 0.90 door 0.84 0.89 night_stand 0.78 0.86 table 0.83 0.91

bookshelf 0.93 0.97 dresser 0.78 0.86 person 1.00 1.00 tent 0.83 0.76
bottle 0.95 0.95 flower_pot 0.19 0.17 piano 0.97 0.97 toilet 0.99 1.00
bowl 0.83 0.74 glass_box 0.99 0.98 plant 0.90 0.86 tv_stand 0.63 0.94
car 1.00 1.00 guitar 1.00 1.00 radio 0.68 0.71 vase 0.83 0.87

chair 0.95 0.98 keyboard 0.95 1.00 range_hood 0.99 0.99 wardrobe 0.63 0.94
cone 0.95 0.95 lamp 1.00 0.86 sink 0.89 0.84 xbox 0.89 0.86

F1
-s

co
re

airplane 1.00 0.99 cup 0.67 0.70 laptop 0.95 1.00 sofa 0.97 0.99
bathtub 0.94 0.91 curtain 0.83 0.90 mantel 0.97 0.96 stairs 0.97 0.78

bed 0.97 0.97 desk 0.83 0.91 monitor 0.98 0.99 stool 0.84 0.81
bench 0.71 0.90 door 0.82 0.87 night_stand 0.74 0.82 table 0.77 0.93

bookshelf 0.95 0.97 dresser 0.75 0.87 person 0.95 0.95 tent 0.88 0.84
bottle 0.94 0.96 flower_pot 0.25 0.19 piano 0.96 0.96 toilet 1.00 0.99
bowl 0.88 0.85 glass_box 0.96 0.97 plant 0.84 0.85 tv_stand 0.66 0.91
car 0.99 1.00 guitar 1.00 1.00 radio 0.76 0.77 vase 0.81 0.84

chair 0.96 0.97 keyboard 0.98 1.00 range_hood 0.96 0.96 wardrobe 0.68 0.83
cone 0.98 0.98 lamp 0.92 0.90 sink 0.87 0.82 xbox 0.84 0.88
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Only the EEM method provides accuracy for each class on the ModelNet40 dataset.
We report the detailed comparison for each category in Table 4. Compared with the EEM
approach, our method has 24, 11, and 5 classes with higher accuracy, the same accuracy,
and lower accuracy, respectively. More specifically, GSV-NET has 11 categories with at
least 10% higher accuracy than the EEM. In contrast, the corresponding figure for the
outperformance of the EEM over GSV-NET is only one category. This comparison shows
the excellent performance of the proposed framework.

Table 4. Individually category accuracy in the point cloud dataset: ModelNet40.

Class Name
Accuracy

Class Name
Accuracy

Class Name
Accuracy

Class Name
Accuracy

EEM Ours EEM Ours EEM Ours EEM Ours

airplane 100 100 cup 65 75 laptop 100 100 sofa 98 98
bathtub 90 84 curtain 85 95 mantel 96 97 stairs 85 80

bed 99 99 desk 89 93 monitor 97 100 stool 85 95
bench 75 90 door 95 85 night_stand 81 79 table 77 94

bookshelf 97 97 dresser 81 87 person 80 90 tent 95 95
bottle 94 96 flower_pot 20 20 piano 87 95 toilet 99 98
bowl 100 100 glass_box 94 96 plant 79 83 tv_stand 88 88
car 96 100 guitar 100 100 radio 50 85 vase 78 81

chair 96 96 keyboard 95 100 range_hood 90 94 wardrobe 65 75
cone 90 100 lamp 75 95 sink 75 80 xbox 75 90

4.5. The Comparison on Sydney Datasets

The outcomes of various state-of-the-art methods are available because the Sydney
dataset is public. We accompany the etiquette to estimate the execution by employing the
weighted F1 score. The etiquette is used by the authors of this dataset. The Sydney dataset
is divided into four training/test folds with a subset of 588 models in 14 categories. Table 5
shows the performance comparison of various methods. Our framework obtains the most
excellent performance among all chosen methods, and delivers a weighted F1 score of 0.798
(the F1 score for each class is reported in Table 6). The deep learning approaches defeat
the handcrafted descriptor approaches, such as unsupervised feature learning (Deuge
et al. [50]). GSV-NET exceeds VoxNet (Maturana and Scherer [18]), one of the first works
using CNN for 3D data. In addition, our method outperforms other methods: NormalNet,
BVCNNs, 3DmFV-Net, and JointNet (0.74 for NormalNet, 0.755 for BVCNNs, 0.76 for
3DmFV-Net, and 0.749 for JointNet). ORION method ranks second place with a score
of 0.778.

Table 5. F1 score obtained by various techniques on the LiDAR dataset: Sydney Urban Objects.

Method F1 Score

UFL + SVM [50] 0.67

BV-CNNs [59] 0.755

VoxNet [18] 0.72

NormalNet [60] 0.74

ORION [61] 0.778

JointNet [51] 0.749

3DmFV-Net [20] 0.76

GSV-NET 0.798
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Table 6. F1 score for every category on the LiDAR dataset: Sydney Urban Objects.

class 4wd bldg bus car ped pill pole light sig tree trc trn ute van
num 21 20 16 88 152 20 21 47 51 34 12 55 16 35

GSV-NET 0.29 0.75 0.38 0.85 0.99 0.85 0.81 0.87 0.69 0.82 0.25 0.82 0.31 0.69
3DmFV 0.22 0.64 0.21 0.81 0.99 0.84 0.68 0.74 0.78 0.82 0.27 0.74 0.31 0.57

Numerical results verified the superior performance of the GSV-NET. Our framework
handles the drawback of the multimodal MIFN and MVCNN methods. Moreover, GSV-
NET reduces the training time compared with MIFN and MVCNN methods. The total
training time of GVS-NET is 12.4 h, including 4.6 h for 3D CNN, 2.4 h for each 2D CNN, and
0.2 h for each 1D CNN (4.6 + 2.4× 3 + 0.2× 3 = 12.4). The authors who introduced MVCNN
and MIFN in the original paper did not mention the training time. We use the experiment
results of the NVIDIA company [62] to estimate the training time of MIFN. The NVIDIA
research reports the training time for ModelNet40 with the PointNet model more than 6 h
and a five-views MVCNN model at 4 h (12 GB memory GPU). As a result, the total training
time of the MIFN is more than 14 h, including 6 h for the PointNet model, 4 h for 12-views
MVCNN, and 4 h for 12 panorama views MVCNN (6 + 4 + 4 = 14). Another improved
version of the MVCNN method, Transformation Correction Network (TCN-MVCNN), took
15 h to complete the training on the ModelNet40 dataset with 12 views for each 3D point
cloud (see reference [62]). Three methods, GSV-NET, TCN-MVCNN, and NVIDIA research
use similar GPU (11GB, 12GB, and 12GB memory GPU). Furthermore, the three methods
belong to the view-based group. GSV-NET reduces the training time from 14 and 15 h
to 12.4 h while improving the accuracy for the ModelNet40 dataset by 0.84% and 2.17%,
compared with MIFN and TCN-MVCNN, respectively.

Despite the highest accuracy result, GSV-NET has a limitation that could not han-
dle the imbalanced classes of two datasets: ModelNet40 and Sydney. Undersampling
and oversampling approaches, which are the future research direction, can manage the
imbalanced classes.

5. Conclusions

LiDAR technology, which accumulates the 3D point cloud data of scenes and shapes,
is the most significant sensor in autonomous driving cars. LiDAR data, as well as the devel-
opment of deep learning approaches, has boosted autonomous-driving fields. Various deep
learning-based methods have been proposed for classification tasks in autonomous driving.
This paper introduces the novel framework GSV-NET for 3D point cloud classification
using Gaussian Supervector and enhancing region representation.

Unlike other methods, GSV-NET proposes an efficient multi-modal approach using 3D
CNN and 2D CNN to extract the global and regional features, respectively. Furthermore,
we introduce the 1D CNN structure to fuse the global and regional features. Our framework
handles the drawbacks of the first multi-modal method, MIFN, and fills the gap in the
multi-modal approach. Besides, GSV-NET resolves the camera-settings problem of the
view-based methods which makes them hard to implement in real-life applications. In
addition, GSV-NET overcomes the performance limitation with effective multi-modal
fusion and obtains the best performance for 3D point cloud classification (see Tables 2–6).
GSV-NET has an accuracy of 92.7% for the ModelNet40 dataset and an F1 score of 0.798
for the Sydney dataset. Furthermore, GSV-NET improves the performance by up to 10%
and 8% for the ModelNet40 and Sydney datasets, respectively, compared to other 3D CNN
methods (VoxNet). Finally, we evaluate GSV-NET on real-world and computer data, while
several other methods use only computer data.

The future research direction is to integrate GSV-NET with the software of the au-
tonomous driving car to evaluate the proposed method when the self-driving car is on
the road. An extra consideration is applying the resampling method for readjusting the
class distribution for the imbalanced databases. The resampling technique helps GSV-NET
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increase the recognition rate of the minority categories. These categories have smaller
samples than the other categories.

Author Contributions: Conceptualization, L.H.; Funding acquisition, S.-H.L., E.-J.L. and K.-R.K.;
Investigation, L.H.; Methodology, L.H.; Project administration, S.-H.L., E.-J.L. and K.-R.K.; Software,
L.H., S.-H.L., E.-J.L. and K.-R.K.; Supervision, S.-H.L., E.-J.L. and K.-R.K.; Validation, S.-H.L., E.-J.L.
and K.-R.K.; Writing—original draft, L.H.; Writing—review and editing, L.H. and S.-H.L. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Brain Korea 21 project (BK21).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The original ModelNet and Sydney datasets are available online at https:
//modelnet.cs.princeton.edu/ and http://www.acfr.usyd.edu.au/papers/SydneyUrbanObjectsDataset.
shtml (accessed on 22 August 2021).

Acknowledgments: This research was supported by the Basic Science Research Program through the Na-
tional Research Foundation of Korea (NRF) funded by the Ministry of Education (2020R1I1A306659411,
2020R1F1A1069124) and the Ministry of Trade, Industry, and Energy for its financial support of the
project titled “the establishment of advanced marine industry open laboratory and development of
realistic convergence content”.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

3DmFV 3D Modified Fisher Vectors
CNN Convolution Neural Network
EEM Effective Encoding Method
ERR Enhancing Region Representation
GCN Graph Convolutional Networks
GSP Graph Signal Processing
GSV Gaussian Supervector
LiDAR Light Detection and Ranging
MIFN Multimodal Information Fusion Network
MLP Multilayer Perceptron
MV Multi-View
MVCNN Multi-View Convolutional Neural Networks
PC Point Cloud
PV PANORAMA-View
SIFT Scale Invariant Feature Transform
TCN Transformation Correction Network
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